Properties

Label 576.2.bd.a.469.1
Level $576$
Weight $2$
Character 576.469
Analytic conductor $4.599$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,2,Mod(37,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 9, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.bd (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,0,-8,8,0,-8,8,0,-8,8,0,-8,8,0,-8,8,0,-8,8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 469.1
Character \(\chi\) \(=\) 576.469
Dual form 576.2.bd.a.253.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26428 + 0.633715i) q^{2} +(1.19681 - 1.60239i) q^{4} +(2.78737 - 1.86246i) q^{5} +(-3.13672 - 1.29927i) q^{7} +(-0.497646 + 2.78430i) q^{8} +(-2.34375 + 4.12108i) q^{10} +(1.79402 + 0.356853i) q^{11} +(4.34710 + 2.90464i) q^{13} +(4.78906 - 0.345143i) q^{14} +(-1.13529 - 3.83551i) q^{16} +(1.16196 - 1.16196i) q^{17} +(-0.00265155 + 0.00396832i) q^{19} +(0.351568 - 6.69547i) q^{20} +(-2.49429 + 0.685737i) q^{22} +(-1.78945 - 4.32013i) q^{23} +(2.38726 - 5.76336i) q^{25} +(-7.33667 - 0.917455i) q^{26} +(-5.83599 + 3.47126i) q^{28} +(1.70191 - 0.338531i) q^{29} -9.42685i q^{31} +(3.86595 + 4.12970i) q^{32} +(-0.732694 + 2.20540i) q^{34} +(-11.1630 + 2.22047i) q^{35} +(-1.47130 - 2.20195i) q^{37} +(0.000837513 - 0.00669740i) q^{38} +(3.79854 + 8.68774i) q^{40} +(-0.497436 - 1.20092i) q^{41} +(0.104068 - 0.523183i) q^{43} +(2.71892 - 2.44763i) q^{44} +(5.00010 + 4.32785i) q^{46} +(0.378819 - 0.378819i) q^{47} +(3.20113 + 3.20113i) q^{49} +(0.634161 + 8.79935i) q^{50} +(9.85702 - 3.48944i) q^{52} +(3.63594 + 0.723233i) q^{53} +(5.66523 - 2.34662i) q^{55} +(5.17854 - 8.08699i) q^{56} +(-1.93716 + 1.50653i) q^{58} +(11.1857 - 7.47403i) q^{59} +(-1.29788 - 6.52488i) q^{61} +(5.97394 + 11.9182i) q^{62} +(-7.50470 - 2.77119i) q^{64} +17.5268 q^{65} +(1.46964 + 7.38837i) q^{67} +(-0.471267 - 3.25257i) q^{68} +(12.7061 - 9.88148i) q^{70} +(-5.03495 - 2.08554i) q^{71} +(-4.53632 + 1.87901i) q^{73} +(3.25554 + 1.85150i) q^{74} +(0.00318539 + 0.00899813i) q^{76} +(-5.16369 - 3.45027i) q^{77} +(11.3984 + 11.3984i) q^{79} +(-10.3080 - 8.57655i) q^{80} +(1.38994 + 1.20306i) q^{82} +(-3.35370 + 5.01916i) q^{83} +(1.07471 - 5.40294i) q^{85} +(0.199978 + 0.727399i) q^{86} +(-1.88637 + 4.81752i) q^{88} +(-4.25907 + 10.2823i) q^{89} +(-9.86171 - 14.7591i) q^{91} +(-9.06415 - 2.30297i) q^{92} +(-0.238870 + 0.718996i) q^{94} +0.0159996i q^{95} +12.2846i q^{97} +(-6.07574 - 2.01852i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} - 8 q^{4} + 8 q^{5} - 8 q^{7} + 8 q^{8} - 8 q^{10} + 8 q^{11} - 8 q^{13} + 8 q^{14} - 8 q^{16} + 8 q^{17} - 8 q^{19} + 8 q^{20} + 8 q^{23} - 8 q^{25} - 32 q^{26} + 32 q^{28} + 8 q^{29} - 32 q^{32}+ \cdots - 128 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26428 + 0.633715i −0.893981 + 0.448104i
\(3\) 0 0
\(4\) 1.19681 1.60239i 0.598405 0.801194i
\(5\) 2.78737 1.86246i 1.24655 0.832919i 0.255553 0.966795i \(-0.417742\pi\)
0.990998 + 0.133876i \(0.0427425\pi\)
\(6\) 0 0
\(7\) −3.13672 1.29927i −1.18557 0.491078i −0.299258 0.954172i \(-0.596739\pi\)
−0.886309 + 0.463094i \(0.846739\pi\)
\(8\) −0.497646 + 2.78430i −0.175944 + 0.984400i
\(9\) 0 0
\(10\) −2.34375 + 4.12108i −0.741159 + 1.30320i
\(11\) 1.79402 + 0.356853i 0.540918 + 0.107595i 0.457985 0.888960i \(-0.348571\pi\)
0.0829328 + 0.996555i \(0.473571\pi\)
\(12\) 0 0
\(13\) 4.34710 + 2.90464i 1.20567 + 0.805603i 0.985470 0.169852i \(-0.0543291\pi\)
0.220200 + 0.975455i \(0.429329\pi\)
\(14\) 4.78906 0.345143i 1.27993 0.0922433i
\(15\) 0 0
\(16\) −1.13529 3.83551i −0.283823 0.958877i
\(17\) 1.16196 1.16196i 0.281818 0.281818i −0.552016 0.833834i \(-0.686141\pi\)
0.833834 + 0.552016i \(0.186141\pi\)
\(18\) 0 0
\(19\) −0.00265155 + 0.00396832i −0.000608307 + 0.000910395i −0.831774 0.555115i \(-0.812674\pi\)
0.831165 + 0.556025i \(0.187674\pi\)
\(20\) 0.351568 6.69547i 0.0786129 1.49715i
\(21\) 0 0
\(22\) −2.49429 + 0.685737i −0.531784 + 0.146200i
\(23\) −1.78945 4.32013i −0.373127 0.900809i −0.993217 0.116278i \(-0.962904\pi\)
0.620090 0.784531i \(-0.287096\pi\)
\(24\) 0 0
\(25\) 2.38726 5.76336i 0.477452 1.15267i
\(26\) −7.33667 0.917455i −1.43884 0.179928i
\(27\) 0 0
\(28\) −5.83599 + 3.47126i −1.10290 + 0.656006i
\(29\) 1.70191 0.338531i 0.316037 0.0628637i −0.0345231 0.999404i \(-0.510991\pi\)
0.350560 + 0.936540i \(0.385991\pi\)
\(30\) 0 0
\(31\) 9.42685i 1.69311i −0.532300 0.846556i \(-0.678672\pi\)
0.532300 0.846556i \(-0.321328\pi\)
\(32\) 3.86595 + 4.12970i 0.683409 + 0.730035i
\(33\) 0 0
\(34\) −0.732694 + 2.20540i −0.125656 + 0.378224i
\(35\) −11.1630 + 2.22047i −1.88690 + 0.375327i
\(36\) 0 0
\(37\) −1.47130 2.20195i −0.241880 0.361999i 0.690590 0.723246i \(-0.257351\pi\)
−0.932470 + 0.361248i \(0.882351\pi\)
\(38\) 0.000837513 0.00669740i 0.000135863 0.00108646i
\(39\) 0 0
\(40\) 3.79854 + 8.68774i 0.600602 + 1.37365i
\(41\) −0.497436 1.20092i −0.0776864 0.187552i 0.880265 0.474483i \(-0.157365\pi\)
−0.957951 + 0.286931i \(0.907365\pi\)
\(42\) 0 0
\(43\) 0.104068 0.523183i 0.0158702 0.0797847i −0.972039 0.234821i \(-0.924550\pi\)
0.987909 + 0.155037i \(0.0495495\pi\)
\(44\) 2.71892 2.44763i 0.409893 0.368995i
\(45\) 0 0
\(46\) 5.00010 + 4.32785i 0.737225 + 0.638106i
\(47\) 0.378819 0.378819i 0.0552564 0.0552564i −0.678939 0.734195i \(-0.737560\pi\)
0.734195 + 0.678939i \(0.237560\pi\)
\(48\) 0 0
\(49\) 3.20113 + 3.20113i 0.457305 + 0.457305i
\(50\) 0.634161 + 8.79935i 0.0896839 + 1.24442i
\(51\) 0 0
\(52\) 9.85702 3.48944i 1.36692 0.483898i
\(53\) 3.63594 + 0.723233i 0.499435 + 0.0993438i 0.438378 0.898791i \(-0.355553\pi\)
0.0610565 + 0.998134i \(0.480553\pi\)
\(54\) 0 0
\(55\) 5.66523 2.34662i 0.763900 0.316418i
\(56\) 5.17854 8.08699i 0.692011 1.08067i
\(57\) 0 0
\(58\) −1.93716 + 1.50653i −0.254362 + 0.197816i
\(59\) 11.1857 7.47403i 1.45625 0.973036i 0.459874 0.887984i \(-0.347895\pi\)
0.996377 0.0850514i \(-0.0271054\pi\)
\(60\) 0 0
\(61\) −1.29788 6.52488i −0.166176 0.835425i −0.970475 0.241200i \(-0.922459\pi\)
0.804299 0.594225i \(-0.202541\pi\)
\(62\) 5.97394 + 11.9182i 0.758691 + 1.51361i
\(63\) 0 0
\(64\) −7.50470 2.77119i −0.938087 0.346399i
\(65\) 17.5268 2.17393
\(66\) 0 0
\(67\) 1.46964 + 7.38837i 0.179545 + 0.902633i 0.960550 + 0.278108i \(0.0897074\pi\)
−0.781005 + 0.624525i \(0.785293\pi\)
\(68\) −0.471267 3.25257i −0.0571495 0.394432i
\(69\) 0 0
\(70\) 12.7061 9.88148i 1.51867 1.18106i
\(71\) −5.03495 2.08554i −0.597538 0.247508i 0.0633517 0.997991i \(-0.479821\pi\)
−0.660890 + 0.750483i \(0.729821\pi\)
\(72\) 0 0
\(73\) −4.53632 + 1.87901i −0.530936 + 0.219921i −0.632013 0.774958i \(-0.717771\pi\)
0.101077 + 0.994879i \(0.467771\pi\)
\(74\) 3.25554 + 1.85150i 0.378449 + 0.215233i
\(75\) 0 0
\(76\) 0.00318539 + 0.00899813i 0.000365389 + 0.00103216i
\(77\) −5.16369 3.45027i −0.588457 0.393194i
\(78\) 0 0
\(79\) 11.3984 + 11.3984i 1.28242 + 1.28242i 0.939287 + 0.343133i \(0.111488\pi\)
0.343133 + 0.939287i \(0.388512\pi\)
\(80\) −10.3080 8.57655i −1.15247 0.958887i
\(81\) 0 0
\(82\) 1.38994 + 1.20306i 0.153493 + 0.132856i
\(83\) −3.35370 + 5.01916i −0.368116 + 0.550925i −0.968572 0.248733i \(-0.919986\pi\)
0.600456 + 0.799658i \(0.294986\pi\)
\(84\) 0 0
\(85\) 1.07471 5.40294i 0.116569 0.586032i
\(86\) 0.199978 + 0.727399i 0.0215642 + 0.0784375i
\(87\) 0 0
\(88\) −1.88637 + 4.81752i −0.201088 + 0.513549i
\(89\) −4.25907 + 10.2823i −0.451460 + 1.08992i 0.520307 + 0.853980i \(0.325818\pi\)
−0.971767 + 0.235942i \(0.924182\pi\)
\(90\) 0 0
\(91\) −9.86171 14.7591i −1.03379 1.54717i
\(92\) −9.06415 2.30297i −0.945003 0.240101i
\(93\) 0 0
\(94\) −0.238870 + 0.718996i −0.0246375 + 0.0741588i
\(95\) 0.0159996i 0.00164152i
\(96\) 0 0
\(97\) 12.2846i 1.24731i 0.781698 + 0.623657i \(0.214354\pi\)
−0.781698 + 0.623657i \(0.785646\pi\)
\(98\) −6.07574 2.01852i −0.613742 0.203902i
\(99\) 0 0
\(100\) −6.37804 10.7230i −0.637804 1.07230i
\(101\) 1.04551 + 1.56472i 0.104032 + 0.155695i 0.879833 0.475282i \(-0.157654\pi\)
−0.775801 + 0.630978i \(0.782654\pi\)
\(102\) 0 0
\(103\) −4.50995 + 10.8880i −0.444379 + 1.07283i 0.530017 + 0.847987i \(0.322186\pi\)
−0.974396 + 0.224839i \(0.927814\pi\)
\(104\) −10.2507 + 10.6582i −1.00517 + 1.04512i
\(105\) 0 0
\(106\) −5.05517 + 1.38978i −0.491002 + 0.134987i
\(107\) −2.90641 + 14.6115i −0.280973 + 1.41255i 0.540042 + 0.841638i \(0.318408\pi\)
−0.821014 + 0.570907i \(0.806592\pi\)
\(108\) 0 0
\(109\) 8.04402 12.0387i 0.770478 1.15310i −0.213870 0.976862i \(-0.568607\pi\)
0.984347 0.176239i \(-0.0563932\pi\)
\(110\) −5.67536 + 6.55693i −0.541124 + 0.625178i
\(111\) 0 0
\(112\) −1.42227 + 13.5059i −0.134392 + 1.27619i
\(113\) −9.94034 9.94034i −0.935109 0.935109i 0.0629105 0.998019i \(-0.479962\pi\)
−0.998019 + 0.0629105i \(0.979962\pi\)
\(114\) 0 0
\(115\) −13.0340 8.70901i −1.21542 0.812119i
\(116\) 1.49441 3.13228i 0.138752 0.290825i
\(117\) 0 0
\(118\) −9.40542 + 16.5378i −0.865839 + 1.52243i
\(119\) −5.15446 + 2.13505i −0.472508 + 0.195719i
\(120\) 0 0
\(121\) −7.07151 2.92911i −0.642864 0.266283i
\(122\) 5.77580 + 7.42679i 0.522916 + 0.672390i
\(123\) 0 0
\(124\) −15.1055 11.2821i −1.35651 1.01317i
\(125\) −0.809807 4.07117i −0.0724313 0.364137i
\(126\) 0 0
\(127\) 13.3100 1.18107 0.590534 0.807013i \(-0.298917\pi\)
0.590534 + 0.807013i \(0.298917\pi\)
\(128\) 11.2442 1.25228i 0.993855 0.110687i
\(129\) 0 0
\(130\) −22.1588 + 11.1070i −1.94345 + 0.974148i
\(131\) −0.318596 1.60169i −0.0278359 0.139940i 0.964368 0.264563i \(-0.0852279\pi\)
−0.992204 + 0.124623i \(0.960228\pi\)
\(132\) 0 0
\(133\) 0.0134731 0.00900242i 0.00116826 0.000780609i
\(134\) −6.54016 8.40964i −0.564984 0.726482i
\(135\) 0 0
\(136\) 2.65702 + 3.81351i 0.227837 + 0.327006i
\(137\) 6.96260 2.88400i 0.594855 0.246397i −0.0648827 0.997893i \(-0.520667\pi\)
0.659738 + 0.751496i \(0.270667\pi\)
\(138\) 0 0
\(139\) −4.03376 0.802365i −0.342139 0.0680557i 0.0210303 0.999779i \(-0.493305\pi\)
−0.363169 + 0.931723i \(0.618305\pi\)
\(140\) −9.80199 + 20.5450i −0.828419 + 1.73637i
\(141\) 0 0
\(142\) 7.68722 0.554011i 0.645098 0.0464916i
\(143\) 6.76227 + 6.76227i 0.565489 + 0.565489i
\(144\) 0 0
\(145\) 4.11336 4.11336i 0.341596 0.341596i
\(146\) 4.54443 5.25033i 0.376100 0.434520i
\(147\) 0 0
\(148\) −5.28924 0.277729i −0.434773 0.0228292i
\(149\) −0.992028 + 4.98726i −0.0812701 + 0.408573i 0.918639 + 0.395098i \(0.129289\pi\)
−0.999909 + 0.0134748i \(0.995711\pi\)
\(150\) 0 0
\(151\) −0.957754 2.31222i −0.0779409 0.188166i 0.880106 0.474777i \(-0.157471\pi\)
−0.958047 + 0.286611i \(0.907471\pi\)
\(152\) −0.00972948 0.00935753i −0.000789165 0.000758996i
\(153\) 0 0
\(154\) 8.71483 + 1.08980i 0.702261 + 0.0878182i
\(155\) −17.5572 26.2761i −1.41022 2.11055i
\(156\) 0 0
\(157\) −12.6061 + 2.50752i −1.00608 + 0.200122i −0.670515 0.741896i \(-0.733927\pi\)
−0.335564 + 0.942017i \(0.608927\pi\)
\(158\) −21.6341 7.18743i −1.72112 0.571801i
\(159\) 0 0
\(160\) 18.4673 + 4.31084i 1.45996 + 0.340802i
\(161\) 15.8760i 1.25120i
\(162\) 0 0
\(163\) −12.1793 + 2.42260i −0.953953 + 0.189753i −0.647443 0.762114i \(-0.724161\pi\)
−0.306510 + 0.951867i \(0.599161\pi\)
\(164\) −2.51967 0.640184i −0.196753 0.0499899i
\(165\) 0 0
\(166\) 1.05929 8.47092i 0.0822171 0.657471i
\(167\) −4.69682 + 11.3391i −0.363451 + 0.877448i 0.631339 + 0.775507i \(0.282505\pi\)
−0.994790 + 0.101942i \(0.967495\pi\)
\(168\) 0 0
\(169\) 5.48548 + 13.2431i 0.421960 + 1.01870i
\(170\) 2.06519 + 7.51190i 0.158393 + 0.576136i
\(171\) 0 0
\(172\) −0.713793 0.792907i −0.0544262 0.0604586i
\(173\) 3.09606 4.63358i 0.235389 0.352285i −0.694903 0.719103i \(-0.744553\pi\)
0.930293 + 0.366818i \(0.119553\pi\)
\(174\) 0 0
\(175\) −14.9763 + 14.9763i −1.13210 + 1.13210i
\(176\) −0.668027 7.28611i −0.0503544 0.549212i
\(177\) 0 0
\(178\) −1.13139 15.6988i −0.0848016 1.17667i
\(179\) 0.829076 + 0.553971i 0.0619681 + 0.0414057i 0.586168 0.810189i \(-0.300636\pi\)
−0.524200 + 0.851595i \(0.675636\pi\)
\(180\) 0 0
\(181\) 17.2786 + 3.43692i 1.28430 + 0.255464i 0.789613 0.613605i \(-0.210281\pi\)
0.494691 + 0.869069i \(0.335281\pi\)
\(182\) 21.8210 + 12.4101i 1.61748 + 0.919899i
\(183\) 0 0
\(184\) 12.9191 2.83249i 0.952406 0.208814i
\(185\) −8.20211 3.39743i −0.603031 0.249784i
\(186\) 0 0
\(187\) 2.49924 1.66994i 0.182763 0.122118i
\(188\) −0.153640 1.06039i −0.0112054 0.0773367i
\(189\) 0 0
\(190\) −0.0101392 0.0202280i −0.000735574 0.00146749i
\(191\) 6.00046 0.434178 0.217089 0.976152i \(-0.430344\pi\)
0.217089 + 0.976152i \(0.430344\pi\)
\(192\) 0 0
\(193\) 8.98517 0.646767 0.323383 0.946268i \(-0.395180\pi\)
0.323383 + 0.946268i \(0.395180\pi\)
\(194\) −7.78496 15.5312i −0.558927 1.11508i
\(195\) 0 0
\(196\) 8.96061 1.29831i 0.640043 0.0927364i
\(197\) 9.91120 6.62245i 0.706144 0.471830i −0.149921 0.988698i \(-0.547902\pi\)
0.856065 + 0.516868i \(0.172902\pi\)
\(198\) 0 0
\(199\) 0.782393 + 0.324078i 0.0554624 + 0.0229733i 0.410242 0.911977i \(-0.365444\pi\)
−0.354780 + 0.934950i \(0.615444\pi\)
\(200\) 14.8589 + 9.51498i 1.05069 + 0.672810i
\(201\) 0 0
\(202\) −2.31341 1.31569i −0.162771 0.0925714i
\(203\) −5.77826 1.14937i −0.405554 0.0806697i
\(204\) 0 0
\(205\) −3.62320 2.42095i −0.253055 0.169086i
\(206\) −1.19804 16.6235i −0.0834715 1.15821i
\(207\) 0 0
\(208\) 6.20554 19.9710i 0.430277 1.38474i
\(209\) −0.00617304 + 0.00617304i −0.000426998 + 0.000426998i
\(210\) 0 0
\(211\) −4.82250 + 7.21737i −0.331994 + 0.496865i −0.959485 0.281759i \(-0.909082\pi\)
0.627491 + 0.778624i \(0.284082\pi\)
\(212\) 5.51043 4.96061i 0.378458 0.340696i
\(213\) 0 0
\(214\) −5.58501 20.3149i −0.381784 1.38869i
\(215\) −0.684334 1.65213i −0.0466712 0.112674i
\(216\) 0 0
\(217\) −12.2480 + 29.5693i −0.831450 + 2.00730i
\(218\) −2.54077 + 20.3180i −0.172083 + 1.37611i
\(219\) 0 0
\(220\) 3.02002 11.8864i 0.203610 0.801378i
\(221\) 8.42627 1.67609i 0.566812 0.112746i
\(222\) 0 0
\(223\) 10.1030i 0.676547i 0.941048 + 0.338273i \(0.109843\pi\)
−0.941048 + 0.338273i \(0.890157\pi\)
\(224\) −6.76078 17.9766i −0.451723 1.20111i
\(225\) 0 0
\(226\) 18.8667 + 6.26803i 1.25500 + 0.416943i
\(227\) −17.3254 + 3.44624i −1.14993 + 0.228735i −0.733016 0.680212i \(-0.761888\pi\)
−0.416912 + 0.908947i \(0.636888\pi\)
\(228\) 0 0
\(229\) 3.76160 + 5.62963i 0.248574 + 0.372017i 0.934683 0.355481i \(-0.115683\pi\)
−0.686110 + 0.727498i \(0.740683\pi\)
\(230\) 21.9976 + 2.75081i 1.45048 + 0.181383i
\(231\) 0 0
\(232\) 0.0956249 + 4.90711i 0.00627808 + 0.322167i
\(233\) 11.2794 + 27.2309i 0.738939 + 1.78396i 0.610152 + 0.792285i \(0.291108\pi\)
0.128787 + 0.991672i \(0.458892\pi\)
\(234\) 0 0
\(235\) 0.350373 1.76144i 0.0228558 0.114904i
\(236\) 1.41083 26.8688i 0.0918375 1.74901i
\(237\) 0 0
\(238\) 5.16367 5.96576i 0.334711 0.386703i
\(239\) −4.91117 + 4.91117i −0.317677 + 0.317677i −0.847874 0.530197i \(-0.822118\pi\)
0.530197 + 0.847874i \(0.322118\pi\)
\(240\) 0 0
\(241\) −15.9105 15.9105i −1.02488 1.02488i −0.999682 0.0252016i \(-0.991977\pi\)
−0.0252016 0.999682i \(-0.508023\pi\)
\(242\) 10.7966 0.778100i 0.694031 0.0500182i
\(243\) 0 0
\(244\) −12.0087 5.72933i −0.768778 0.366783i
\(245\) 14.8848 + 2.96076i 0.950952 + 0.189156i
\(246\) 0 0
\(247\) −0.0230531 + 0.00954890i −0.00146683 + 0.000607582i
\(248\) 26.2472 + 4.69123i 1.66670 + 0.297893i
\(249\) 0 0
\(250\) 3.60379 + 4.63392i 0.227923 + 0.293075i
\(251\) −13.4114 + 8.96124i −0.846523 + 0.565628i −0.901461 0.432861i \(-0.857504\pi\)
0.0549377 + 0.998490i \(0.482504\pi\)
\(252\) 0 0
\(253\) −1.66867 8.38897i −0.104908 0.527410i
\(254\) −16.8275 + 8.43472i −1.05585 + 0.529242i
\(255\) 0 0
\(256\) −13.4222 + 8.70884i −0.838889 + 0.544303i
\(257\) −13.4126 −0.836653 −0.418327 0.908297i \(-0.637383\pi\)
−0.418327 + 0.908297i \(0.637383\pi\)
\(258\) 0 0
\(259\) 1.75411 + 8.81851i 0.108995 + 0.547956i
\(260\) 20.9762 28.0847i 1.30089 1.74174i
\(261\) 0 0
\(262\) 1.41781 + 1.82309i 0.0875927 + 0.112631i
\(263\) 5.51629 + 2.28492i 0.340149 + 0.140894i 0.546218 0.837643i \(-0.316067\pi\)
−0.206069 + 0.978538i \(0.566067\pi\)
\(264\) 0 0
\(265\) 11.4817 4.75588i 0.705316 0.292152i
\(266\) −0.0113288 + 0.0199197i −0.000694611 + 0.00122135i
\(267\) 0 0
\(268\) 13.5979 + 6.48755i 0.830625 + 0.396290i
\(269\) 7.39748 + 4.94284i 0.451032 + 0.301370i 0.760261 0.649617i \(-0.225071\pi\)
−0.309229 + 0.950988i \(0.600071\pi\)
\(270\) 0 0
\(271\) 3.27670 + 3.27670i 0.199046 + 0.199046i 0.799591 0.600545i \(-0.205050\pi\)
−0.600545 + 0.799591i \(0.705050\pi\)
\(272\) −5.77589 3.13755i −0.350215 0.190242i
\(273\) 0 0
\(274\) −6.97504 + 8.05850i −0.421378 + 0.486832i
\(275\) 6.33947 9.48769i 0.382285 0.572129i
\(276\) 0 0
\(277\) −1.81203 + 9.10969i −0.108874 + 0.547348i 0.887392 + 0.461016i \(0.152515\pi\)
−0.996266 + 0.0863327i \(0.972485\pi\)
\(278\) 5.60827 1.54184i 0.336362 0.0924735i
\(279\) 0 0
\(280\) −0.627215 32.1863i −0.0374833 1.92350i
\(281\) −7.02651 + 16.9635i −0.419166 + 1.01196i 0.563424 + 0.826168i \(0.309484\pi\)
−0.982590 + 0.185789i \(0.940516\pi\)
\(282\) 0 0
\(283\) 2.58111 + 3.86291i 0.153431 + 0.229626i 0.900220 0.435435i \(-0.143405\pi\)
−0.746789 + 0.665061i \(0.768405\pi\)
\(284\) −9.36772 + 5.57194i −0.555872 + 0.330634i
\(285\) 0 0
\(286\) −12.8348 4.26405i −0.758935 0.252139i
\(287\) 4.41324i 0.260505i
\(288\) 0 0
\(289\) 14.2997i 0.841158i
\(290\) −2.59374 + 7.80714i −0.152310 + 0.458451i
\(291\) 0 0
\(292\) −2.41822 + 9.51776i −0.141516 + 0.556985i
\(293\) −4.12834 6.17849i −0.241180 0.360951i 0.691057 0.722801i \(-0.257146\pi\)
−0.932237 + 0.361849i \(0.882146\pi\)
\(294\) 0 0
\(295\) 17.2585 41.6658i 1.00483 2.42588i
\(296\) 6.86309 3.00075i 0.398909 0.174415i
\(297\) 0 0
\(298\) −1.90630 6.93396i −0.110429 0.401674i
\(299\) 4.76947 23.9778i 0.275826 1.38667i
\(300\) 0 0
\(301\) −1.00619 + 1.50586i −0.0579956 + 0.0867966i
\(302\) 2.67616 + 2.31635i 0.153996 + 0.133291i
\(303\) 0 0
\(304\) 0.0182308 + 0.00566482i 0.00104561 + 0.000324900i
\(305\) −15.7700 15.7700i −0.902988 0.902988i
\(306\) 0 0
\(307\) −4.22026 2.81989i −0.240863 0.160939i 0.429280 0.903171i \(-0.358767\pi\)
−0.670143 + 0.742232i \(0.733767\pi\)
\(308\) −11.7086 + 4.14492i −0.667160 + 0.236179i
\(309\) 0 0
\(310\) 38.8488 + 22.0942i 2.20646 + 1.25486i
\(311\) 28.5642 11.8317i 1.61972 0.670912i 0.625699 0.780064i \(-0.284814\pi\)
0.994025 + 0.109152i \(0.0348136\pi\)
\(312\) 0 0
\(313\) −8.76475 3.63048i −0.495413 0.205207i 0.120966 0.992657i \(-0.461401\pi\)
−0.616379 + 0.787450i \(0.711401\pi\)
\(314\) 14.3486 11.1589i 0.809740 0.629733i
\(315\) 0 0
\(316\) 31.9064 4.62294i 1.79487 0.260060i
\(317\) −3.95679 19.8921i −0.222235 1.11725i −0.917267 0.398274i \(-0.869609\pi\)
0.695031 0.718980i \(-0.255391\pi\)
\(318\) 0 0
\(319\) 3.17407 0.177714
\(320\) −26.0796 + 6.25287i −1.45790 + 0.349546i
\(321\) 0 0
\(322\) −10.0609 20.0717i −0.560670 1.11855i
\(323\) 0.00153004 + 0.00769205i 8.51339e−5 + 0.000427997i
\(324\) 0 0
\(325\) 27.1182 18.1198i 1.50425 1.00510i
\(326\) 13.8628 10.7810i 0.767787 0.597106i
\(327\) 0 0
\(328\) 3.59126 0.787382i 0.198294 0.0434759i
\(329\) −1.68043 + 0.696058i −0.0926453 + 0.0383749i
\(330\) 0 0
\(331\) 25.0847 + 4.98965i 1.37878 + 0.274256i 0.828155 0.560498i \(-0.189390\pi\)
0.550622 + 0.834754i \(0.314390\pi\)
\(332\) 4.02891 + 11.3809i 0.221115 + 0.624608i
\(333\) 0 0
\(334\) −1.24768 17.3123i −0.0682701 0.947286i
\(335\) 17.8570 + 17.8570i 0.975632 + 0.975632i
\(336\) 0 0
\(337\) 1.30903 1.30903i 0.0713075 0.0713075i −0.670554 0.741861i \(-0.733943\pi\)
0.741861 + 0.670554i \(0.233943\pi\)
\(338\) −15.3275 13.2668i −0.833709 0.721618i
\(339\) 0 0
\(340\) −7.37138 8.18840i −0.399769 0.444078i
\(341\) 3.36400 16.9120i 0.182171 0.915834i
\(342\) 0 0
\(343\) 3.21298 + 7.75682i 0.173485 + 0.418829i
\(344\) 1.40491 + 0.550116i 0.0757478 + 0.0296602i
\(345\) 0 0
\(346\) −0.977917 + 7.82017i −0.0525732 + 0.420415i
\(347\) 17.1922 + 25.7299i 0.922925 + 1.38125i 0.924470 + 0.381256i \(0.124508\pi\)
−0.00154489 + 0.999999i \(0.500492\pi\)
\(348\) 0 0
\(349\) −0.252228 + 0.0501713i −0.0135015 + 0.00268561i −0.201836 0.979419i \(-0.564691\pi\)
0.188335 + 0.982105i \(0.439691\pi\)
\(350\) 9.44355 28.4250i 0.504779 1.51938i
\(351\) 0 0
\(352\) 5.46189 + 8.78835i 0.291120 + 0.468421i
\(353\) 6.17608i 0.328719i −0.986400 0.164360i \(-0.947444\pi\)
0.986400 0.164360i \(-0.0525558\pi\)
\(354\) 0 0
\(355\) −17.9185 + 3.56422i −0.951016 + 0.189169i
\(356\) 11.3789 + 19.1306i 0.603083 + 1.01392i
\(357\) 0 0
\(358\) −1.39924 0.174976i −0.0739524 0.00924779i
\(359\) 10.7708 26.0029i 0.568459 1.37238i −0.334395 0.942433i \(-0.608532\pi\)
0.902854 0.429948i \(-0.141468\pi\)
\(360\) 0 0
\(361\) 7.27098 + 17.5537i 0.382683 + 0.923878i
\(362\) −24.0230 + 6.60445i −1.26262 + 0.347122i
\(363\) 0 0
\(364\) −35.4524 1.86155i −1.85821 0.0975715i
\(365\) −9.14484 + 13.6862i −0.478663 + 0.716370i
\(366\) 0 0
\(367\) 6.85490 6.85490i 0.357823 0.357823i −0.505187 0.863010i \(-0.668576\pi\)
0.863010 + 0.505187i \(0.168576\pi\)
\(368\) −14.5383 + 11.7681i −0.757862 + 0.613453i
\(369\) 0 0
\(370\) 12.5228 0.902504i 0.651028 0.0469190i
\(371\) −10.4652 6.99265i −0.543328 0.363040i
\(372\) 0 0
\(373\) −15.4393 3.07108i −0.799419 0.159014i −0.221555 0.975148i \(-0.571113\pi\)
−0.577863 + 0.816133i \(0.696113\pi\)
\(374\) −2.10147 + 3.69508i −0.108665 + 0.191068i
\(375\) 0 0
\(376\) 0.866229 + 1.24326i 0.0446723 + 0.0641164i
\(377\) 8.38169 + 3.47181i 0.431679 + 0.178807i
\(378\) 0 0
\(379\) −25.8812 + 17.2933i −1.32943 + 0.888295i −0.998467 0.0553495i \(-0.982373\pi\)
−0.330961 + 0.943645i \(0.607373\pi\)
\(380\) 0.0256376 + 0.0191485i 0.00131518 + 0.000982296i
\(381\) 0 0
\(382\) −7.58627 + 3.80259i −0.388147 + 0.194557i
\(383\) 26.3304 1.34542 0.672711 0.739905i \(-0.265130\pi\)
0.672711 + 0.739905i \(0.265130\pi\)
\(384\) 0 0
\(385\) −20.8191 −1.06104
\(386\) −11.3598 + 5.69404i −0.578198 + 0.289819i
\(387\) 0 0
\(388\) 19.6847 + 14.7024i 0.999341 + 0.746399i
\(389\) −20.4392 + 13.6570i −1.03631 + 0.692439i −0.952654 0.304056i \(-0.901659\pi\)
−0.0836539 + 0.996495i \(0.526659\pi\)
\(390\) 0 0
\(391\) −7.09912 2.94055i −0.359018 0.148710i
\(392\) −10.5060 + 7.31990i −0.530631 + 0.369711i
\(393\) 0 0
\(394\) −8.33379 + 14.6535i −0.419850 + 0.738234i
\(395\) 53.0007 + 10.5425i 2.66675 + 0.530450i
\(396\) 0 0
\(397\) −22.8836 15.2903i −1.14850 0.767400i −0.172461 0.985016i \(-0.555172\pi\)
−0.976034 + 0.217616i \(0.930172\pi\)
\(398\) −1.19454 + 0.0860892i −0.0598768 + 0.00431526i
\(399\) 0 0
\(400\) −24.8157 2.61326i −1.24078 0.130663i
\(401\) 24.4437 24.4437i 1.22066 1.22066i 0.253263 0.967398i \(-0.418496\pi\)
0.967398 0.253263i \(-0.0815037\pi\)
\(402\) 0 0
\(403\) 27.3816 40.9795i 1.36397 2.04133i
\(404\) 3.75857 + 0.197356i 0.186996 + 0.00981883i
\(405\) 0 0
\(406\) 8.03371 2.20865i 0.398706 0.109613i
\(407\) −1.85377 4.47539i −0.0918878 0.221837i
\(408\) 0 0
\(409\) −12.0633 + 29.1234i −0.596492 + 1.44006i 0.280641 + 0.959813i \(0.409453\pi\)
−0.877134 + 0.480247i \(0.840547\pi\)
\(410\) 6.11494 + 0.764676i 0.301995 + 0.0377647i
\(411\) 0 0
\(412\) 12.0492 + 20.2576i 0.593623 + 0.998018i
\(413\) −44.7971 + 8.91069i −2.20432 + 0.438466i
\(414\) 0 0
\(415\) 20.2364i 0.993367i
\(416\) 4.81036 + 29.1814i 0.235847 + 1.43074i
\(417\) 0 0
\(418\) 0.00389250 0.0117164i 0.000190389 0.000573068i
\(419\) 11.3813 2.26388i 0.556012 0.110598i 0.0909169 0.995858i \(-0.471020\pi\)
0.465095 + 0.885261i \(0.346020\pi\)
\(420\) 0 0
\(421\) −3.35311 5.01829i −0.163421 0.244576i 0.740717 0.671817i \(-0.234486\pi\)
−0.904138 + 0.427240i \(0.859486\pi\)
\(422\) 1.52323 12.1809i 0.0741495 0.592956i
\(423\) 0 0
\(424\) −3.82311 + 9.76365i −0.185667 + 0.474165i
\(425\) −3.92291 9.47073i −0.190289 0.459398i
\(426\) 0 0
\(427\) −4.40650 + 22.1530i −0.213246 + 1.07206i
\(428\) 19.9349 + 22.1444i 0.963587 + 1.07039i
\(429\) 0 0
\(430\) 1.91217 + 1.65508i 0.0922130 + 0.0798151i
\(431\) −19.6711 + 19.6711i −0.947521 + 0.947521i −0.998690 0.0511686i \(-0.983705\pi\)
0.0511686 + 0.998690i \(0.483705\pi\)
\(432\) 0 0
\(433\) −18.2910 18.2910i −0.879011 0.879011i 0.114421 0.993432i \(-0.463499\pi\)
−0.993432 + 0.114421i \(0.963499\pi\)
\(434\) −3.25361 45.1457i −0.156178 2.16706i
\(435\) 0 0
\(436\) −9.66355 27.2977i −0.462800 1.30732i
\(437\) 0.0218885 + 0.00435389i 0.00104707 + 0.000208275i
\(438\) 0 0
\(439\) 10.7707 4.46137i 0.514057 0.212929i −0.110547 0.993871i \(-0.535260\pi\)
0.624604 + 0.780941i \(0.285260\pi\)
\(440\) 3.71441 + 16.9415i 0.177078 + 0.807655i
\(441\) 0 0
\(442\) −9.59100 + 7.45890i −0.456197 + 0.354784i
\(443\) −9.77026 + 6.52828i −0.464199 + 0.310168i −0.765586 0.643334i \(-0.777551\pi\)
0.301386 + 0.953502i \(0.402551\pi\)
\(444\) 0 0
\(445\) 7.27880 + 36.5930i 0.345048 + 1.73467i
\(446\) −6.40242 12.7730i −0.303164 0.604820i
\(447\) 0 0
\(448\) 19.9396 + 18.4431i 0.942056 + 0.871353i
\(449\) −26.5341 −1.25222 −0.626111 0.779734i \(-0.715354\pi\)
−0.626111 + 0.779734i \(0.715354\pi\)
\(450\) 0 0
\(451\) −0.463860 2.33198i −0.0218423 0.109809i
\(452\) −27.8250 + 4.03158i −1.30878 + 0.189630i
\(453\) 0 0
\(454\) 19.7202 15.3364i 0.925517 0.719773i
\(455\) −54.9765 22.7720i −2.57734 1.06757i
\(456\) 0 0
\(457\) 23.9069 9.90258i 1.11832 0.463223i 0.254525 0.967066i \(-0.418081\pi\)
0.863795 + 0.503843i \(0.168081\pi\)
\(458\) −8.32330 4.73365i −0.388922 0.221189i
\(459\) 0 0
\(460\) −29.5544 + 10.4624i −1.37798 + 0.487813i
\(461\) −23.9755 16.0199i −1.11665 0.746121i −0.146640 0.989190i \(-0.546846\pi\)
−0.970009 + 0.243069i \(0.921846\pi\)
\(462\) 0 0
\(463\) −19.4799 19.4799i −0.905307 0.905307i 0.0905817 0.995889i \(-0.471127\pi\)
−0.995889 + 0.0905817i \(0.971127\pi\)
\(464\) −3.23061 6.14336i −0.149977 0.285198i
\(465\) 0 0
\(466\) −31.5170 27.2796i −1.46000 1.26370i
\(467\) −11.7398 + 17.5698i −0.543252 + 0.813035i −0.996944 0.0781243i \(-0.975107\pi\)
0.453691 + 0.891159i \(0.350107\pi\)
\(468\) 0 0
\(469\) 4.98965 25.0847i 0.230401 1.15830i
\(470\) 0.673284 + 2.44900i 0.0310563 + 0.112964i
\(471\) 0 0
\(472\) 15.2435 + 34.8637i 0.701637 + 1.60473i
\(473\) 0.373399 0.901465i 0.0171689 0.0414494i
\(474\) 0 0
\(475\) 0.0165409 + 0.0247552i 0.000758950 + 0.00113585i
\(476\) −2.74773 + 10.8147i −0.125942 + 0.495690i
\(477\) 0 0
\(478\) 3.09681 9.32138i 0.141645 0.426350i
\(479\) 12.7073i 0.580611i 0.956934 + 0.290305i \(0.0937569\pi\)
−0.956934 + 0.290305i \(0.906243\pi\)
\(480\) 0 0
\(481\) 13.8457i 0.631310i
\(482\) 30.1980 + 10.0326i 1.37548 + 0.456972i
\(483\) 0 0
\(484\) −13.1568 + 7.82570i −0.598037 + 0.355714i
\(485\) 22.8797 + 34.2418i 1.03891 + 1.55484i
\(486\) 0 0
\(487\) −5.38031 + 12.9892i −0.243805 + 0.588597i −0.997655 0.0684497i \(-0.978195\pi\)
0.753850 + 0.657047i \(0.228195\pi\)
\(488\) 18.8131 0.366612i 0.851630 0.0165957i
\(489\) 0 0
\(490\) −20.6948 + 5.68946i −0.934895 + 0.257024i
\(491\) 2.14334 10.7753i 0.0967275 0.486282i −0.901806 0.432141i \(-0.857758\pi\)
0.998533 0.0541404i \(-0.0172419\pi\)
\(492\) 0 0
\(493\) 1.58420 2.37092i 0.0713487 0.106781i
\(494\) 0.0230943 0.0266816i 0.00103906 0.00120046i
\(495\) 0 0
\(496\) −36.1567 + 10.7022i −1.62349 + 0.480544i
\(497\) 13.0835 + 13.0835i 0.586876 + 0.586876i
\(498\) 0 0
\(499\) 7.97175 + 5.32655i 0.356864 + 0.238449i 0.721059 0.692874i \(-0.243656\pi\)
−0.364195 + 0.931323i \(0.618656\pi\)
\(500\) −7.49278 3.57480i −0.335087 0.159870i
\(501\) 0 0
\(502\) 11.2769 19.8286i 0.503315 0.884992i
\(503\) 7.63705 3.16337i 0.340519 0.141048i −0.205869 0.978579i \(-0.566002\pi\)
0.546389 + 0.837532i \(0.316002\pi\)
\(504\) 0 0
\(505\) 5.82846 + 2.41423i 0.259363 + 0.107432i
\(506\) 7.42589 + 9.54855i 0.330121 + 0.424485i
\(507\) 0 0
\(508\) 15.9295 21.3277i 0.706757 0.946264i
\(509\) 2.95926 + 14.8772i 0.131167 + 0.659420i 0.989288 + 0.145974i \(0.0466314\pi\)
−0.858122 + 0.513446i \(0.828369\pi\)
\(510\) 0 0
\(511\) 16.6705 0.737459
\(512\) 11.4505 19.5163i 0.506047 0.862506i
\(513\) 0 0
\(514\) 16.9573 8.49975i 0.747952 0.374908i
\(515\) 7.70756 + 38.7485i 0.339636 + 1.70746i
\(516\) 0 0
\(517\) 0.814791 0.544426i 0.0358345 0.0239438i
\(518\) −7.80611 10.0375i −0.342981 0.441021i
\(519\) 0 0
\(520\) −8.72213 + 48.7999i −0.382491 + 2.14002i
\(521\) −10.0424 + 4.15970i −0.439966 + 0.182240i −0.591660 0.806188i \(-0.701527\pi\)
0.151694 + 0.988427i \(0.451527\pi\)
\(522\) 0 0
\(523\) −3.45679 0.687599i −0.151155 0.0300666i 0.118933 0.992902i \(-0.462053\pi\)
−0.270088 + 0.962836i \(0.587053\pi\)
\(524\) −2.94783 1.40641i −0.128777 0.0614391i
\(525\) 0 0
\(526\) −8.42213 + 0.606976i −0.367222 + 0.0264654i
\(527\) −10.9537 10.9537i −0.477149 0.477149i
\(528\) 0 0
\(529\) 0.802117 0.802117i 0.0348746 0.0348746i
\(530\) −11.5022 + 13.2889i −0.499625 + 0.577233i
\(531\) 0 0
\(532\) 0.00169934 0.0323633i 7.36757e−5 0.00140313i
\(533\) 1.32583 6.66538i 0.0574279 0.288710i
\(534\) 0 0
\(535\) 19.1121 + 46.1407i 0.826289 + 1.99484i
\(536\) −21.3028 + 0.415129i −0.920142 + 0.0179308i
\(537\) 0 0
\(538\) −12.4848 1.56124i −0.538260 0.0673097i
\(539\) 4.60057 + 6.88524i 0.198161 + 0.296568i
\(540\) 0 0
\(541\) −4.58170 + 0.911357i −0.196983 + 0.0391823i −0.292595 0.956236i \(-0.594519\pi\)
0.0956128 + 0.995419i \(0.469519\pi\)
\(542\) −6.21917 2.06618i −0.267136 0.0887498i
\(543\) 0 0
\(544\) 9.29066 + 0.306476i 0.398334 + 0.0131401i
\(545\) 48.5381i 2.07915i
\(546\) 0 0
\(547\) 7.46021 1.48393i 0.318975 0.0634482i −0.0330060 0.999455i \(-0.510508\pi\)
0.351981 + 0.936007i \(0.385508\pi\)
\(548\) 3.71162 14.6084i 0.158552 0.624040i
\(549\) 0 0
\(550\) −2.00238 + 16.0125i −0.0853816 + 0.682776i
\(551\) −0.00316930 + 0.00765136i −0.000135017 + 0.000325959i
\(552\) 0 0
\(553\) −20.9439 50.5631i −0.890626 2.15016i
\(554\) −3.48204 12.6655i −0.147938 0.538106i
\(555\) 0 0
\(556\) −6.11334 + 5.50337i −0.259263 + 0.233395i
\(557\) −8.06578 + 12.0713i −0.341758 + 0.511477i −0.962042 0.272900i \(-0.912017\pi\)
0.620284 + 0.784377i \(0.287017\pi\)
\(558\) 0 0
\(559\) 1.97205 1.97205i 0.0834089 0.0834089i
\(560\) 21.1899 + 40.2950i 0.895438 + 1.70278i
\(561\) 0 0
\(562\) −1.86655 25.8994i −0.0787355 1.09250i
\(563\) −13.7599 9.19410i −0.579912 0.387485i 0.230738 0.973016i \(-0.425886\pi\)
−0.810650 + 0.585531i \(0.800886\pi\)
\(564\) 0 0
\(565\) −46.2210 9.19392i −1.94453 0.386791i
\(566\) −5.71123 3.24811i −0.240061 0.136528i
\(567\) 0 0
\(568\) 8.31241 12.9810i 0.348781 0.544669i
\(569\) −10.7745 4.46295i −0.451691 0.187097i 0.145228 0.989398i \(-0.453609\pi\)
−0.596919 + 0.802302i \(0.703609\pi\)
\(570\) 0 0
\(571\) 38.3434 25.6202i 1.60462 1.07217i 0.656471 0.754351i \(-0.272049\pi\)
0.948150 0.317822i \(-0.102951\pi\)
\(572\) 18.9289 2.74262i 0.791458 0.114675i
\(573\) 0 0
\(574\) −2.79674 5.57957i −0.116734 0.232887i
\(575\) −29.1703 −1.21649
\(576\) 0 0
\(577\) 5.30739 0.220949 0.110475 0.993879i \(-0.464763\pi\)
0.110475 + 0.993879i \(0.464763\pi\)
\(578\) −9.06192 18.0788i −0.376926 0.751979i
\(579\) 0 0
\(580\) −1.66829 11.5141i −0.0692719 0.478097i
\(581\) 17.0408 11.3863i 0.706973 0.472384i
\(582\) 0 0
\(583\) 6.26487 + 2.59499i 0.259464 + 0.107474i
\(584\) −2.97424 13.5656i −0.123075 0.561348i
\(585\) 0 0
\(586\) 9.13478 + 5.19516i 0.377354 + 0.214610i
\(587\) 1.07653 + 0.214135i 0.0444331 + 0.00883830i 0.217257 0.976114i \(-0.430289\pi\)
−0.172824 + 0.984953i \(0.555289\pi\)
\(588\) 0 0
\(589\) 0.0374087 + 0.0249957i 0.00154140 + 0.00102993i
\(590\) 4.58462 + 63.6143i 0.188746 + 2.61896i
\(591\) 0 0
\(592\) −6.77525 + 8.14303i −0.278461 + 0.334677i
\(593\) 9.71203 9.71203i 0.398825 0.398825i −0.478993 0.877819i \(-0.658998\pi\)
0.877819 + 0.478993i \(0.158998\pi\)
\(594\) 0 0
\(595\) −10.3910 + 15.5512i −0.425987 + 0.637535i
\(596\) 6.80426 + 7.55842i 0.278713 + 0.309605i
\(597\) 0 0
\(598\) 9.16512 + 33.3371i 0.374790 + 1.36326i
\(599\) −1.51141 3.64886i −0.0617545 0.149088i 0.889990 0.455980i \(-0.150711\pi\)
−0.951745 + 0.306891i \(0.900711\pi\)
\(600\) 0 0
\(601\) −4.10853 + 9.91887i −0.167591 + 0.404599i −0.985254 0.171097i \(-0.945269\pi\)
0.817664 + 0.575696i \(0.195269\pi\)
\(602\) 0.317812 2.54147i 0.0129531 0.103583i
\(603\) 0 0
\(604\) −4.85133 1.23260i −0.197398 0.0501537i
\(605\) −25.1663 + 5.00589i −1.02316 + 0.203518i
\(606\) 0 0
\(607\) 43.0657i 1.74798i −0.485943 0.873991i \(-0.661524\pi\)
0.485943 0.873991i \(-0.338476\pi\)
\(608\) −0.0266387 + 0.00439121i −0.00108034 + 0.000178087i
\(609\) 0 0
\(610\) 29.9314 + 9.94402i 1.21189 + 0.402622i
\(611\) 2.74710 0.546431i 0.111136 0.0221062i
\(612\) 0 0
\(613\) 25.9537 + 38.8424i 1.04826 + 1.56883i 0.799872 + 0.600170i \(0.204901\pi\)
0.248387 + 0.968661i \(0.420099\pi\)
\(614\) 7.12260 + 0.890685i 0.287445 + 0.0359451i
\(615\) 0 0
\(616\) 12.1763 12.6603i 0.490596 0.510097i
\(617\) 10.4503 + 25.2293i 0.420715 + 1.01570i 0.982137 + 0.188166i \(0.0602543\pi\)
−0.561422 + 0.827529i \(0.689746\pi\)
\(618\) 0 0
\(619\) 7.81639 39.2957i 0.314167 1.57943i −0.424546 0.905406i \(-0.639566\pi\)
0.738713 0.674020i \(-0.235434\pi\)
\(620\) −63.1171 3.31417i −2.53484 0.133100i
\(621\) 0 0
\(622\) −28.6152 + 33.0601i −1.14736 + 1.32559i
\(623\) 26.7190 26.7190i 1.07047 1.07047i
\(624\) 0 0
\(625\) 12.2158 + 12.2158i 0.488631 + 0.488631i
\(626\) 13.3818 0.964414i 0.534844 0.0385457i
\(627\) 0 0
\(628\) −11.0691 + 23.2009i −0.441706 + 0.925818i
\(629\) −4.26819 0.848995i −0.170184 0.0338516i
\(630\) 0 0
\(631\) −30.5309 + 12.6463i −1.21542 + 0.503442i −0.895950 0.444155i \(-0.853504\pi\)
−0.319467 + 0.947597i \(0.603504\pi\)
\(632\) −37.4090 + 26.0642i −1.48805 + 1.03678i
\(633\) 0 0
\(634\) 17.6084 + 22.6417i 0.699320 + 0.899219i
\(635\) 37.0998 24.7893i 1.47226 0.983733i
\(636\) 0 0
\(637\) 4.61751 + 23.2138i 0.182953 + 0.919765i
\(638\) −4.01292 + 2.01146i −0.158873 + 0.0796344i
\(639\) 0 0
\(640\) 29.0094 24.4324i 1.14670 0.965777i
\(641\) 30.0254 1.18593 0.592966 0.805227i \(-0.297957\pi\)
0.592966 + 0.805227i \(0.297957\pi\)
\(642\) 0 0
\(643\) −1.92684 9.68687i −0.0759871 0.382013i 0.924013 0.382361i \(-0.124889\pi\)
−1.00000 0.000348458i \(0.999889\pi\)
\(644\) 25.4395 + 19.0005i 1.00246 + 0.748726i
\(645\) 0 0
\(646\) −0.00680897 0.00875530i −0.000267896 0.000344473i
\(647\) 32.0095 + 13.2588i 1.25842 + 0.521257i 0.909426 0.415867i \(-0.136522\pi\)
0.348999 + 0.937123i \(0.386522\pi\)
\(648\) 0 0
\(649\) 22.7345 9.41693i 0.892406 0.369647i
\(650\) −22.8022 + 40.0937i −0.894375 + 1.57260i
\(651\) 0 0
\(652\) −10.6943 + 22.4153i −0.418821 + 0.877850i
\(653\) −30.9545 20.6832i −1.21134 0.809394i −0.225043 0.974349i \(-0.572252\pi\)
−0.986301 + 0.164954i \(0.947252\pi\)
\(654\) 0 0
\(655\) −3.87114 3.87114i −0.151258 0.151258i
\(656\) −4.04139 + 3.27131i −0.157790 + 0.127723i
\(657\) 0 0
\(658\) 1.68344 1.94493i 0.0656272 0.0758213i
\(659\) 6.96386 10.4222i 0.271273 0.405989i −0.670673 0.741753i \(-0.733994\pi\)
0.941946 + 0.335764i \(0.108994\pi\)
\(660\) 0 0
\(661\) 4.07042 20.4634i 0.158321 0.795934i −0.817256 0.576275i \(-0.804506\pi\)
0.975577 0.219659i \(-0.0704944\pi\)
\(662\) −34.8761 + 9.58822i −1.35550 + 0.372657i
\(663\) 0 0
\(664\) −12.3059 11.8355i −0.477562 0.459306i
\(665\) 0.0207878 0.0501862i 0.000806116 0.00194614i
\(666\) 0 0
\(667\) −4.50799 6.74668i −0.174550 0.261233i
\(668\) 12.5485 + 21.0969i 0.485515 + 0.816264i
\(669\) 0 0
\(670\) −33.8925 11.2600i −1.30938 0.435012i
\(671\) 12.1689i 0.469776i
\(672\) 0 0
\(673\) 3.76884i 0.145278i 0.997358 + 0.0726390i \(0.0231421\pi\)
−0.997358 + 0.0726390i \(0.976858\pi\)
\(674\) −0.825430 + 2.48454i −0.0317944 + 0.0957008i
\(675\) 0 0
\(676\) 27.7857 + 7.05963i 1.06868 + 0.271524i
\(677\) 12.4716 + 18.6650i 0.479321 + 0.717354i 0.989789 0.142543i \(-0.0455278\pi\)
−0.510468 + 0.859897i \(0.670528\pi\)
\(678\) 0 0
\(679\) 15.9610 38.5334i 0.612529 1.47878i
\(680\) 14.5086 + 5.68108i 0.556380 + 0.217859i
\(681\) 0 0
\(682\) 6.46433 + 23.5133i 0.247532 + 0.900370i
\(683\) 7.81275 39.2773i 0.298946 1.50291i −0.480811 0.876824i \(-0.659658\pi\)
0.779758 0.626081i \(-0.215342\pi\)
\(684\) 0 0
\(685\) 14.0360 21.0064i 0.536289 0.802613i
\(686\) −8.97773 7.77068i −0.342771 0.296686i
\(687\) 0 0
\(688\) −2.12482 + 0.194814i −0.0810080 + 0.00742721i
\(689\) 13.7051 + 13.7051i 0.522122 + 0.522122i
\(690\) 0 0
\(691\) 28.3968 + 18.9741i 1.08027 + 0.721811i 0.962514 0.271232i \(-0.0874312\pi\)
0.117752 + 0.993043i \(0.462431\pi\)
\(692\) −3.71940 10.5066i −0.141390 0.399401i
\(693\) 0 0
\(694\) −38.0412 21.6349i −1.44402 0.821249i
\(695\) −12.7380 + 5.27624i −0.483179 + 0.200139i
\(696\) 0 0
\(697\) −1.97343 0.817420i −0.0747488 0.0309620i
\(698\) 0.287093 0.223272i 0.0108666 0.00845095i
\(699\) 0 0
\(700\) 6.07407 + 41.9217i 0.229578 + 1.58449i
\(701\) 3.21632 + 16.1695i 0.121479 + 0.610715i 0.992778 + 0.119963i \(0.0382777\pi\)
−0.871300 + 0.490752i \(0.836722\pi\)
\(702\) 0 0
\(703\) 0.0126393 0.000476699
\(704\) −12.4747 7.64966i −0.470157 0.288307i
\(705\) 0 0
\(706\) 3.91387 + 7.80829i 0.147301 + 0.293869i
\(707\) −1.24648 6.26648i −0.0468787 0.235675i
\(708\) 0 0
\(709\) −2.10981 + 1.40973i −0.0792355 + 0.0529435i −0.594557 0.804053i \(-0.702673\pi\)
0.515321 + 0.856997i \(0.327673\pi\)
\(710\) 20.3953 15.8614i 0.765423 0.595268i
\(711\) 0 0
\(712\) −26.5096 16.9755i −0.993487 0.636183i
\(713\) −40.7252 + 16.8689i −1.52517 + 0.631746i
\(714\) 0 0
\(715\) 31.4434 + 6.25449i 1.17592 + 0.233905i
\(716\) 1.87992 0.665504i 0.0702560 0.0248710i
\(717\) 0 0
\(718\) 2.86118 + 39.7005i 0.106778 + 1.48161i
\(719\) 13.6165 + 13.6165i 0.507809 + 0.507809i 0.913854 0.406044i \(-0.133092\pi\)
−0.406044 + 0.913854i \(0.633092\pi\)
\(720\) 0 0
\(721\) 28.2929 28.2929i 1.05368 1.05368i
\(722\) −20.3166 17.5851i −0.756105 0.654448i
\(723\) 0 0
\(724\) 26.1864 23.5736i 0.973210 0.876106i
\(725\) 2.11183 10.6169i 0.0784314 0.394301i
\(726\) 0 0
\(727\) −7.57477 18.2871i −0.280933 0.678231i 0.718925 0.695087i \(-0.244634\pi\)
−0.999858 + 0.0168560i \(0.994634\pi\)
\(728\) 46.0014 20.1132i 1.70493 0.745445i
\(729\) 0 0
\(730\) 2.88848 23.0985i 0.106907 0.854912i
\(731\) −0.486997 0.728843i −0.0180122 0.0269572i
\(732\) 0 0
\(733\) −34.5625 + 6.87491i −1.27660 + 0.253931i −0.786420 0.617693i \(-0.788068\pi\)
−0.490176 + 0.871623i \(0.663068\pi\)
\(734\) −4.32246 + 13.0106i −0.159545 + 0.480229i
\(735\) 0 0
\(736\) 10.9229 24.0913i 0.402624 0.888017i
\(737\) 13.7793i 0.507569i
\(738\) 0 0
\(739\) −25.3933 + 5.05105i −0.934109 + 0.185806i −0.638604 0.769535i \(-0.720488\pi\)
−0.295505 + 0.955341i \(0.595488\pi\)
\(740\) −15.2604 + 9.07689i −0.560982 + 0.333673i
\(741\) 0 0
\(742\) 17.6623 + 2.20869i 0.648405 + 0.0810834i
\(743\) 10.2227 24.6798i 0.375034 0.905413i −0.617846 0.786299i \(-0.711995\pi\)
0.992881 0.119114i \(-0.0380054\pi\)
\(744\) 0 0
\(745\) 6.52344 + 15.7490i 0.239000 + 0.576998i
\(746\) 21.4658 5.90145i 0.785920 0.216067i
\(747\) 0 0
\(748\) 0.315226 6.00335i 0.0115258 0.219504i
\(749\) 28.1008 42.0559i 1.02678 1.53669i
\(750\) 0 0
\(751\) −18.2054 + 18.2054i −0.664326 + 0.664326i −0.956397 0.292071i \(-0.905656\pi\)
0.292071 + 0.956397i \(0.405656\pi\)
\(752\) −1.88303 1.02289i −0.0686671 0.0373010i
\(753\) 0 0
\(754\) −12.7970 + 0.922265i −0.466038 + 0.0335869i
\(755\) −6.97605 4.66124i −0.253884 0.169640i
\(756\) 0 0
\(757\) −8.14973 1.62108i −0.296207 0.0589192i 0.0447498 0.998998i \(-0.485751\pi\)
−0.340957 + 0.940079i \(0.610751\pi\)
\(758\) 21.7621 38.2648i 0.790434 1.38984i
\(759\) 0 0
\(760\) −0.0445477 0.00796213i −0.00161592 0.000288817i
\(761\) −37.0579 15.3499i −1.34335 0.556433i −0.408916 0.912572i \(-0.634093\pi\)
−0.934433 + 0.356139i \(0.884093\pi\)
\(762\) 0 0
\(763\) −40.8734 + 27.3107i −1.47972 + 0.988714i
\(764\) 7.18142 9.61507i 0.259814 0.347861i
\(765\) 0 0
\(766\) −33.2890 + 16.6860i −1.20278 + 0.602889i
\(767\) 70.3346 2.53964
\(768\) 0 0
\(769\) 44.7180 1.61257 0.806287 0.591525i \(-0.201474\pi\)
0.806287 + 0.591525i \(0.201474\pi\)
\(770\) 26.3212 13.1934i 0.948550 0.475457i
\(771\) 0 0
\(772\) 10.7535 14.3977i 0.387029 0.518186i
\(773\) 29.7197 19.8581i 1.06894 0.714245i 0.108887 0.994054i \(-0.465271\pi\)
0.960056 + 0.279809i \(0.0902712\pi\)
\(774\) 0 0
\(775\) −54.3303 22.5044i −1.95160 0.808380i
\(776\) −34.2041 6.11339i −1.22786 0.219458i
\(777\) 0 0
\(778\) 17.1862 30.2189i 0.616155 1.08340i
\(779\) 0.00608460 + 0.00121030i 0.000218003 + 4.33636e-5i
\(780\) 0 0
\(781\) −8.28857 5.53825i −0.296588 0.198174i
\(782\) 10.8387 0.781138i 0.387593 0.0279335i
\(783\) 0 0
\(784\) 8.64375 15.9122i 0.308705 0.568293i
\(785\) −30.4678 + 30.4678i −1.08744 + 1.08744i
\(786\) 0 0
\(787\) 12.8406 19.2173i 0.457717 0.685022i −0.528788 0.848754i \(-0.677353\pi\)
0.986505 + 0.163732i \(0.0523533\pi\)
\(788\) 1.25009 23.8074i 0.0445325 0.848104i
\(789\) 0 0
\(790\) −73.6886 + 20.2587i −2.62172 + 0.720771i
\(791\) 18.2648 + 44.0952i 0.649423 + 1.56785i
\(792\) 0 0
\(793\) 13.3104 32.1342i 0.472667 1.14112i
\(794\) 38.6210 + 4.82958i 1.37061 + 0.171395i
\(795\) 0 0
\(796\) 1.45567 0.865838i 0.0515950 0.0306888i
\(797\) 9.16130 1.82230i 0.324510 0.0645491i −0.0301471 0.999545i \(-0.509598\pi\)
0.354657 + 0.934996i \(0.384598\pi\)
\(798\) 0 0
\(799\) 0.880347i 0.0311445i
\(800\) 33.0300 12.4222i 1.16779 0.439190i
\(801\) 0 0
\(802\) −15.4133 + 46.3940i −0.544264 + 1.63823i
\(803\) −8.80879 + 1.75218i −0.310856 + 0.0618330i
\(804\) 0 0
\(805\) 29.5684 + 44.2523i 1.04215 + 1.55969i
\(806\) −8.64871 + 69.1617i −0.304638 + 2.43612i
\(807\) 0 0
\(808\) −4.87695 + 2.13235i −0.171570 + 0.0750157i
\(809\) −10.1941 24.6108i −0.358406 0.865268i −0.995525 0.0945027i \(-0.969874\pi\)
0.637119 0.770766i \(-0.280126\pi\)
\(810\) 0 0
\(811\) 2.07144 10.4138i 0.0727380 0.365679i −0.927223 0.374510i \(-0.877811\pi\)
0.999961 + 0.00883095i \(0.00281102\pi\)
\(812\) −8.75720 + 7.88343i −0.307318 + 0.276654i
\(813\) 0 0
\(814\) 5.17980 + 4.48338i 0.181552 + 0.157143i
\(815\) −29.4361 + 29.4361i −1.03110 + 1.03110i
\(816\) 0 0
\(817\) 0.00180022 + 0.00180022i 6.29816e−5 + 6.29816e-5i
\(818\) −3.20454 44.4648i −0.112044 1.55468i
\(819\) 0 0
\(820\) −8.21558 + 2.90836i −0.286900 + 0.101564i
\(821\) −53.6020 10.6621i −1.87072 0.372110i −0.876677 0.481079i \(-0.840245\pi\)
−0.994045 + 0.108969i \(0.965245\pi\)
\(822\) 0 0
\(823\) 25.4170 10.5281i 0.885982 0.366986i 0.107168 0.994241i \(-0.465822\pi\)
0.778814 + 0.627255i \(0.215822\pi\)
\(824\) −28.0711 17.9754i −0.977904 0.626204i
\(825\) 0 0
\(826\) 50.9892 39.6542i 1.77414 1.37975i
\(827\) −22.6824 + 15.1559i −0.788743 + 0.527021i −0.883473 0.468482i \(-0.844801\pi\)
0.0947301 + 0.995503i \(0.469801\pi\)
\(828\) 0 0
\(829\) 2.14763 + 10.7969i 0.0745902 + 0.374990i 0.999992 0.00399713i \(-0.00127233\pi\)
−0.925402 + 0.378988i \(0.876272\pi\)
\(830\) −12.8241 25.5845i −0.445132 0.888051i
\(831\) 0 0
\(832\) −24.5744 33.8451i −0.851963 1.17337i
\(833\) 7.43921 0.257753
\(834\) 0 0
\(835\) 8.02692 + 40.3540i 0.277783 + 1.39651i
\(836\) 0.00250365 + 0.0172796i 8.65905e−5 + 0.000597626i
\(837\) 0 0
\(838\) −12.9545 + 10.0747i −0.447505 + 0.348023i
\(839\) −17.6575 7.31397i −0.609604 0.252506i 0.0564551 0.998405i \(-0.482020\pi\)
−0.666059 + 0.745899i \(0.732020\pi\)
\(840\) 0 0
\(841\) −24.0106 + 9.94552i −0.827952 + 0.342949i
\(842\) 7.41944 + 4.21960i 0.255691 + 0.145417i
\(843\) 0 0
\(844\) 5.79342 + 16.3653i 0.199418 + 0.563318i
\(845\) 39.9549 + 26.6970i 1.37449 + 0.918405i
\(846\) 0 0
\(847\) 18.3756 + 18.3756i 0.631393 + 0.631393i
\(848\) −1.35389 14.7668i −0.0464927 0.507092i
\(849\) 0 0
\(850\) 10.9614 + 9.48766i 0.375973 + 0.325424i
\(851\) −6.87989 + 10.2965i −0.235840 + 0.352959i
\(852\) 0 0
\(853\) −8.92566 + 44.8723i −0.305609 + 1.53640i 0.456957 + 0.889489i \(0.348939\pi\)
−0.762566 + 0.646911i \(0.776061\pi\)
\(854\) −8.46763 30.8000i −0.289756 1.05396i
\(855\) 0 0
\(856\) −39.2365 15.3637i −1.34107 0.525119i
\(857\) −4.18475 + 10.1029i −0.142948 + 0.345108i −0.979097 0.203396i \(-0.934802\pi\)
0.836148 + 0.548503i \(0.184802\pi\)
\(858\) 0 0
\(859\) 3.25686 + 4.87424i 0.111123 + 0.166307i 0.882862 0.469632i \(-0.155613\pi\)
−0.771740 + 0.635938i \(0.780613\pi\)
\(860\) −3.46637 0.880715i −0.118202 0.0300321i
\(861\) 0 0
\(862\) 12.4039 37.3356i 0.422478 1.27165i
\(863\) 1.43064i 0.0486996i 0.999704 + 0.0243498i \(0.00775154\pi\)
−0.999704 + 0.0243498i \(0.992248\pi\)
\(864\) 0 0
\(865\) 18.6818i 0.635201i
\(866\) 34.7163 + 11.5337i 1.17971 + 0.391931i
\(867\) 0 0
\(868\) 32.7230 + 55.0149i 1.11069 + 1.86733i
\(869\) 16.3814 + 24.5165i 0.555701 + 0.831666i
\(870\) 0 0
\(871\) −15.0719 + 36.3868i −0.510692 + 1.23292i
\(872\) 29.5164 + 28.3880i 0.999552 + 0.961340i
\(873\) 0 0
\(874\) −0.0304323 + 0.00836652i −0.00102939 + 0.000283002i
\(875\) −2.74942 + 13.8223i −0.0929474 + 0.467278i
\(876\) 0 0
\(877\) 20.5649 30.7776i 0.694428 1.03929i −0.301872 0.953348i \(-0.597612\pi\)
0.996301 0.0859368i \(-0.0273883\pi\)
\(878\) −10.7899 + 12.4660i −0.364143 + 0.420706i
\(879\) 0 0
\(880\) −15.4322 19.0649i −0.520218 0.642679i
\(881\) −10.5814 10.5814i −0.356496 0.356496i 0.506023 0.862520i \(-0.331115\pi\)
−0.862520 + 0.506023i \(0.831115\pi\)
\(882\) 0 0
\(883\) −46.6957 31.2011i −1.57144 1.05000i −0.967469 0.252991i \(-0.918586\pi\)
−0.603968 0.797009i \(-0.706414\pi\)
\(884\) 7.39890 15.5081i 0.248852 0.521594i
\(885\) 0 0
\(886\) 8.21528 14.4451i 0.275998 0.485294i
\(887\) −47.8447 + 19.8179i −1.60647 + 0.665421i −0.992312 0.123764i \(-0.960503\pi\)
−0.614156 + 0.789185i \(0.710503\pi\)
\(888\) 0 0
\(889\) −41.7495 17.2932i −1.40023 0.579996i
\(890\) −32.3920 41.6511i −1.08578 1.39615i
\(891\) 0 0
\(892\) 16.1889 + 12.0914i 0.542045 + 0.404849i
\(893\) 0.000498818 0.00250773i 1.66923e−5 8.39179e-5i
\(894\) 0 0
\(895\) 3.34270 0.111734
\(896\) −36.8969 10.6812i −1.23264 0.356834i
\(897\) 0 0
\(898\) 33.5465 16.8151i 1.11946 0.561126i
\(899\) −3.19128 16.0437i −0.106435 0.535086i
\(900\) 0 0
\(901\) 5.06520 3.38446i 0.168746 0.112753i
\(902\) 2.06426 + 2.65432i 0.0687324 + 0.0883793i
\(903\) 0 0
\(904\) 32.6237 22.7302i 1.08505 0.755994i
\(905\) 54.5629 22.6007i 1.81373 0.751272i
\(906\) 0 0
\(907\) 39.2228 + 7.80190i 1.30237 + 0.259058i 0.797071 0.603886i \(-0.206382\pi\)
0.505300 + 0.862943i \(0.331382\pi\)
\(908\) −15.2130 + 31.8865i −0.504862 + 1.05819i
\(909\) 0 0
\(910\) 83.9367 6.04924i 2.78248 0.200530i
\(911\) −28.9692 28.9692i −0.959794 0.959794i 0.0394285 0.999222i \(-0.487446\pi\)
−0.999222 + 0.0394285i \(0.987446\pi\)
\(912\) 0 0
\(913\) −7.80771 + 7.80771i −0.258397 + 0.258397i
\(914\) −23.9497 + 27.6698i −0.792184 + 0.915237i
\(915\) 0 0
\(916\) 13.5228 + 0.710058i 0.446805 + 0.0234610i
\(917\) −1.08168 + 5.43799i −0.0357204 + 0.179578i
\(918\) 0 0
\(919\) 4.60437 + 11.1159i 0.151884 + 0.366681i 0.981447 0.191732i \(-0.0614105\pi\)
−0.829563 + 0.558413i \(0.811411\pi\)
\(920\) 30.7348 31.9565i 1.01330 1.05357i
\(921\) 0 0
\(922\) 40.4638 + 5.06002i 1.33260 + 0.166643i
\(923\) −15.8297 23.6908i −0.521040 0.779792i
\(924\) 0 0
\(925\) −16.2030 + 3.22298i −0.532752 + 0.105971i
\(926\) 36.9727 + 12.2833i 1.21500 + 0.403656i
\(927\) 0 0
\(928\) 7.97753 + 5.71965i 0.261875 + 0.187757i
\(929\) 27.6140i 0.905987i 0.891514 + 0.452994i \(0.149644\pi\)
−0.891514 + 0.452994i \(0.850356\pi\)
\(930\) 0 0
\(931\) −0.0211911 + 0.00421517i −0.000694510 + 0.000138147i
\(932\) 57.1338 + 14.5162i 1.87148 + 0.475495i
\(933\) 0 0
\(934\) 3.70811 29.6529i 0.121333 0.970271i
\(935\) 3.85611 9.30948i 0.126108 0.304453i
\(936\) 0 0
\(937\) 8.53902 + 20.6150i 0.278958 + 0.673464i 0.999807 0.0196280i \(-0.00624818\pi\)
−0.720850 + 0.693091i \(0.756248\pi\)
\(938\) 9.58823 + 34.8761i 0.313067 + 1.13874i
\(939\) 0 0
\(940\) −2.40319 2.66955i −0.0783833 0.0870710i
\(941\) 21.1132 31.5981i 0.688270 1.03007i −0.308614 0.951187i \(-0.599865\pi\)
0.996884 0.0788810i \(-0.0251347\pi\)
\(942\) 0 0
\(943\) −4.29797 + 4.29797i −0.139961 + 0.139961i
\(944\) −41.3657 34.4175i −1.34634 1.12019i
\(945\) 0 0
\(946\) 0.0991911 + 1.37633i 0.00322498 + 0.0447484i
\(947\) 23.9627 + 16.0114i 0.778683 + 0.520299i 0.880239 0.474531i \(-0.157382\pi\)
−0.101556 + 0.994830i \(0.532382\pi\)
\(948\) 0 0
\(949\) −25.1777 5.00816i −0.817303 0.162572i
\(950\) −0.0366001 0.0208153i −0.00118747 0.000675339i
\(951\) 0 0
\(952\) −3.37952 15.4141i −0.109531 0.499573i
\(953\) 46.7611 + 19.3691i 1.51474 + 0.627426i 0.976529 0.215385i \(-0.0691005\pi\)
0.538211 + 0.842810i \(0.319101\pi\)
\(954\) 0 0
\(955\) 16.7255 11.1756i 0.541226 0.361635i
\(956\) 1.99186 + 13.7473i 0.0644214 + 0.444621i
\(957\) 0 0
\(958\) −8.05280 16.0656i −0.260174 0.519055i
\(959\) −25.5868 −0.826241
\(960\) 0 0
\(961\) −57.8654 −1.86663
\(962\) 8.77424 + 17.5049i 0.282893 + 0.564379i
\(963\) 0 0
\(964\) −44.5366 + 6.45294i −1.43443 + 0.207835i
\(965\) 25.0450 16.7346i 0.806228 0.538704i
\(966\) 0 0
\(967\) −49.7556 20.6095i −1.60003 0.662755i −0.608612 0.793468i \(-0.708274\pi\)
−0.991420 + 0.130712i \(0.958274\pi\)
\(968\) 11.6746 18.2316i 0.375237 0.585985i
\(969\) 0 0
\(970\) −50.6259 28.7921i −1.62550 0.924458i
\(971\) −20.0337 3.98496i −0.642913 0.127883i −0.137142 0.990551i \(-0.543792\pi\)
−0.505771 + 0.862668i \(0.668792\pi\)
\(972\) 0 0
\(973\) 11.6103 + 7.75773i 0.372208 + 0.248701i
\(974\) −1.42924 19.8316i −0.0457959 0.635445i
\(975\) 0 0
\(976\) −23.5527 + 12.3857i −0.753905 + 0.396455i
\(977\) −8.15858 + 8.15858i −0.261016 + 0.261016i −0.825467 0.564451i \(-0.809088\pi\)
0.564451 + 0.825467i \(0.309088\pi\)
\(978\) 0 0
\(979\) −11.3101 + 16.9268i −0.361473 + 0.540983i
\(980\) 22.5585 20.3077i 0.720605 0.648705i
\(981\) 0 0
\(982\) 4.11868 + 14.9812i 0.131432 + 0.478071i
\(983\) −3.28561 7.93217i −0.104795 0.252997i 0.862781 0.505578i \(-0.168721\pi\)
−0.967576 + 0.252581i \(0.918721\pi\)
\(984\) 0 0
\(985\) 15.2921 36.9185i 0.487248 1.17632i
\(986\) −0.500383 + 4.00144i −0.0159354 + 0.127432i
\(987\) 0 0
\(988\) −0.0122891 + 0.0483682i −0.000390969 + 0.00153880i
\(989\) −2.44644 + 0.486627i −0.0777923 + 0.0154738i
\(990\) 0 0
\(991\) 21.7977i 0.692427i 0.938156 + 0.346213i \(0.112533\pi\)
−0.938156 + 0.346213i \(0.887467\pi\)
\(992\) 38.9301 36.4437i 1.23603 1.15709i
\(993\) 0 0
\(994\) −24.8324 8.25001i −0.787637 0.261674i
\(995\) 2.78441 0.553853i 0.0882716 0.0175583i
\(996\) 0 0
\(997\) 8.81651 + 13.1948i 0.279222 + 0.417885i 0.944400 0.328800i \(-0.106644\pi\)
−0.665178 + 0.746685i \(0.731644\pi\)
\(998\) −13.4540 1.68244i −0.425880 0.0532566i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.bd.a.469.1 56
3.2 odd 2 64.2.i.a.21.7 56
12.11 even 2 256.2.i.a.177.3 56
24.5 odd 2 512.2.i.b.97.3 56
24.11 even 2 512.2.i.a.97.5 56
64.61 even 16 inner 576.2.bd.a.253.1 56
192.29 odd 16 512.2.i.b.417.3 56
192.35 even 16 512.2.i.a.417.5 56
192.125 odd 16 64.2.i.a.61.7 yes 56
192.131 even 16 256.2.i.a.81.3 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.21.7 56 3.2 odd 2
64.2.i.a.61.7 yes 56 192.125 odd 16
256.2.i.a.81.3 56 192.131 even 16
256.2.i.a.177.3 56 12.11 even 2
512.2.i.a.97.5 56 24.11 even 2
512.2.i.a.417.5 56 192.35 even 16
512.2.i.b.97.3 56 24.5 odd 2
512.2.i.b.417.3 56 192.29 odd 16
576.2.bd.a.253.1 56 64.61 even 16 inner
576.2.bd.a.469.1 56 1.1 even 1 trivial