Properties

Label 1152.4.l.a.863.23
Level $1152$
Weight $4$
Character 1152.863
Analytic conductor $67.970$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1152,4,Mod(287,1152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1152, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1152.287"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 863.23
Character \(\chi\) \(=\) 1152.863
Dual form 1152.4.l.a.287.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(11.8474 + 11.8474i) q^{5} +12.7523 q^{7} +(15.5373 - 15.5373i) q^{11} +(-42.1911 - 42.1911i) q^{13} +76.6855i q^{17} +(-108.540 + 108.540i) q^{19} -52.0013i q^{23} +155.724i q^{25} +(-89.7171 + 89.7171i) q^{29} +12.9476i q^{31} +(151.083 + 151.083i) q^{35} +(-115.035 + 115.035i) q^{37} -307.899 q^{41} +(342.056 + 342.056i) q^{43} +357.499 q^{47} -180.378 q^{49} +(450.933 + 450.933i) q^{53} +368.154 q^{55} +(-395.827 + 395.827i) q^{59} +(-220.311 - 220.311i) q^{61} -999.712i q^{65} +(-243.024 + 243.024i) q^{67} -414.259i q^{71} -91.5239i q^{73} +(198.137 - 198.137i) q^{77} -236.635i q^{79} +(204.243 + 204.243i) q^{83} +(-908.526 + 908.526i) q^{85} -688.795 q^{89} +(-538.035 - 538.035i) q^{91} -2571.85 q^{95} +968.890 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{19} + 864 q^{43} + 2352 q^{49} + 576 q^{55} - 1824 q^{61} + 816 q^{67} + 480 q^{85} - 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 11.8474 + 11.8474i 1.05967 + 1.05967i 0.998103 + 0.0615638i \(0.0196088\pi\)
0.0615638 + 0.998103i \(0.480391\pi\)
\(6\) 0 0
\(7\) 12.7523 0.688562 0.344281 0.938867i \(-0.388123\pi\)
0.344281 + 0.938867i \(0.388123\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 15.5373 15.5373i 0.425879 0.425879i −0.461343 0.887222i \(-0.652632\pi\)
0.887222 + 0.461343i \(0.152632\pi\)
\(12\) 0 0
\(13\) −42.1911 42.1911i −0.900130 0.900130i 0.0953168 0.995447i \(-0.469614\pi\)
−0.995447 + 0.0953168i \(0.969614\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 76.6855i 1.09406i 0.837114 + 0.547028i \(0.184241\pi\)
−0.837114 + 0.547028i \(0.815759\pi\)
\(18\) 0 0
\(19\) −108.540 + 108.540i −1.31057 + 1.31057i −0.389580 + 0.920993i \(0.627380\pi\)
−0.920993 + 0.389580i \(0.872620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 52.0013i 0.471436i −0.971822 0.235718i \(-0.924256\pi\)
0.971822 0.235718i \(-0.0757442\pi\)
\(24\) 0 0
\(25\) 155.724i 1.24579i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −89.7171 + 89.7171i −0.574484 + 0.574484i −0.933378 0.358894i \(-0.883154\pi\)
0.358894 + 0.933378i \(0.383154\pi\)
\(30\) 0 0
\(31\) 12.9476i 0.0750150i 0.999296 + 0.0375075i \(0.0119418\pi\)
−0.999296 + 0.0375075i \(0.988058\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 151.083 + 151.083i 0.729646 + 0.729646i
\(36\) 0 0
\(37\) −115.035 + 115.035i −0.511126 + 0.511126i −0.914871 0.403746i \(-0.867708\pi\)
0.403746 + 0.914871i \(0.367708\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −307.899 −1.17282 −0.586411 0.810013i \(-0.699460\pi\)
−0.586411 + 0.810013i \(0.699460\pi\)
\(42\) 0 0
\(43\) 342.056 + 342.056i 1.21309 + 1.21309i 0.970003 + 0.243091i \(0.0781615\pi\)
0.243091 + 0.970003i \(0.421839\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 357.499 1.10950 0.554750 0.832017i \(-0.312814\pi\)
0.554750 + 0.832017i \(0.312814\pi\)
\(48\) 0 0
\(49\) −180.378 −0.525883
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 450.933 + 450.933i 1.16869 + 1.16869i 0.982518 + 0.186169i \(0.0596072\pi\)
0.186169 + 0.982518i \(0.440393\pi\)
\(54\) 0 0
\(55\) 368.154 0.902579
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −395.827 + 395.827i −0.873428 + 0.873428i −0.992844 0.119417i \(-0.961898\pi\)
0.119417 + 0.992844i \(0.461898\pi\)
\(60\) 0 0
\(61\) −220.311 220.311i −0.462425 0.462425i 0.437025 0.899449i \(-0.356032\pi\)
−0.899449 + 0.437025i \(0.856032\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 999.712i 1.90768i
\(66\) 0 0
\(67\) −243.024 + 243.024i −0.443137 + 0.443137i −0.893065 0.449928i \(-0.851450\pi\)
0.449928 + 0.893065i \(0.351450\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 414.259i 0.692444i −0.938153 0.346222i \(-0.887464\pi\)
0.938153 0.346222i \(-0.112536\pi\)
\(72\) 0 0
\(73\) 91.5239i 0.146741i −0.997305 0.0733703i \(-0.976624\pi\)
0.997305 0.0733703i \(-0.0233755\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 198.137 198.137i 0.293244 0.293244i
\(78\) 0 0
\(79\) 236.635i 0.337007i −0.985701 0.168503i \(-0.946107\pi\)
0.985701 0.168503i \(-0.0538934\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 204.243 + 204.243i 0.270103 + 0.270103i 0.829142 0.559039i \(-0.188830\pi\)
−0.559039 + 0.829142i \(0.688830\pi\)
\(84\) 0 0
\(85\) −908.526 + 908.526i −1.15934 + 1.15934i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −688.795 −0.820360 −0.410180 0.912005i \(-0.634534\pi\)
−0.410180 + 0.912005i \(0.634534\pi\)
\(90\) 0 0
\(91\) −538.035 538.035i −0.619795 0.619795i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2571.85 −2.77754
\(96\) 0 0
\(97\) 968.890 1.01418 0.507092 0.861892i \(-0.330720\pi\)
0.507092 + 0.861892i \(0.330720\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1120.79 1120.79i −1.10419 1.10419i −0.993900 0.110289i \(-0.964822\pi\)
−0.110289 0.993900i \(-0.535178\pi\)
\(102\) 0 0
\(103\) 1811.42 1.73286 0.866430 0.499298i \(-0.166409\pi\)
0.866430 + 0.499298i \(0.166409\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −943.403 + 943.403i −0.852357 + 0.852357i −0.990423 0.138066i \(-0.955911\pi\)
0.138066 + 0.990423i \(0.455911\pi\)
\(108\) 0 0
\(109\) 227.732 + 227.732i 0.200117 + 0.200117i 0.800050 0.599933i \(-0.204806\pi\)
−0.599933 + 0.800050i \(0.704806\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1679.37i 1.39807i −0.715090 0.699033i \(-0.753614\pi\)
0.715090 0.699033i \(-0.246386\pi\)
\(114\) 0 0
\(115\) 616.083 616.083i 0.499565 0.499565i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 977.919i 0.753325i
\(120\) 0 0
\(121\) 848.186i 0.637255i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −363.995 + 363.995i −0.260454 + 0.260454i
\(126\) 0 0
\(127\) 1983.72i 1.38604i 0.720921 + 0.693018i \(0.243719\pi\)
−0.720921 + 0.693018i \(0.756281\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 604.660 + 604.660i 0.403277 + 0.403277i 0.879386 0.476109i \(-0.157953\pi\)
−0.476109 + 0.879386i \(0.657953\pi\)
\(132\) 0 0
\(133\) −1384.14 + 1384.14i −0.902410 + 0.902410i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 461.883 0.288039 0.144020 0.989575i \(-0.453997\pi\)
0.144020 + 0.989575i \(0.453997\pi\)
\(138\) 0 0
\(139\) 2075.03 + 2075.03i 1.26620 + 1.26620i 0.948037 + 0.318161i \(0.103065\pi\)
0.318161 + 0.948037i \(0.396935\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1311.07 −0.766693
\(144\) 0 0
\(145\) −2125.83 −1.21752
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −960.479 960.479i −0.528091 0.528091i 0.391912 0.920003i \(-0.371814\pi\)
−0.920003 + 0.391912i \(0.871814\pi\)
\(150\) 0 0
\(151\) 1041.85 0.561490 0.280745 0.959782i \(-0.409419\pi\)
0.280745 + 0.959782i \(0.409419\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −153.396 + 153.396i −0.0794910 + 0.0794910i
\(156\) 0 0
\(157\) 1899.04 + 1899.04i 0.965348 + 0.965348i 0.999419 0.0340711i \(-0.0108473\pi\)
−0.0340711 + 0.999419i \(0.510847\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 663.139i 0.324613i
\(162\) 0 0
\(163\) −1647.43 + 1647.43i −0.791638 + 0.791638i −0.981760 0.190123i \(-0.939111\pi\)
0.190123 + 0.981760i \(0.439111\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1582.34i 0.733205i −0.930378 0.366603i \(-0.880521\pi\)
0.930378 0.366603i \(-0.119479\pi\)
\(168\) 0 0
\(169\) 1363.17i 0.620469i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1694.26 + 1694.26i −0.744579 + 0.744579i −0.973455 0.228877i \(-0.926495\pi\)
0.228877 + 0.973455i \(0.426495\pi\)
\(174\) 0 0
\(175\) 1985.84i 0.857802i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 538.851 + 538.851i 0.225003 + 0.225003i 0.810602 0.585598i \(-0.199140\pi\)
−0.585598 + 0.810602i \(0.699140\pi\)
\(180\) 0 0
\(181\) −1601.85 + 1601.85i −0.657815 + 0.657815i −0.954863 0.297048i \(-0.903998\pi\)
0.297048 + 0.954863i \(0.403998\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2725.74 −1.08325
\(186\) 0 0
\(187\) 1191.48 + 1191.48i 0.465935 + 0.465935i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2604.11 0.986526 0.493263 0.869880i \(-0.335804\pi\)
0.493263 + 0.869880i \(0.335804\pi\)
\(192\) 0 0
\(193\) −3986.98 −1.48699 −0.743495 0.668742i \(-0.766833\pi\)
−0.743495 + 0.668742i \(0.766833\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 299.734 + 299.734i 0.108402 + 0.108402i 0.759227 0.650826i \(-0.225577\pi\)
−0.650826 + 0.759227i \(0.725577\pi\)
\(198\) 0 0
\(199\) −2771.54 −0.987283 −0.493641 0.869666i \(-0.664334\pi\)
−0.493641 + 0.869666i \(0.664334\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1144.10 + 1144.10i −0.395568 + 0.395568i
\(204\) 0 0
\(205\) −3647.81 3647.81i −1.24280 1.24280i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3372.85i 1.11629i
\(210\) 0 0
\(211\) 3155.78 3155.78i 1.02964 1.02964i 0.0300882 0.999547i \(-0.490421\pi\)
0.999547 0.0300882i \(-0.00957881\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8104.98i 2.57095i
\(216\) 0 0
\(217\) 165.113i 0.0516525i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3235.44 3235.44i 0.984793 0.984793i
\(222\) 0 0
\(223\) 4954.34i 1.48775i 0.668321 + 0.743873i \(0.267013\pi\)
−0.668321 + 0.743873i \(0.732987\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4344.90 4344.90i −1.27040 1.27040i −0.945878 0.324522i \(-0.894796\pi\)
−0.324522 0.945878i \(-0.605204\pi\)
\(228\) 0 0
\(229\) −1409.26 + 1409.26i −0.406667 + 0.406667i −0.880575 0.473907i \(-0.842843\pi\)
0.473907 + 0.880575i \(0.342843\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 315.304 0.0886534 0.0443267 0.999017i \(-0.485886\pi\)
0.0443267 + 0.999017i \(0.485886\pi\)
\(234\) 0 0
\(235\) 4235.44 + 4235.44i 1.17570 + 1.17570i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3855.01 1.04335 0.521674 0.853145i \(-0.325308\pi\)
0.521674 + 0.853145i \(0.325308\pi\)
\(240\) 0 0
\(241\) −2826.65 −0.755520 −0.377760 0.925903i \(-0.623306\pi\)
−0.377760 + 0.925903i \(0.623306\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2137.01 2137.01i −0.557260 0.557260i
\(246\) 0 0
\(247\) 9158.87 2.35937
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1055.38 1055.38i 0.265399 0.265399i −0.561844 0.827243i \(-0.689908\pi\)
0.827243 + 0.561844i \(0.189908\pi\)
\(252\) 0 0
\(253\) −807.959 807.959i −0.200775 0.200775i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3642.49i 0.884094i 0.896992 + 0.442047i \(0.145748\pi\)
−0.896992 + 0.442047i \(0.854252\pi\)
\(258\) 0 0
\(259\) −1466.97 + 1466.97i −0.351942 + 0.351942i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2762.58i 0.647712i 0.946106 + 0.323856i \(0.104979\pi\)
−0.946106 + 0.323856i \(0.895021\pi\)
\(264\) 0 0
\(265\) 10684.8i 2.47684i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 687.157 687.157i 0.155750 0.155750i −0.624930 0.780680i \(-0.714873\pi\)
0.780680 + 0.624930i \(0.214873\pi\)
\(270\) 0 0
\(271\) 8340.64i 1.86959i −0.355194 0.934793i \(-0.615585\pi\)
0.355194 0.934793i \(-0.384415\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2419.52 + 2419.52i 0.530555 + 0.530555i
\(276\) 0 0
\(277\) 3316.47 3316.47i 0.719377 0.719377i −0.249100 0.968478i \(-0.580135\pi\)
0.968478 + 0.249100i \(0.0801349\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1959.56 −0.416006 −0.208003 0.978128i \(-0.566696\pi\)
−0.208003 + 0.978128i \(0.566696\pi\)
\(282\) 0 0
\(283\) 98.9689 + 98.9689i 0.0207883 + 0.0207883i 0.717425 0.696636i \(-0.245321\pi\)
−0.696636 + 0.717425i \(0.745321\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3926.43 −0.807561
\(288\) 0 0
\(289\) −967.662 −0.196960
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5930.48 5930.48i −1.18247 1.18247i −0.979104 0.203362i \(-0.934813\pi\)
−0.203362 0.979104i \(-0.565187\pi\)
\(294\) 0 0
\(295\) −9379.06 −1.85108
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2193.99 + 2193.99i −0.424354 + 0.424354i
\(300\) 0 0
\(301\) 4362.02 + 4362.02i 0.835291 + 0.835291i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5220.23i 0.980032i
\(306\) 0 0
\(307\) −370.094 + 370.094i −0.0688025 + 0.0688025i −0.740671 0.671868i \(-0.765492\pi\)
0.671868 + 0.740671i \(0.265492\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3969.20i 0.723706i −0.932235 0.361853i \(-0.882144\pi\)
0.932235 0.361853i \(-0.117856\pi\)
\(312\) 0 0
\(313\) 1293.74i 0.233630i −0.993154 0.116815i \(-0.962732\pi\)
0.993154 0.116815i \(-0.0372685\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 471.086 471.086i 0.0834663 0.0834663i −0.664141 0.747607i \(-0.731203\pi\)
0.747607 + 0.664141i \(0.231203\pi\)
\(318\) 0 0
\(319\) 2787.92i 0.489321i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8323.47 8323.47i −1.43384 1.43384i
\(324\) 0 0
\(325\) 6570.14 6570.14i 1.12137 1.12137i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4558.94 0.763960
\(330\) 0 0
\(331\) −1232.13 1232.13i −0.204605 0.204605i 0.597365 0.801970i \(-0.296214\pi\)
−0.801970 + 0.597365i \(0.796214\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5758.43 −0.939154
\(336\) 0 0
\(337\) 5124.30 0.828303 0.414152 0.910208i \(-0.364078\pi\)
0.414152 + 0.910208i \(0.364078\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 201.171 + 201.171i 0.0319473 + 0.0319473i
\(342\) 0 0
\(343\) −6674.29 −1.05066
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1034.16 + 1034.16i −0.159990 + 0.159990i −0.782562 0.622573i \(-0.786088\pi\)
0.622573 + 0.782562i \(0.286088\pi\)
\(348\) 0 0
\(349\) 857.250 + 857.250i 0.131483 + 0.131483i 0.769786 0.638303i \(-0.220363\pi\)
−0.638303 + 0.769786i \(0.720363\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6438.74i 0.970820i −0.874287 0.485410i \(-0.838670\pi\)
0.874287 0.485410i \(-0.161330\pi\)
\(354\) 0 0
\(355\) 4907.91 4907.91i 0.733760 0.733760i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3177.72i 0.467169i −0.972336 0.233585i \(-0.924954\pi\)
0.972336 0.233585i \(-0.0750456\pi\)
\(360\) 0 0
\(361\) 16703.0i 2.43520i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1084.32 1084.32i 0.155496 0.155496i
\(366\) 0 0
\(367\) 3014.10i 0.428705i −0.976756 0.214353i \(-0.931236\pi\)
0.976756 0.214353i \(-0.0687642\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5750.45 + 5750.45i 0.804713 + 0.804713i
\(372\) 0 0
\(373\) −3831.87 + 3831.87i −0.531922 + 0.531922i −0.921144 0.389222i \(-0.872744\pi\)
0.389222 + 0.921144i \(0.372744\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7570.52 1.03422
\(378\) 0 0
\(379\) −7178.18 7178.18i −0.972871 0.972871i 0.0267701 0.999642i \(-0.491478\pi\)
−0.999642 + 0.0267701i \(0.991478\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 896.953 0.119666 0.0598331 0.998208i \(-0.480943\pi\)
0.0598331 + 0.998208i \(0.480943\pi\)
\(384\) 0 0
\(385\) 4694.82 0.621482
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5572.80 + 5572.80i 0.726355 + 0.726355i 0.969892 0.243536i \(-0.0783076\pi\)
−0.243536 + 0.969892i \(0.578308\pi\)
\(390\) 0 0
\(391\) 3987.75 0.515778
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2803.52 2803.52i 0.357115 0.357115i
\(396\) 0 0
\(397\) 5204.36 + 5204.36i 0.657933 + 0.657933i 0.954891 0.296958i \(-0.0959721\pi\)
−0.296958 + 0.954891i \(0.595972\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14787.8i 1.84157i 0.390075 + 0.920783i \(0.372449\pi\)
−0.390075 + 0.920783i \(0.627551\pi\)
\(402\) 0 0
\(403\) 546.275 546.275i 0.0675233 0.0675233i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3574.66i 0.435355i
\(408\) 0 0
\(409\) 4498.56i 0.543862i 0.962317 + 0.271931i \(0.0876622\pi\)
−0.962317 + 0.271931i \(0.912338\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5047.72 + 5047.72i −0.601409 + 0.601409i
\(414\) 0 0
\(415\) 4839.50i 0.572438i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −212.986 212.986i −0.0248331 0.0248331i 0.694581 0.719414i \(-0.255590\pi\)
−0.719414 + 0.694581i \(0.755590\pi\)
\(420\) 0 0
\(421\) −1934.26 + 1934.26i −0.223919 + 0.223919i −0.810147 0.586227i \(-0.800613\pi\)
0.586227 + 0.810147i \(0.300613\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11941.7 −1.36296
\(426\) 0 0
\(427\) −2809.48 2809.48i −0.318408 0.318408i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4971.77 0.555643 0.277821 0.960633i \(-0.410388\pi\)
0.277821 + 0.960633i \(0.410388\pi\)
\(432\) 0 0
\(433\) 1279.52 0.142009 0.0710044 0.997476i \(-0.477380\pi\)
0.0710044 + 0.997476i \(0.477380\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5644.25 + 5644.25i 0.617851 + 0.617851i
\(438\) 0 0
\(439\) 5331.83 0.579668 0.289834 0.957077i \(-0.406400\pi\)
0.289834 + 0.957077i \(0.406400\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10618.8 10618.8i 1.13886 1.13886i 0.150199 0.988656i \(-0.452008\pi\)
0.988656 0.150199i \(-0.0479915\pi\)
\(444\) 0 0
\(445\) −8160.45 8160.45i −0.869309 0.869309i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1471.81i 0.154697i −0.997004 0.0773485i \(-0.975355\pi\)
0.997004 0.0773485i \(-0.0246454\pi\)
\(450\) 0 0
\(451\) −4783.91 + 4783.91i −0.499480 + 0.499480i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12748.7i 1.31355i
\(456\) 0 0
\(457\) 4489.34i 0.459524i −0.973247 0.229762i \(-0.926205\pi\)
0.973247 0.229762i \(-0.0737947\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2175.66 + 2175.66i −0.219806 + 0.219806i −0.808417 0.588610i \(-0.799675\pi\)
0.588610 + 0.808417i \(0.299675\pi\)
\(462\) 0 0
\(463\) 3759.95i 0.377408i −0.982034 0.188704i \(-0.939571\pi\)
0.982034 0.188704i \(-0.0604287\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5824.44 + 5824.44i 0.577137 + 0.577137i 0.934113 0.356976i \(-0.116192\pi\)
−0.356976 + 0.934113i \(0.616192\pi\)
\(468\) 0 0
\(469\) −3099.13 + 3099.13i −0.305127 + 0.305127i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10629.2 1.03326
\(474\) 0 0
\(475\) −16902.3 16902.3i −1.63270 1.63270i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12175.2 1.16138 0.580690 0.814125i \(-0.302783\pi\)
0.580690 + 0.814125i \(0.302783\pi\)
\(480\) 0 0
\(481\) 9706.90 0.920159
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11478.9 + 11478.9i 1.07470 + 1.07470i
\(486\) 0 0
\(487\) 1409.76 0.131175 0.0655876 0.997847i \(-0.479108\pi\)
0.0655876 + 0.997847i \(0.479108\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3130.87 3130.87i 0.287769 0.287769i −0.548429 0.836197i \(-0.684774\pi\)
0.836197 + 0.548429i \(0.184774\pi\)
\(492\) 0 0
\(493\) −6880.00 6880.00i −0.628518 0.628518i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5282.78i 0.476791i
\(498\) 0 0
\(499\) −5590.00 + 5590.00i −0.501489 + 0.501489i −0.911900 0.410412i \(-0.865385\pi\)
0.410412 + 0.911900i \(0.365385\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5278.26i 0.467885i −0.972250 0.233943i \(-0.924837\pi\)
0.972250 0.233943i \(-0.0751628\pi\)
\(504\) 0 0
\(505\) 26557.0i 2.34014i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1789.92 + 1789.92i −0.155868 + 0.155868i −0.780733 0.624865i \(-0.785154\pi\)
0.624865 + 0.780733i \(0.285154\pi\)
\(510\) 0 0
\(511\) 1167.14i 0.101040i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21460.7 + 21460.7i 1.83626 + 1.83626i
\(516\) 0 0
\(517\) 5554.56 5554.56i 0.472513 0.472513i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3939.70 0.331289 0.165645 0.986186i \(-0.447030\pi\)
0.165645 + 0.986186i \(0.447030\pi\)
\(522\) 0 0
\(523\) 10743.7 + 10743.7i 0.898260 + 0.898260i 0.995282 0.0970218i \(-0.0309316\pi\)
−0.0970218 + 0.995282i \(0.530932\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −992.897 −0.0820707
\(528\) 0 0
\(529\) 9462.86 0.777748
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12990.6 + 12990.6i 1.05569 + 1.05569i
\(534\) 0 0
\(535\) −22353.8 −1.80643
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2802.58 + 2802.58i −0.223962 + 0.223962i
\(540\) 0 0
\(541\) 845.856 + 845.856i 0.0672203 + 0.0672203i 0.739918 0.672697i \(-0.234864\pi\)
−0.672697 + 0.739918i \(0.734864\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5396.08i 0.424115i
\(546\) 0 0
\(547\) −2207.08 + 2207.08i −0.172519 + 0.172519i −0.788085 0.615566i \(-0.788927\pi\)
0.615566 + 0.788085i \(0.288927\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 19475.9i 1.50581i
\(552\) 0 0
\(553\) 3017.65i 0.232050i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 981.595 981.595i 0.0746706 0.0746706i −0.668785 0.743456i \(-0.733185\pi\)
0.743456 + 0.668785i \(0.233185\pi\)
\(558\) 0 0
\(559\) 28863.4i 2.18389i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4253.32 4253.32i −0.318394 0.318394i 0.529756 0.848150i \(-0.322284\pi\)
−0.848150 + 0.529756i \(0.822284\pi\)
\(564\) 0 0
\(565\) 19896.2 19896.2i 1.48148 1.48148i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5343.19 0.393670 0.196835 0.980437i \(-0.436934\pi\)
0.196835 + 0.980437i \(0.436934\pi\)
\(570\) 0 0
\(571\) 1599.99 + 1599.99i 0.117263 + 0.117263i 0.763303 0.646040i \(-0.223576\pi\)
−0.646040 + 0.763303i \(0.723576\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8097.83 0.587309
\(576\) 0 0
\(577\) −6250.00 −0.450938 −0.225469 0.974250i \(-0.572391\pi\)
−0.225469 + 0.974250i \(0.572391\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2604.57 + 2604.57i 0.185983 + 0.185983i
\(582\) 0 0
\(583\) 14012.5 0.995438
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10453.2 10453.2i 0.735009 0.735009i −0.236598 0.971608i \(-0.576033\pi\)
0.971608 + 0.236598i \(0.0760325\pi\)
\(588\) 0 0
\(589\) −1405.34 1405.34i −0.0983126 0.0983126i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6756.56i 0.467890i −0.972250 0.233945i \(-0.924836\pi\)
0.972250 0.233945i \(-0.0751635\pi\)
\(594\) 0 0
\(595\) −11585.8 + 11585.8i −0.798274 + 0.798274i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10583.3i 0.721907i −0.932584 0.360953i \(-0.882451\pi\)
0.932584 0.360953i \(-0.117549\pi\)
\(600\) 0 0
\(601\) 27897.7i 1.89346i 0.322029 + 0.946730i \(0.395635\pi\)
−0.322029 + 0.946730i \(0.604365\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10048.8 + 10048.8i −0.675278 + 0.675278i
\(606\) 0 0
\(607\) 15554.4i 1.04009i −0.854139 0.520045i \(-0.825915\pi\)
0.854139 0.520045i \(-0.174085\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15083.2 15083.2i −0.998695 0.998695i
\(612\) 0 0
\(613\) −1060.22 + 1060.22i −0.0698561 + 0.0698561i −0.741172 0.671316i \(-0.765730\pi\)
0.671316 + 0.741172i \(0.265730\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1588.09 0.103621 0.0518103 0.998657i \(-0.483501\pi\)
0.0518103 + 0.998657i \(0.483501\pi\)
\(618\) 0 0
\(619\) −16739.9 16739.9i −1.08697 1.08697i −0.995839 0.0911258i \(-0.970953\pi\)
−0.0911258 0.995839i \(-0.529047\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8783.74 −0.564869
\(624\) 0 0
\(625\) 10840.6 0.693800
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8821.52 8821.52i −0.559200 0.559200i
\(630\) 0 0
\(631\) −24451.3 −1.54262 −0.771308 0.636462i \(-0.780397\pi\)
−0.771308 + 0.636462i \(0.780397\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −23502.0 + 23502.0i −1.46874 + 1.46874i
\(636\) 0 0
\(637\) 7610.33 + 7610.33i 0.473363 + 0.473363i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21231.7i 1.30827i 0.756376 + 0.654137i \(0.226968\pi\)
−0.756376 + 0.654137i \(0.773032\pi\)
\(642\) 0 0
\(643\) 6155.73 6155.73i 0.377540 0.377540i −0.492674 0.870214i \(-0.663980\pi\)
0.870214 + 0.492674i \(0.163980\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2628.40i 0.159711i −0.996806 0.0798556i \(-0.974554\pi\)
0.996806 0.0798556i \(-0.0254459\pi\)
\(648\) 0 0
\(649\) 12300.1i 0.743949i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16580.7 16580.7i 0.993651 0.993651i −0.00632934 0.999980i \(-0.502015\pi\)
0.999980 + 0.00632934i \(0.00201470\pi\)
\(654\) 0 0
\(655\) 14327.3i 0.854680i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10829.7 10829.7i −0.640160 0.640160i 0.310435 0.950595i \(-0.399525\pi\)
−0.950595 + 0.310435i \(0.899525\pi\)
\(660\) 0 0
\(661\) 7601.63 7601.63i 0.447306 0.447306i −0.447152 0.894458i \(-0.647562\pi\)
0.894458 + 0.447152i \(0.147562\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −32797.1 −1.91251
\(666\) 0 0
\(667\) 4665.41 + 4665.41i 0.270833 + 0.270833i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6846.06 −0.393874
\(672\) 0 0
\(673\) 17454.0 0.999704 0.499852 0.866111i \(-0.333388\pi\)
0.499852 + 0.866111i \(0.333388\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8654.19 + 8654.19i 0.491296 + 0.491296i 0.908714 0.417418i \(-0.137065\pi\)
−0.417418 + 0.908714i \(0.637065\pi\)
\(678\) 0 0
\(679\) 12355.6 0.698329
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 17026.8 17026.8i 0.953898 0.953898i −0.0450852 0.998983i \(-0.514356\pi\)
0.998983 + 0.0450852i \(0.0143559\pi\)
\(684\) 0 0
\(685\) 5472.13 + 5472.13i 0.305225 + 0.305225i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 38050.7i 2.10394i
\(690\) 0 0
\(691\) 4489.84 4489.84i 0.247180 0.247180i −0.572632 0.819813i \(-0.694078\pi\)
0.819813 + 0.572632i \(0.194078\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 49167.5i 2.68350i
\(696\) 0 0
\(697\) 23611.4i 1.28313i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18090.5 18090.5i 0.974706 0.974706i −0.0249815 0.999688i \(-0.507953\pi\)
0.999688 + 0.0249815i \(0.00795270\pi\)
\(702\) 0 0
\(703\) 24971.9i 1.33973i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14292.7 14292.7i −0.760302 0.760302i
\(708\) 0 0
\(709\) −5021.47 + 5021.47i −0.265988 + 0.265988i −0.827481 0.561493i \(-0.810227\pi\)
0.561493 + 0.827481i \(0.310227\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 673.295 0.0353648
\(714\) 0 0
\(715\) −15532.8 15532.8i −0.812439 0.812439i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4631.53 −0.240232 −0.120116 0.992760i \(-0.538327\pi\)
−0.120116 + 0.992760i \(0.538327\pi\)
\(720\) 0 0
\(721\) 23099.9 1.19318
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −13971.1 13971.1i −0.715686 0.715686i
\(726\) 0 0
\(727\) 7016.43 0.357944 0.178972 0.983854i \(-0.442723\pi\)
0.178972 + 0.983854i \(0.442723\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −26230.7 + 26230.7i −1.32719 + 1.32719i
\(732\) 0 0
\(733\) −9830.27 9830.27i −0.495347 0.495347i 0.414639 0.909986i \(-0.363908\pi\)
−0.909986 + 0.414639i \(0.863908\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7551.88i 0.377445i
\(738\) 0 0
\(739\) 25624.1 25624.1i 1.27551 1.27551i 0.332350 0.943156i \(-0.392158\pi\)
0.943156 0.332350i \(-0.107842\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1936.75i 0.0956294i −0.998856 0.0478147i \(-0.984774\pi\)
0.998856 0.0478147i \(-0.0152257\pi\)
\(744\) 0 0
\(745\) 22758.4i 1.11920i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12030.6 + 12030.6i −0.586901 + 0.586901i
\(750\) 0 0
\(751\) 32386.7i 1.57365i 0.617178 + 0.786823i \(0.288276\pi\)
−0.617178 + 0.786823i \(0.711724\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12343.3 + 12343.3i 0.594992 + 0.594992i
\(756\) 0 0
\(757\) −1721.80 + 1721.80i −0.0826681 + 0.0826681i −0.747232 0.664564i \(-0.768617\pi\)
0.664564 + 0.747232i \(0.268617\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29323.2 1.39680 0.698400 0.715708i \(-0.253896\pi\)
0.698400 + 0.715708i \(0.253896\pi\)
\(762\) 0 0
\(763\) 2904.12 + 2904.12i 0.137793 + 0.137793i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 33400.7 1.57240
\(768\) 0 0
\(769\) −22066.6 −1.03478 −0.517388 0.855751i \(-0.673096\pi\)
−0.517388 + 0.855751i \(0.673096\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −13267.0 13267.0i −0.617313 0.617313i 0.327529 0.944841i \(-0.393784\pi\)
−0.944841 + 0.327529i \(0.893784\pi\)
\(774\) 0 0
\(775\) −2016.25 −0.0934528
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 33419.5 33419.5i 1.53707 1.53707i
\(780\) 0 0
\(781\) −6436.46 6436.46i −0.294897 0.294897i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44997.5i 2.04590i
\(786\) 0 0
\(787\) −14004.3 + 14004.3i −0.634306 + 0.634306i −0.949145 0.314839i \(-0.898049\pi\)
0.314839 + 0.949145i \(0.398049\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 21415.8i 0.962655i
\(792\) 0 0
\(793\) 18590.3i 0.832485i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12572.2 12572.2i 0.558760 0.558760i −0.370194 0.928954i \(-0.620709\pi\)
0.928954 + 0.370194i \(0.120709\pi\)
\(798\) 0 0
\(799\) 27414.9i 1.21386i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1422.03 1422.03i −0.0624937 0.0624937i
\(804\) 0 0
\(805\) 7856.50 7856.50i 0.343981 0.343981i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40623.8 1.76546 0.882729 0.469883i \(-0.155704\pi\)
0.882729 + 0.469883i \(0.155704\pi\)
\(810\) 0 0
\(811\) 27924.9 + 27924.9i 1.20910 + 1.20910i 0.971320 + 0.237777i \(0.0764187\pi\)
0.237777 + 0.971320i \(0.423581\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −39035.7 −1.67774
\(816\) 0 0
\(817\) −74253.8 −3.17970
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19156.4 19156.4i −0.814327 0.814327i 0.170952 0.985279i \(-0.445316\pi\)
−0.985279 + 0.170952i \(0.945316\pi\)
\(822\) 0 0
\(823\) −39729.9 −1.68274 −0.841371 0.540459i \(-0.818251\pi\)
−0.841371 + 0.540459i \(0.818251\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9676.86 9676.86i 0.406889 0.406889i −0.473763 0.880652i \(-0.657105\pi\)
0.880652 + 0.473763i \(0.157105\pi\)
\(828\) 0 0
\(829\) 31914.5 + 31914.5i 1.33708 + 1.33708i 0.898878 + 0.438199i \(0.144383\pi\)
0.438199 + 0.898878i \(0.355617\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 13832.4i 0.575345i
\(834\) 0 0
\(835\) 18746.7 18746.7i 0.776953 0.776953i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21568.7i 0.887525i 0.896145 + 0.443762i \(0.146357\pi\)
−0.896145 + 0.443762i \(0.853643\pi\)
\(840\) 0 0
\(841\) 8290.69i 0.339936i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −16150.1 + 16150.1i −0.657490 + 0.657490i
\(846\) 0 0
\(847\) 10816.4i 0.438789i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5981.98 + 5981.98i 0.240963 + 0.240963i
\(852\) 0 0
\(853\) −9556.39 + 9556.39i −0.383593 + 0.383593i −0.872395 0.488802i \(-0.837434\pi\)
0.488802 + 0.872395i \(0.337434\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14819.6 −0.590697 −0.295349 0.955390i \(-0.595436\pi\)
−0.295349 + 0.955390i \(0.595436\pi\)
\(858\) 0 0
\(859\) 4446.63 + 4446.63i 0.176621 + 0.176621i 0.789881 0.613260i \(-0.210142\pi\)
−0.613260 + 0.789881i \(0.710142\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32985.3 1.30108 0.650541 0.759471i \(-0.274542\pi\)
0.650541 + 0.759471i \(0.274542\pi\)
\(864\) 0 0
\(865\) −40145.2 −1.57801
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3676.67 3676.67i −0.143524 0.143524i
\(870\) 0 0
\(871\) 20506.9 0.797761
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4641.79 + 4641.79i −0.179338 + 0.179338i
\(876\) 0 0
\(877\) −4904.79 4904.79i −0.188852 0.188852i 0.606348 0.795200i \(-0.292634\pi\)
−0.795200 + 0.606348i \(0.792634\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5133.26i 0.196304i 0.995171 + 0.0981520i \(0.0312931\pi\)
−0.995171 + 0.0981520i \(0.968707\pi\)
\(882\) 0 0
\(883\) −11367.4 + 11367.4i −0.433231 + 0.433231i −0.889726 0.456495i \(-0.849105\pi\)
0.456495 + 0.889726i \(0.349105\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33679.0i 1.27489i 0.770494 + 0.637447i \(0.220009\pi\)
−0.770494 + 0.637447i \(0.779991\pi\)
\(888\) 0 0
\(889\) 25297.1i 0.954371i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −38803.0 + 38803.0i −1.45408 + 1.45408i
\(894\) 0 0
\(895\) 12768.0i 0.476857i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1161.63 1161.63i −0.0430950 0.0430950i
\(900\) 0 0
\(901\) −34580.0 + 34580.0i −1.27861 + 1.27861i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −37955.6 −1.39413
\(906\) 0 0
\(907\) 24197.4 + 24197.4i 0.885844 + 0.885844i 0.994121 0.108276i \(-0.0345332\pi\)
−0.108276 + 0.994121i \(0.534533\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6916.65 −0.251546 −0.125773 0.992059i \(-0.540141\pi\)
−0.125773 + 0.992059i \(0.540141\pi\)
\(912\) 0 0
\(913\) 6346.75 0.230062
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7710.83 + 7710.83i 0.277681 + 0.277681i
\(918\) 0 0
\(919\) 26324.8 0.944913 0.472457 0.881354i \(-0.343367\pi\)
0.472457 + 0.881354i \(0.343367\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −17478.0 + 17478.0i −0.623290 + 0.623290i
\(924\) 0 0
\(925\) −17913.7 17913.7i −0.636754 0.636754i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 26972.1i 0.952557i 0.879295 + 0.476278i \(0.158015\pi\)
−0.879295 + 0.476278i \(0.841985\pi\)
\(930\) 0 0
\(931\) 19578.3 19578.3i 0.689207 0.689207i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 28232.1i 0.987473i
\(936\) 0 0
\(937\) 2342.01i 0.0816545i −0.999166 0.0408272i \(-0.987001\pi\)
0.999166 0.0408272i \(-0.0129993\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12461.8 12461.8i 0.431715 0.431715i −0.457496 0.889212i \(-0.651254\pi\)
0.889212 + 0.457496i \(0.151254\pi\)
\(942\) 0 0
\(943\) 16011.2i 0.552911i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23195.0 + 23195.0i 0.795919 + 0.795919i 0.982449 0.186530i \(-0.0597243\pi\)
−0.186530 + 0.982449i \(0.559724\pi\)
\(948\) 0 0
\(949\) −3861.49 + 3861.49i −0.132086 + 0.132086i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 19212.6 0.653049 0.326525 0.945189i \(-0.394122\pi\)
0.326525 + 0.945189i \(0.394122\pi\)
\(954\) 0 0
\(955\) 30852.0 + 30852.0i 1.04539 + 1.04539i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5890.09 0.198333
\(960\) 0 0
\(961\) 29623.4 0.994373
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −47235.5 47235.5i −1.57571 1.57571i
\(966\) 0 0
\(967\) 40032.4 1.33129 0.665644 0.746269i \(-0.268157\pi\)
0.665644 + 0.746269i \(0.268157\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12435.1 + 12435.1i −0.410981 + 0.410981i −0.882080 0.471099i \(-0.843857\pi\)
0.471099 + 0.882080i \(0.343857\pi\)
\(972\) 0 0
\(973\) 26461.4 + 26461.4i 0.871855 + 0.871855i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8094.29i 0.265055i 0.991179 + 0.132528i \(0.0423094\pi\)
−0.991179 + 0.132528i \(0.957691\pi\)
\(978\) 0 0
\(979\) −10702.0 + 10702.0i −0.349374 + 0.349374i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3321.21i 0.107762i 0.998547 + 0.0538811i \(0.0171592\pi\)
−0.998547 + 0.0538811i \(0.982841\pi\)
\(984\) 0 0
\(985\) 7102.15i 0.229739i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17787.4 17787.4i 0.571897 0.571897i
\(990\) 0 0
\(991\) 33606.0i 1.07722i 0.842554 + 0.538612i \(0.181051\pi\)
−0.842554 + 0.538612i \(0.818949\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −32835.6 32835.6i −1.04619 1.04619i
\(996\) 0 0
\(997\) −2809.08 + 2809.08i −0.0892323 + 0.0892323i −0.750314 0.661082i \(-0.770098\pi\)
0.661082 + 0.750314i \(0.270098\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.l.a.863.23 48
3.2 odd 2 inner 1152.4.l.a.863.2 48
4.3 odd 2 1152.4.l.b.863.23 48
8.3 odd 2 144.4.l.a.35.10 48
8.5 even 2 576.4.l.a.431.2 48
12.11 even 2 1152.4.l.b.863.2 48
16.3 odd 4 576.4.l.a.143.23 48
16.5 even 4 1152.4.l.b.287.2 48
16.11 odd 4 inner 1152.4.l.a.287.2 48
16.13 even 4 144.4.l.a.107.15 yes 48
24.5 odd 2 576.4.l.a.431.23 48
24.11 even 2 144.4.l.a.35.15 yes 48
48.5 odd 4 1152.4.l.b.287.23 48
48.11 even 4 inner 1152.4.l.a.287.23 48
48.29 odd 4 144.4.l.a.107.10 yes 48
48.35 even 4 576.4.l.a.143.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.10 48 8.3 odd 2
144.4.l.a.35.15 yes 48 24.11 even 2
144.4.l.a.107.10 yes 48 48.29 odd 4
144.4.l.a.107.15 yes 48 16.13 even 4
576.4.l.a.143.2 48 48.35 even 4
576.4.l.a.143.23 48 16.3 odd 4
576.4.l.a.431.2 48 8.5 even 2
576.4.l.a.431.23 48 24.5 odd 2
1152.4.l.a.287.2 48 16.11 odd 4 inner
1152.4.l.a.287.23 48 48.11 even 4 inner
1152.4.l.a.863.2 48 3.2 odd 2 inner
1152.4.l.a.863.23 48 1.1 even 1 trivial
1152.4.l.b.287.2 48 16.5 even 4
1152.4.l.b.287.23 48 48.5 odd 4
1152.4.l.b.863.2 48 12.11 even 2
1152.4.l.b.863.23 48 4.3 odd 2