Properties

Label 5712.2.a.ca.1.3
Level $5712$
Weight $2$
Character 5712.1
Self dual yes
Analytic conductor $45.611$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5712,2,Mod(1,5712)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5712, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5712.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,5,0,4,0,4,0,-1,0,5,0,5,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.183064.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 6x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2856)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.27274\) of defining polynomial
Character \(\chi\) \(=\) 5712.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +2.27274 q^{5} +1.00000 q^{7} +1.00000 q^{9} +3.38012 q^{11} +2.27274 q^{13} +2.27274 q^{15} +1.00000 q^{17} -2.87007 q^{19} +1.00000 q^{21} -6.52294 q^{23} +0.165367 q^{25} +1.00000 q^{27} -3.74014 q^{29} +9.39301 q^{31} +3.38012 q^{33} +2.27274 q^{35} +2.51005 q^{37} +2.27274 q^{39} +10.6102 q^{41} -9.66575 q^{43} +2.27274 q^{45} +2.08728 q^{47} +1.00000 q^{49} +1.00000 q^{51} +8.25019 q^{53} +7.68215 q^{55} -2.87007 q^{57} +14.4840 q^{59} +10.3020 q^{61} +1.00000 q^{63} +5.16537 q^{65} +2.59733 q^{67} -6.52294 q^{69} -13.0459 q^{71} +5.14282 q^{73} +0.165367 q^{75} +3.38012 q^{77} -3.48995 q^{79} +1.00000 q^{81} -2.59733 q^{83} +2.27274 q^{85} -3.74014 q^{87} -3.90306 q^{89} +2.27274 q^{91} +9.39301 q^{93} -6.52294 q^{95} -0.597327 q^{97} +3.38012 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 5 q^{5} + 4 q^{7} + 4 q^{9} - q^{11} + 5 q^{13} + 5 q^{15} + 4 q^{17} + 4 q^{21} + 4 q^{23} + 7 q^{25} + 4 q^{27} + 8 q^{29} - 4 q^{31} - q^{33} + 5 q^{35} + 7 q^{37} + 5 q^{39} + 8 q^{41}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 2.27274 1.01640 0.508201 0.861238i \(-0.330311\pi\)
0.508201 + 0.861238i \(0.330311\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.38012 1.01915 0.509573 0.860428i \(-0.329804\pi\)
0.509573 + 0.860428i \(0.329804\pi\)
\(12\) 0 0
\(13\) 2.27274 0.630346 0.315173 0.949034i \(-0.397937\pi\)
0.315173 + 0.949034i \(0.397937\pi\)
\(14\) 0 0
\(15\) 2.27274 0.586820
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −2.87007 −0.658439 −0.329220 0.944253i \(-0.606786\pi\)
−0.329220 + 0.944253i \(0.606786\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −6.52294 −1.36013 −0.680063 0.733153i \(-0.738048\pi\)
−0.680063 + 0.733153i \(0.738048\pi\)
\(24\) 0 0
\(25\) 0.165367 0.0330733
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.74014 −0.694527 −0.347263 0.937768i \(-0.612889\pi\)
−0.347263 + 0.937768i \(0.612889\pi\)
\(30\) 0 0
\(31\) 9.39301 1.68703 0.843517 0.537102i \(-0.180481\pi\)
0.843517 + 0.537102i \(0.180481\pi\)
\(32\) 0 0
\(33\) 3.38012 0.588404
\(34\) 0 0
\(35\) 2.27274 0.384164
\(36\) 0 0
\(37\) 2.51005 0.412650 0.206325 0.978484i \(-0.433850\pi\)
0.206325 + 0.978484i \(0.433850\pi\)
\(38\) 0 0
\(39\) 2.27274 0.363930
\(40\) 0 0
\(41\) 10.6102 1.65704 0.828518 0.559962i \(-0.189184\pi\)
0.828518 + 0.559962i \(0.189184\pi\)
\(42\) 0 0
\(43\) −9.66575 −1.47401 −0.737007 0.675885i \(-0.763761\pi\)
−0.737007 + 0.675885i \(0.763761\pi\)
\(44\) 0 0
\(45\) 2.27274 0.338801
\(46\) 0 0
\(47\) 2.08728 0.304460 0.152230 0.988345i \(-0.451354\pi\)
0.152230 + 0.988345i \(0.451354\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 8.25019 1.13325 0.566626 0.823975i \(-0.308249\pi\)
0.566626 + 0.823975i \(0.308249\pi\)
\(54\) 0 0
\(55\) 7.68215 1.03586
\(56\) 0 0
\(57\) −2.87007 −0.380150
\(58\) 0 0
\(59\) 14.4840 1.88565 0.942827 0.333282i \(-0.108156\pi\)
0.942827 + 0.333282i \(0.108156\pi\)
\(60\) 0 0
\(61\) 10.3020 1.31904 0.659520 0.751687i \(-0.270760\pi\)
0.659520 + 0.751687i \(0.270760\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 5.16537 0.640685
\(66\) 0 0
\(67\) 2.59733 0.317314 0.158657 0.987334i \(-0.449284\pi\)
0.158657 + 0.987334i \(0.449284\pi\)
\(68\) 0 0
\(69\) −6.52294 −0.785269
\(70\) 0 0
\(71\) −13.0459 −1.54826 −0.774130 0.633026i \(-0.781812\pi\)
−0.774130 + 0.633026i \(0.781812\pi\)
\(72\) 0 0
\(73\) 5.14282 0.601921 0.300960 0.953637i \(-0.402693\pi\)
0.300960 + 0.953637i \(0.402693\pi\)
\(74\) 0 0
\(75\) 0.165367 0.0190949
\(76\) 0 0
\(77\) 3.38012 0.385201
\(78\) 0 0
\(79\) −3.48995 −0.392650 −0.196325 0.980539i \(-0.562901\pi\)
−0.196325 + 0.980539i \(0.562901\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −2.59733 −0.285094 −0.142547 0.989788i \(-0.545529\pi\)
−0.142547 + 0.989788i \(0.545529\pi\)
\(84\) 0 0
\(85\) 2.27274 0.246514
\(86\) 0 0
\(87\) −3.74014 −0.400985
\(88\) 0 0
\(89\) −3.90306 −0.413723 −0.206862 0.978370i \(-0.566325\pi\)
−0.206862 + 0.978370i \(0.566325\pi\)
\(90\) 0 0
\(91\) 2.27274 0.238248
\(92\) 0 0
\(93\) 9.39301 0.974010
\(94\) 0 0
\(95\) −6.52294 −0.669239
\(96\) 0 0
\(97\) −0.597327 −0.0606493 −0.0303247 0.999540i \(-0.509654\pi\)
−0.0303247 + 0.999540i \(0.509654\pi\)
\(98\) 0 0
\(99\) 3.38012 0.339715
\(100\) 0 0
\(101\) 0.0164006 0.00163192 0.000815962 1.00000i \(-0.499740\pi\)
0.000815962 1.00000i \(0.499740\pi\)
\(102\) 0 0
\(103\) 0.272744 0.0268743 0.0134371 0.999910i \(-0.495723\pi\)
0.0134371 + 0.999910i \(0.495723\pi\)
\(104\) 0 0
\(105\) 2.27274 0.221797
\(106\) 0 0
\(107\) −4.23731 −0.409636 −0.204818 0.978800i \(-0.565660\pi\)
−0.204818 + 0.978800i \(0.565660\pi\)
\(108\) 0 0
\(109\) −5.65287 −0.541446 −0.270723 0.962657i \(-0.587263\pi\)
−0.270723 + 0.962657i \(0.587263\pi\)
\(110\) 0 0
\(111\) 2.51005 0.238244
\(112\) 0 0
\(113\) 10.5748 0.994791 0.497396 0.867524i \(-0.334290\pi\)
0.497396 + 0.867524i \(0.334290\pi\)
\(114\) 0 0
\(115\) −14.8250 −1.38244
\(116\) 0 0
\(117\) 2.27274 0.210115
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 0.425225 0.0386568
\(122\) 0 0
\(123\) 10.6102 0.956691
\(124\) 0 0
\(125\) −10.9879 −0.982786
\(126\) 0 0
\(127\) 2.56804 0.227877 0.113938 0.993488i \(-0.463653\pi\)
0.113938 + 0.993488i \(0.463653\pi\)
\(128\) 0 0
\(129\) −9.66575 −0.851022
\(130\) 0 0
\(131\) −1.12993 −0.0987224 −0.0493612 0.998781i \(-0.515719\pi\)
−0.0493612 + 0.998781i \(0.515719\pi\)
\(132\) 0 0
\(133\) −2.87007 −0.248867
\(134\) 0 0
\(135\) 2.27274 0.195607
\(136\) 0 0
\(137\) −22.7696 −1.94534 −0.972670 0.232193i \(-0.925410\pi\)
−0.972670 + 0.232193i \(0.925410\pi\)
\(138\) 0 0
\(139\) −16.8121 −1.42598 −0.712991 0.701173i \(-0.752660\pi\)
−0.712991 + 0.701173i \(0.752660\pi\)
\(140\) 0 0
\(141\) 2.08728 0.175780
\(142\) 0 0
\(143\) 7.68215 0.642414
\(144\) 0 0
\(145\) −8.50039 −0.705919
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) 6.85718 0.561762 0.280881 0.959743i \(-0.409373\pi\)
0.280881 + 0.959743i \(0.409373\pi\)
\(150\) 0 0
\(151\) 4.64916 0.378344 0.189172 0.981944i \(-0.439420\pi\)
0.189172 + 0.981944i \(0.439420\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 21.3479 1.71471
\(156\) 0 0
\(157\) 22.4614 1.79262 0.896309 0.443430i \(-0.146239\pi\)
0.896309 + 0.443430i \(0.146239\pi\)
\(158\) 0 0
\(159\) 8.25019 0.654283
\(160\) 0 0
\(161\) −6.52294 −0.514079
\(162\) 0 0
\(163\) 14.2405 1.11540 0.557702 0.830041i \(-0.311683\pi\)
0.557702 + 0.830041i \(0.311683\pi\)
\(164\) 0 0
\(165\) 7.68215 0.598055
\(166\) 0 0
\(167\) −21.9678 −1.69992 −0.849959 0.526849i \(-0.823373\pi\)
−0.849959 + 0.526849i \(0.823373\pi\)
\(168\) 0 0
\(169\) −7.83463 −0.602664
\(170\) 0 0
\(171\) −2.87007 −0.219480
\(172\) 0 0
\(173\) 10.1098 0.768636 0.384318 0.923201i \(-0.374437\pi\)
0.384318 + 0.923201i \(0.374437\pi\)
\(174\) 0 0
\(175\) 0.165367 0.0125005
\(176\) 0 0
\(177\) 14.4840 1.08868
\(178\) 0 0
\(179\) −21.1167 −1.57834 −0.789170 0.614175i \(-0.789489\pi\)
−0.789170 + 0.614175i \(0.789489\pi\)
\(180\) 0 0
\(181\) 4.11108 0.305574 0.152787 0.988259i \(-0.451175\pi\)
0.152787 + 0.988259i \(0.451175\pi\)
\(182\) 0 0
\(183\) 10.3020 0.761548
\(184\) 0 0
\(185\) 5.70470 0.419418
\(186\) 0 0
\(187\) 3.38012 0.247179
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −25.9739 −1.87941 −0.939704 0.341989i \(-0.888899\pi\)
−0.939704 + 0.341989i \(0.888899\pi\)
\(192\) 0 0
\(193\) 7.49668 0.539623 0.269812 0.962913i \(-0.413039\pi\)
0.269812 + 0.962913i \(0.413039\pi\)
\(194\) 0 0
\(195\) 5.16537 0.369900
\(196\) 0 0
\(197\) 16.5229 1.17721 0.588605 0.808421i \(-0.299677\pi\)
0.588605 + 0.808421i \(0.299677\pi\)
\(198\) 0 0
\(199\) −22.4389 −1.59065 −0.795325 0.606183i \(-0.792700\pi\)
−0.795325 + 0.606183i \(0.792700\pi\)
\(200\) 0 0
\(201\) 2.59733 0.183201
\(202\) 0 0
\(203\) −3.74014 −0.262506
\(204\) 0 0
\(205\) 24.1143 1.68422
\(206\) 0 0
\(207\) −6.52294 −0.453375
\(208\) 0 0
\(209\) −9.70119 −0.671045
\(210\) 0 0
\(211\) 0.418009 0.0287769 0.0143884 0.999896i \(-0.495420\pi\)
0.0143884 + 0.999896i \(0.495420\pi\)
\(212\) 0 0
\(213\) −13.0459 −0.893889
\(214\) 0 0
\(215\) −21.9678 −1.49819
\(216\) 0 0
\(217\) 9.39301 0.637639
\(218\) 0 0
\(219\) 5.14282 0.347519
\(220\) 0 0
\(221\) 2.27274 0.152881
\(222\) 0 0
\(223\) 11.3705 0.761422 0.380711 0.924694i \(-0.375679\pi\)
0.380711 + 0.924694i \(0.375679\pi\)
\(224\) 0 0
\(225\) 0.165367 0.0110244
\(226\) 0 0
\(227\) 3.24101 0.215113 0.107557 0.994199i \(-0.465697\pi\)
0.107557 + 0.994199i \(0.465697\pi\)
\(228\) 0 0
\(229\) −8.99404 −0.594343 −0.297171 0.954824i \(-0.596043\pi\)
−0.297171 + 0.954824i \(0.596043\pi\)
\(230\) 0 0
\(231\) 3.38012 0.222396
\(232\) 0 0
\(233\) 19.6658 1.28835 0.644173 0.764880i \(-0.277202\pi\)
0.644173 + 0.764880i \(0.277202\pi\)
\(234\) 0 0
\(235\) 4.74384 0.309454
\(236\) 0 0
\(237\) −3.48995 −0.226697
\(238\) 0 0
\(239\) 18.7506 1.21287 0.606437 0.795131i \(-0.292598\pi\)
0.606437 + 0.795131i \(0.292598\pi\)
\(240\) 0 0
\(241\) 6.47461 0.417067 0.208533 0.978015i \(-0.433131\pi\)
0.208533 + 0.978015i \(0.433131\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 2.27274 0.145200
\(246\) 0 0
\(247\) −6.52294 −0.415045
\(248\) 0 0
\(249\) −2.59733 −0.164599
\(250\) 0 0
\(251\) −1.53015 −0.0965824 −0.0482912 0.998833i \(-0.515378\pi\)
−0.0482912 + 0.998833i \(0.515378\pi\)
\(252\) 0 0
\(253\) −22.0483 −1.38617
\(254\) 0 0
\(255\) 2.27274 0.142325
\(256\) 0 0
\(257\) 25.7707 1.60753 0.803765 0.594946i \(-0.202827\pi\)
0.803765 + 0.594946i \(0.202827\pi\)
\(258\) 0 0
\(259\) 2.51005 0.155967
\(260\) 0 0
\(261\) −3.74014 −0.231509
\(262\) 0 0
\(263\) 30.9489 1.90839 0.954196 0.299181i \(-0.0967133\pi\)
0.954196 + 0.299181i \(0.0967133\pi\)
\(264\) 0 0
\(265\) 18.7506 1.15184
\(266\) 0 0
\(267\) −3.90306 −0.238863
\(268\) 0 0
\(269\) 25.4156 1.54961 0.774807 0.632198i \(-0.217847\pi\)
0.774807 + 0.632198i \(0.217847\pi\)
\(270\) 0 0
\(271\) 11.6822 0.709640 0.354820 0.934935i \(-0.384542\pi\)
0.354820 + 0.934935i \(0.384542\pi\)
\(272\) 0 0
\(273\) 2.27274 0.137553
\(274\) 0 0
\(275\) 0.558959 0.0337065
\(276\) 0 0
\(277\) −26.3967 −1.58602 −0.793012 0.609206i \(-0.791488\pi\)
−0.793012 + 0.609206i \(0.791488\pi\)
\(278\) 0 0
\(279\) 9.39301 0.562345
\(280\) 0 0
\(281\) 8.83112 0.526820 0.263410 0.964684i \(-0.415153\pi\)
0.263410 + 0.964684i \(0.415153\pi\)
\(282\) 0 0
\(283\) 4.53582 0.269627 0.134813 0.990871i \(-0.456957\pi\)
0.134813 + 0.990871i \(0.456957\pi\)
\(284\) 0 0
\(285\) −6.52294 −0.386385
\(286\) 0 0
\(287\) 10.6102 0.626301
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −0.597327 −0.0350159
\(292\) 0 0
\(293\) 22.9422 1.34030 0.670149 0.742227i \(-0.266230\pi\)
0.670149 + 0.742227i \(0.266230\pi\)
\(294\) 0 0
\(295\) 32.9184 1.91658
\(296\) 0 0
\(297\) 3.38012 0.196135
\(298\) 0 0
\(299\) −14.8250 −0.857350
\(300\) 0 0
\(301\) −9.66575 −0.557125
\(302\) 0 0
\(303\) 0.0164006 0.000942191 0
\(304\) 0 0
\(305\) 23.4139 1.34067
\(306\) 0 0
\(307\) −21.6622 −1.23633 −0.618165 0.786049i \(-0.712123\pi\)
−0.618165 + 0.786049i \(0.712123\pi\)
\(308\) 0 0
\(309\) 0.272744 0.0155159
\(310\) 0 0
\(311\) −18.3449 −1.04024 −0.520121 0.854093i \(-0.674113\pi\)
−0.520121 + 0.854093i \(0.674113\pi\)
\(312\) 0 0
\(313\) −30.8733 −1.74506 −0.872531 0.488559i \(-0.837523\pi\)
−0.872531 + 0.488559i \(0.837523\pi\)
\(314\) 0 0
\(315\) 2.27274 0.128055
\(316\) 0 0
\(317\) −11.6622 −0.655017 −0.327508 0.944848i \(-0.606209\pi\)
−0.327508 + 0.944848i \(0.606209\pi\)
\(318\) 0 0
\(319\) −12.6421 −0.707824
\(320\) 0 0
\(321\) −4.23731 −0.236503
\(322\) 0 0
\(323\) −2.87007 −0.159695
\(324\) 0 0
\(325\) 0.375836 0.0208476
\(326\) 0 0
\(327\) −5.65287 −0.312604
\(328\) 0 0
\(329\) 2.08728 0.115075
\(330\) 0 0
\(331\) −1.33992 −0.0736485 −0.0368243 0.999322i \(-0.511724\pi\)
−0.0368243 + 0.999322i \(0.511724\pi\)
\(332\) 0 0
\(333\) 2.51005 0.137550
\(334\) 0 0
\(335\) 5.90306 0.322519
\(336\) 0 0
\(337\) −8.34224 −0.454431 −0.227215 0.973845i \(-0.572962\pi\)
−0.227215 + 0.973845i \(0.572962\pi\)
\(338\) 0 0
\(339\) 10.5748 0.574343
\(340\) 0 0
\(341\) 31.7495 1.71933
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −14.8250 −0.798149
\(346\) 0 0
\(347\) −15.0977 −0.810488 −0.405244 0.914209i \(-0.632813\pi\)
−0.405244 + 0.914209i \(0.632813\pi\)
\(348\) 0 0
\(349\) −6.74736 −0.361178 −0.180589 0.983559i \(-0.557800\pi\)
−0.180589 + 0.983559i \(0.557800\pi\)
\(350\) 0 0
\(351\) 2.27274 0.121310
\(352\) 0 0
\(353\) −2.51005 −0.133597 −0.0667983 0.997767i \(-0.521278\pi\)
−0.0667983 + 0.997767i \(0.521278\pi\)
\(354\) 0 0
\(355\) −29.6499 −1.57366
\(356\) 0 0
\(357\) 1.00000 0.0529256
\(358\) 0 0
\(359\) −17.2185 −0.908755 −0.454378 0.890809i \(-0.650138\pi\)
−0.454378 + 0.890809i \(0.650138\pi\)
\(360\) 0 0
\(361\) −10.7627 −0.566458
\(362\) 0 0
\(363\) 0.425225 0.0223185
\(364\) 0 0
\(365\) 11.6883 0.611794
\(366\) 0 0
\(367\) 1.09098 0.0569485 0.0284743 0.999595i \(-0.490935\pi\)
0.0284743 + 0.999595i \(0.490935\pi\)
\(368\) 0 0
\(369\) 10.6102 0.552346
\(370\) 0 0
\(371\) 8.25019 0.428329
\(372\) 0 0
\(373\) −15.4619 −0.800588 −0.400294 0.916387i \(-0.631092\pi\)
−0.400294 + 0.916387i \(0.631092\pi\)
\(374\) 0 0
\(375\) −10.9879 −0.567412
\(376\) 0 0
\(377\) −8.50039 −0.437792
\(378\) 0 0
\(379\) 5.71437 0.293527 0.146764 0.989172i \(-0.453114\pi\)
0.146764 + 0.989172i \(0.453114\pi\)
\(380\) 0 0
\(381\) 2.56804 0.131565
\(382\) 0 0
\(383\) 28.3987 1.45110 0.725552 0.688167i \(-0.241584\pi\)
0.725552 + 0.688167i \(0.241584\pi\)
\(384\) 0 0
\(385\) 7.68215 0.391519
\(386\) 0 0
\(387\) −9.66575 −0.491338
\(388\) 0 0
\(389\) −19.0131 −0.964001 −0.482001 0.876171i \(-0.660090\pi\)
−0.482001 + 0.876171i \(0.660090\pi\)
\(390\) 0 0
\(391\) −6.52294 −0.329879
\(392\) 0 0
\(393\) −1.12993 −0.0569974
\(394\) 0 0
\(395\) −7.93176 −0.399090
\(396\) 0 0
\(397\) −36.9844 −1.85619 −0.928096 0.372341i \(-0.878555\pi\)
−0.928096 + 0.372341i \(0.878555\pi\)
\(398\) 0 0
\(399\) −2.87007 −0.143683
\(400\) 0 0
\(401\) 1.19143 0.0594973 0.0297487 0.999557i \(-0.490529\pi\)
0.0297487 + 0.999557i \(0.490529\pi\)
\(402\) 0 0
\(403\) 21.3479 1.06341
\(404\) 0 0
\(405\) 2.27274 0.112934
\(406\) 0 0
\(407\) 8.48428 0.420550
\(408\) 0 0
\(409\) −19.1106 −0.944958 −0.472479 0.881342i \(-0.656641\pi\)
−0.472479 + 0.881342i \(0.656641\pi\)
\(410\) 0 0
\(411\) −22.7696 −1.12314
\(412\) 0 0
\(413\) 14.4840 0.712710
\(414\) 0 0
\(415\) −5.90306 −0.289770
\(416\) 0 0
\(417\) −16.8121 −0.823291
\(418\) 0 0
\(419\) −8.37094 −0.408947 −0.204474 0.978872i \(-0.565548\pi\)
−0.204474 + 0.978872i \(0.565548\pi\)
\(420\) 0 0
\(421\) −26.1594 −1.27493 −0.637466 0.770479i \(-0.720017\pi\)
−0.637466 + 0.770479i \(0.720017\pi\)
\(422\) 0 0
\(423\) 2.08728 0.101487
\(424\) 0 0
\(425\) 0.165367 0.00802146
\(426\) 0 0
\(427\) 10.3020 0.498550
\(428\) 0 0
\(429\) 7.68215 0.370898
\(430\) 0 0
\(431\) 28.5713 1.37623 0.688115 0.725602i \(-0.258439\pi\)
0.688115 + 0.725602i \(0.258439\pi\)
\(432\) 0 0
\(433\) 3.48154 0.167312 0.0836560 0.996495i \(-0.473340\pi\)
0.0836560 + 0.996495i \(0.473340\pi\)
\(434\) 0 0
\(435\) −8.50039 −0.407562
\(436\) 0 0
\(437\) 18.7213 0.895561
\(438\) 0 0
\(439\) 6.52909 0.311616 0.155808 0.987787i \(-0.450202\pi\)
0.155808 + 0.987787i \(0.450202\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −33.5225 −1.59270 −0.796350 0.604836i \(-0.793239\pi\)
−0.796350 + 0.604836i \(0.793239\pi\)
\(444\) 0 0
\(445\) −8.87066 −0.420509
\(446\) 0 0
\(447\) 6.85718 0.324334
\(448\) 0 0
\(449\) −30.7928 −1.45320 −0.726600 0.687061i \(-0.758901\pi\)
−0.726600 + 0.687061i \(0.758901\pi\)
\(450\) 0 0
\(451\) 35.8638 1.68876
\(452\) 0 0
\(453\) 4.64916 0.218437
\(454\) 0 0
\(455\) 5.16537 0.242156
\(456\) 0 0
\(457\) −18.3674 −0.859192 −0.429596 0.903021i \(-0.641344\pi\)
−0.429596 + 0.903021i \(0.641344\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) 23.5225 1.09555 0.547775 0.836626i \(-0.315475\pi\)
0.547775 + 0.836626i \(0.315475\pi\)
\(462\) 0 0
\(463\) −0.129448 −0.00601597 −0.00300798 0.999995i \(-0.500957\pi\)
−0.00300798 + 0.999995i \(0.500957\pi\)
\(464\) 0 0
\(465\) 21.3479 0.989985
\(466\) 0 0
\(467\) 22.1697 1.02589 0.512945 0.858422i \(-0.328555\pi\)
0.512945 + 0.858422i \(0.328555\pi\)
\(468\) 0 0
\(469\) 2.59733 0.119933
\(470\) 0 0
\(471\) 22.4614 1.03497
\(472\) 0 0
\(473\) −32.6714 −1.50223
\(474\) 0 0
\(475\) −0.474614 −0.0217768
\(476\) 0 0
\(477\) 8.25019 0.377750
\(478\) 0 0
\(479\) −18.0715 −0.825706 −0.412853 0.910798i \(-0.635468\pi\)
−0.412853 + 0.910798i \(0.635468\pi\)
\(480\) 0 0
\(481\) 5.70470 0.260112
\(482\) 0 0
\(483\) −6.52294 −0.296804
\(484\) 0 0
\(485\) −1.35757 −0.0616441
\(486\) 0 0
\(487\) 34.4034 1.55897 0.779484 0.626422i \(-0.215481\pi\)
0.779484 + 0.626422i \(0.215481\pi\)
\(488\) 0 0
\(489\) 14.2405 0.643979
\(490\) 0 0
\(491\) 38.4627 1.73580 0.867898 0.496742i \(-0.165470\pi\)
0.867898 + 0.496742i \(0.165470\pi\)
\(492\) 0 0
\(493\) −3.74014 −0.168448
\(494\) 0 0
\(495\) 7.68215 0.345287
\(496\) 0 0
\(497\) −13.0459 −0.585187
\(498\) 0 0
\(499\) 30.0094 1.34340 0.671702 0.740821i \(-0.265564\pi\)
0.671702 + 0.740821i \(0.265564\pi\)
\(500\) 0 0
\(501\) −21.9678 −0.981448
\(502\) 0 0
\(503\) 20.2869 0.904547 0.452274 0.891879i \(-0.350613\pi\)
0.452274 + 0.891879i \(0.350613\pi\)
\(504\) 0 0
\(505\) 0.0372744 0.00165869
\(506\) 0 0
\(507\) −7.83463 −0.347948
\(508\) 0 0
\(509\) 3.46191 0.153447 0.0767233 0.997052i \(-0.475554\pi\)
0.0767233 + 0.997052i \(0.475554\pi\)
\(510\) 0 0
\(511\) 5.14282 0.227505
\(512\) 0 0
\(513\) −2.87007 −0.126717
\(514\) 0 0
\(515\) 0.619878 0.0273151
\(516\) 0 0
\(517\) 7.05525 0.310289
\(518\) 0 0
\(519\) 10.1098 0.443772
\(520\) 0 0
\(521\) −3.74629 −0.164128 −0.0820640 0.996627i \(-0.526151\pi\)
−0.0820640 + 0.996627i \(0.526151\pi\)
\(522\) 0 0
\(523\) 4.03280 0.176342 0.0881710 0.996105i \(-0.471898\pi\)
0.0881710 + 0.996105i \(0.471898\pi\)
\(524\) 0 0
\(525\) 0.165367 0.00721719
\(526\) 0 0
\(527\) 9.39301 0.409166
\(528\) 0 0
\(529\) 19.5487 0.849944
\(530\) 0 0
\(531\) 14.4840 0.628551
\(532\) 0 0
\(533\) 24.1143 1.04451
\(534\) 0 0
\(535\) −9.63031 −0.416355
\(536\) 0 0
\(537\) −21.1167 −0.911255
\(538\) 0 0
\(539\) 3.38012 0.145592
\(540\) 0 0
\(541\) 15.3833 0.661382 0.330691 0.943739i \(-0.392718\pi\)
0.330691 + 0.943739i \(0.392718\pi\)
\(542\) 0 0
\(543\) 4.11108 0.176423
\(544\) 0 0
\(545\) −12.8475 −0.550327
\(546\) 0 0
\(547\) 9.89339 0.423011 0.211505 0.977377i \(-0.432163\pi\)
0.211505 + 0.977377i \(0.432163\pi\)
\(548\) 0 0
\(549\) 10.3020 0.439680
\(550\) 0 0
\(551\) 10.7345 0.457304
\(552\) 0 0
\(553\) −3.48995 −0.148408
\(554\) 0 0
\(555\) 5.70470 0.242151
\(556\) 0 0
\(557\) −23.9127 −1.01321 −0.506607 0.862177i \(-0.669101\pi\)
−0.506607 + 0.862177i \(0.669101\pi\)
\(558\) 0 0
\(559\) −21.9678 −0.929138
\(560\) 0 0
\(561\) 3.38012 0.142709
\(562\) 0 0
\(563\) −23.7726 −1.00190 −0.500949 0.865477i \(-0.667016\pi\)
−0.500949 + 0.865477i \(0.667016\pi\)
\(564\) 0 0
\(565\) 24.0338 1.01111
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 21.4024 0.897234 0.448617 0.893724i \(-0.351917\pi\)
0.448617 + 0.893724i \(0.351917\pi\)
\(570\) 0 0
\(571\) −32.1320 −1.34468 −0.672340 0.740242i \(-0.734711\pi\)
−0.672340 + 0.740242i \(0.734711\pi\)
\(572\) 0 0
\(573\) −25.9739 −1.08508
\(574\) 0 0
\(575\) −1.07868 −0.0449839
\(576\) 0 0
\(577\) −24.7213 −1.02916 −0.514580 0.857442i \(-0.672052\pi\)
−0.514580 + 0.857442i \(0.672052\pi\)
\(578\) 0 0
\(579\) 7.49668 0.311552
\(580\) 0 0
\(581\) −2.59733 −0.107755
\(582\) 0 0
\(583\) 27.8867 1.15495
\(584\) 0 0
\(585\) 5.16537 0.213562
\(586\) 0 0
\(587\) 1.27519 0.0526329 0.0263164 0.999654i \(-0.491622\pi\)
0.0263164 + 0.999654i \(0.491622\pi\)
\(588\) 0 0
\(589\) −26.9586 −1.11081
\(590\) 0 0
\(591\) 16.5229 0.679663
\(592\) 0 0
\(593\) −26.6536 −1.09453 −0.547267 0.836958i \(-0.684332\pi\)
−0.547267 + 0.836958i \(0.684332\pi\)
\(594\) 0 0
\(595\) 2.27274 0.0931734
\(596\) 0 0
\(597\) −22.4389 −0.918362
\(598\) 0 0
\(599\) −31.6573 −1.29348 −0.646742 0.762709i \(-0.723869\pi\)
−0.646742 + 0.762709i \(0.723869\pi\)
\(600\) 0 0
\(601\) −13.2562 −0.540730 −0.270365 0.962758i \(-0.587144\pi\)
−0.270365 + 0.962758i \(0.587144\pi\)
\(602\) 0 0
\(603\) 2.59733 0.105771
\(604\) 0 0
\(605\) 0.966427 0.0392909
\(606\) 0 0
\(607\) 28.8733 1.17193 0.585965 0.810336i \(-0.300715\pi\)
0.585965 + 0.810336i \(0.300715\pi\)
\(608\) 0 0
\(609\) −3.74014 −0.151558
\(610\) 0 0
\(611\) 4.74384 0.191915
\(612\) 0 0
\(613\) 4.30328 0.173808 0.0869040 0.996217i \(-0.472303\pi\)
0.0869040 + 0.996217i \(0.472303\pi\)
\(614\) 0 0
\(615\) 24.1143 0.972382
\(616\) 0 0
\(617\) 9.42355 0.379378 0.189689 0.981844i \(-0.439252\pi\)
0.189689 + 0.981844i \(0.439252\pi\)
\(618\) 0 0
\(619\) −39.6670 −1.59435 −0.797176 0.603747i \(-0.793674\pi\)
−0.797176 + 0.603747i \(0.793674\pi\)
\(620\) 0 0
\(621\) −6.52294 −0.261756
\(622\) 0 0
\(623\) −3.90306 −0.156373
\(624\) 0 0
\(625\) −25.7995 −1.03198
\(626\) 0 0
\(627\) −9.70119 −0.387428
\(628\) 0 0
\(629\) 2.51005 0.100082
\(630\) 0 0
\(631\) −0.763465 −0.0303930 −0.0151965 0.999885i \(-0.504837\pi\)
−0.0151965 + 0.999885i \(0.504837\pi\)
\(632\) 0 0
\(633\) 0.418009 0.0166143
\(634\) 0 0
\(635\) 5.83650 0.231614
\(636\) 0 0
\(637\) 2.27274 0.0900494
\(638\) 0 0
\(639\) −13.0459 −0.516087
\(640\) 0 0
\(641\) 2.10016 0.0829514 0.0414757 0.999140i \(-0.486794\pi\)
0.0414757 + 0.999140i \(0.486794\pi\)
\(642\) 0 0
\(643\) −21.2539 −0.838172 −0.419086 0.907947i \(-0.637649\pi\)
−0.419086 + 0.907947i \(0.637649\pi\)
\(644\) 0 0
\(645\) −21.9678 −0.864981
\(646\) 0 0
\(647\) 35.4024 1.39181 0.695906 0.718133i \(-0.255003\pi\)
0.695906 + 0.718133i \(0.255003\pi\)
\(648\) 0 0
\(649\) 48.9576 1.92176
\(650\) 0 0
\(651\) 9.39301 0.368141
\(652\) 0 0
\(653\) −0.419261 −0.0164070 −0.00820348 0.999966i \(-0.502611\pi\)
−0.00820348 + 0.999966i \(0.502611\pi\)
\(654\) 0 0
\(655\) −2.56804 −0.100342
\(656\) 0 0
\(657\) 5.14282 0.200640
\(658\) 0 0
\(659\) 31.1331 1.21278 0.606388 0.795169i \(-0.292618\pi\)
0.606388 + 0.795169i \(0.292618\pi\)
\(660\) 0 0
\(661\) 43.2523 1.68232 0.841161 0.540785i \(-0.181873\pi\)
0.841161 + 0.540785i \(0.181873\pi\)
\(662\) 0 0
\(663\) 2.27274 0.0882661
\(664\) 0 0
\(665\) −6.52294 −0.252949
\(666\) 0 0
\(667\) 24.3967 0.944644
\(668\) 0 0
\(669\) 11.3705 0.439607
\(670\) 0 0
\(671\) 34.8221 1.34429
\(672\) 0 0
\(673\) −5.23486 −0.201789 −0.100894 0.994897i \(-0.532170\pi\)
−0.100894 + 0.994897i \(0.532170\pi\)
\(674\) 0 0
\(675\) 0.165367 0.00636496
\(676\) 0 0
\(677\) 11.2220 0.431295 0.215648 0.976471i \(-0.430814\pi\)
0.215648 + 0.976471i \(0.430814\pi\)
\(678\) 0 0
\(679\) −0.597327 −0.0229233
\(680\) 0 0
\(681\) 3.24101 0.124196
\(682\) 0 0
\(683\) −3.63324 −0.139022 −0.0695111 0.997581i \(-0.522144\pi\)
−0.0695111 + 0.997581i \(0.522144\pi\)
\(684\) 0 0
\(685\) −51.7495 −1.97725
\(686\) 0 0
\(687\) −8.99404 −0.343144
\(688\) 0 0
\(689\) 18.7506 0.714340
\(690\) 0 0
\(691\) −9.27519 −0.352845 −0.176422 0.984315i \(-0.556452\pi\)
−0.176422 + 0.984315i \(0.556452\pi\)
\(692\) 0 0
\(693\) 3.38012 0.128400
\(694\) 0 0
\(695\) −38.2096 −1.44937
\(696\) 0 0
\(697\) 10.6102 0.401890
\(698\) 0 0
\(699\) 19.6658 0.743827
\(700\) 0 0
\(701\) 13.4101 0.506492 0.253246 0.967402i \(-0.418502\pi\)
0.253246 + 0.967402i \(0.418502\pi\)
\(702\) 0 0
\(703\) −7.20402 −0.271705
\(704\) 0 0
\(705\) 4.74384 0.178663
\(706\) 0 0
\(707\) 0.0164006 0.000616809 0
\(708\) 0 0
\(709\) −47.0600 −1.76738 −0.883688 0.468077i \(-0.844947\pi\)
−0.883688 + 0.468077i \(0.844947\pi\)
\(710\) 0 0
\(711\) −3.48995 −0.130883
\(712\) 0 0
\(713\) −61.2700 −2.29458
\(714\) 0 0
\(715\) 17.4596 0.652951
\(716\) 0 0
\(717\) 18.7506 0.700253
\(718\) 0 0
\(719\) −10.0696 −0.375534 −0.187767 0.982214i \(-0.560125\pi\)
−0.187767 + 0.982214i \(0.560125\pi\)
\(720\) 0 0
\(721\) 0.272744 0.0101575
\(722\) 0 0
\(723\) 6.47461 0.240793
\(724\) 0 0
\(725\) −0.618494 −0.0229703
\(726\) 0 0
\(727\) 28.9087 1.07217 0.536083 0.844165i \(-0.319904\pi\)
0.536083 + 0.844165i \(0.319904\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −9.66575 −0.357501
\(732\) 0 0
\(733\) 18.9164 0.698694 0.349347 0.936993i \(-0.386403\pi\)
0.349347 + 0.936993i \(0.386403\pi\)
\(734\) 0 0
\(735\) 2.27274 0.0838314
\(736\) 0 0
\(737\) 8.77928 0.323389
\(738\) 0 0
\(739\) −15.7955 −0.581047 −0.290523 0.956868i \(-0.593829\pi\)
−0.290523 + 0.956868i \(0.593829\pi\)
\(740\) 0 0
\(741\) −6.52294 −0.239626
\(742\) 0 0
\(743\) 10.7930 0.395958 0.197979 0.980206i \(-0.436562\pi\)
0.197979 + 0.980206i \(0.436562\pi\)
\(744\) 0 0
\(745\) 15.5846 0.570977
\(746\) 0 0
\(747\) −2.59733 −0.0950312
\(748\) 0 0
\(749\) −4.23731 −0.154828
\(750\) 0 0
\(751\) −45.3479 −1.65477 −0.827384 0.561636i \(-0.810172\pi\)
−0.827384 + 0.561636i \(0.810172\pi\)
\(752\) 0 0
\(753\) −1.53015 −0.0557619
\(754\) 0 0
\(755\) 10.5664 0.384549
\(756\) 0 0
\(757\) −26.3082 −0.956187 −0.478094 0.878309i \(-0.658672\pi\)
−0.478094 + 0.878309i \(0.658672\pi\)
\(758\) 0 0
\(759\) −22.0483 −0.800303
\(760\) 0 0
\(761\) −18.0592 −0.654647 −0.327323 0.944912i \(-0.606147\pi\)
−0.327323 + 0.944912i \(0.606147\pi\)
\(762\) 0 0
\(763\) −5.65287 −0.204647
\(764\) 0 0
\(765\) 2.27274 0.0821712
\(766\) 0 0
\(767\) 32.9184 1.18861
\(768\) 0 0
\(769\) −43.0204 −1.55136 −0.775678 0.631129i \(-0.782592\pi\)
−0.775678 + 0.631129i \(0.782592\pi\)
\(770\) 0 0
\(771\) 25.7707 0.928108
\(772\) 0 0
\(773\) 23.3221 0.838839 0.419419 0.907793i \(-0.362234\pi\)
0.419419 + 0.907793i \(0.362234\pi\)
\(774\) 0 0
\(775\) 1.55329 0.0557958
\(776\) 0 0
\(777\) 2.51005 0.0900476
\(778\) 0 0
\(779\) −30.4521 −1.09106
\(780\) 0 0
\(781\) −44.0966 −1.57790
\(782\) 0 0
\(783\) −3.74014 −0.133662
\(784\) 0 0
\(785\) 51.0491 1.82202
\(786\) 0 0
\(787\) −7.09324 −0.252847 −0.126423 0.991976i \(-0.540350\pi\)
−0.126423 + 0.991976i \(0.540350\pi\)
\(788\) 0 0
\(789\) 30.9489 1.10181
\(790\) 0 0
\(791\) 10.5748 0.375996
\(792\) 0 0
\(793\) 23.4139 0.831451
\(794\) 0 0
\(795\) 18.7506 0.665014
\(796\) 0 0
\(797\) −13.9549 −0.494308 −0.247154 0.968976i \(-0.579495\pi\)
−0.247154 + 0.968976i \(0.579495\pi\)
\(798\) 0 0
\(799\) 2.08728 0.0738425
\(800\) 0 0
\(801\) −3.90306 −0.137908
\(802\) 0 0
\(803\) 17.3833 0.613445
\(804\) 0 0
\(805\) −14.8250 −0.522511
\(806\) 0 0
\(807\) 25.4156 0.894670
\(808\) 0 0
\(809\) −0.244710 −0.00860355 −0.00430177 0.999991i \(-0.501369\pi\)
−0.00430177 + 0.999991i \(0.501369\pi\)
\(810\) 0 0
\(811\) −51.7398 −1.81683 −0.908416 0.418068i \(-0.862707\pi\)
−0.908416 + 0.418068i \(0.862707\pi\)
\(812\) 0 0
\(813\) 11.6822 0.409711
\(814\) 0 0
\(815\) 32.3651 1.13370
\(816\) 0 0
\(817\) 27.7414 0.970549
\(818\) 0 0
\(819\) 2.27274 0.0794161
\(820\) 0 0
\(821\) −1.51024 −0.0527077 −0.0263538 0.999653i \(-0.508390\pi\)
−0.0263538 + 0.999653i \(0.508390\pi\)
\(822\) 0 0
\(823\) −19.8088 −0.690490 −0.345245 0.938513i \(-0.612204\pi\)
−0.345245 + 0.938513i \(0.612204\pi\)
\(824\) 0 0
\(825\) 0.558959 0.0194605
\(826\) 0 0
\(827\) −6.78953 −0.236095 −0.118048 0.993008i \(-0.537664\pi\)
−0.118048 + 0.993008i \(0.537664\pi\)
\(828\) 0 0
\(829\) 45.7752 1.58984 0.794918 0.606716i \(-0.207514\pi\)
0.794918 + 0.606716i \(0.207514\pi\)
\(830\) 0 0
\(831\) −26.3967 −0.915692
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −49.9272 −1.72780
\(836\) 0 0
\(837\) 9.39301 0.324670
\(838\) 0 0
\(839\) 41.4481 1.43095 0.715473 0.698640i \(-0.246211\pi\)
0.715473 + 0.698640i \(0.246211\pi\)
\(840\) 0 0
\(841\) −15.0113 −0.517632
\(842\) 0 0
\(843\) 8.83112 0.304160
\(844\) 0 0
\(845\) −17.8061 −0.612549
\(846\) 0 0
\(847\) 0.425225 0.0146109
\(848\) 0 0
\(849\) 4.53582 0.155669
\(850\) 0 0
\(851\) −16.3729 −0.561256
\(852\) 0 0
\(853\) −55.0175 −1.88376 −0.941882 0.335943i \(-0.890945\pi\)
−0.941882 + 0.335943i \(0.890945\pi\)
\(854\) 0 0
\(855\) −6.52294 −0.223080
\(856\) 0 0
\(857\) −23.0201 −0.786352 −0.393176 0.919463i \(-0.628624\pi\)
−0.393176 + 0.919463i \(0.628624\pi\)
\(858\) 0 0
\(859\) −3.49961 −0.119405 −0.0597026 0.998216i \(-0.519015\pi\)
−0.0597026 + 0.998216i \(0.519015\pi\)
\(860\) 0 0
\(861\) 10.6102 0.361595
\(862\) 0 0
\(863\) −18.8923 −0.643102 −0.321551 0.946892i \(-0.604204\pi\)
−0.321551 + 0.946892i \(0.604204\pi\)
\(864\) 0 0
\(865\) 22.9771 0.781243
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) −11.7965 −0.400167
\(870\) 0 0
\(871\) 5.90306 0.200018
\(872\) 0 0
\(873\) −0.597327 −0.0202164
\(874\) 0 0
\(875\) −10.9879 −0.371458
\(876\) 0 0
\(877\) −31.8722 −1.07625 −0.538124 0.842865i \(-0.680867\pi\)
−0.538124 + 0.842865i \(0.680867\pi\)
\(878\) 0 0
\(879\) 22.9422 0.773821
\(880\) 0 0
\(881\) 22.9680 0.773811 0.386905 0.922119i \(-0.373544\pi\)
0.386905 + 0.922119i \(0.373544\pi\)
\(882\) 0 0
\(883\) −14.6266 −0.492225 −0.246112 0.969241i \(-0.579153\pi\)
−0.246112 + 0.969241i \(0.579153\pi\)
\(884\) 0 0
\(885\) 32.9184 1.10654
\(886\) 0 0
\(887\) 14.6621 0.492303 0.246152 0.969231i \(-0.420834\pi\)
0.246152 + 0.969231i \(0.420834\pi\)
\(888\) 0 0
\(889\) 2.56804 0.0861293
\(890\) 0 0
\(891\) 3.38012 0.113238
\(892\) 0 0
\(893\) −5.99063 −0.200469
\(894\) 0 0
\(895\) −47.9930 −1.60423
\(896\) 0 0
\(897\) −14.8250 −0.494991
\(898\) 0 0
\(899\) −35.1312 −1.17169
\(900\) 0 0
\(901\) 8.25019 0.274854
\(902\) 0 0
\(903\) −9.66575 −0.321656
\(904\) 0 0
\(905\) 9.34343 0.310586
\(906\) 0 0
\(907\) −51.5343 −1.71117 −0.855585 0.517663i \(-0.826802\pi\)
−0.855585 + 0.517663i \(0.826802\pi\)
\(908\) 0 0
\(909\) 0.0164006 0.000543974 0
\(910\) 0 0
\(911\) 35.8593 1.18807 0.594036 0.804438i \(-0.297533\pi\)
0.594036 + 0.804438i \(0.297533\pi\)
\(912\) 0 0
\(913\) −8.77928 −0.290552
\(914\) 0 0
\(915\) 23.4139 0.774039
\(916\) 0 0
\(917\) −1.12993 −0.0373135
\(918\) 0 0
\(919\) 54.5552 1.79961 0.899804 0.436294i \(-0.143709\pi\)
0.899804 + 0.436294i \(0.143709\pi\)
\(920\) 0 0
\(921\) −21.6622 −0.713795
\(922\) 0 0
\(923\) −29.6499 −0.975940
\(924\) 0 0
\(925\) 0.415078 0.0136477
\(926\) 0 0
\(927\) 0.272744 0.00895810
\(928\) 0 0
\(929\) 3.57174 0.117185 0.0585925 0.998282i \(-0.481339\pi\)
0.0585925 + 0.998282i \(0.481339\pi\)
\(930\) 0 0
\(931\) −2.87007 −0.0940628
\(932\) 0 0
\(933\) −18.3449 −0.600584
\(934\) 0 0
\(935\) 7.68215 0.251233
\(936\) 0 0
\(937\) −47.5463 −1.55327 −0.776634 0.629952i \(-0.783075\pi\)
−0.776634 + 0.629952i \(0.783075\pi\)
\(938\) 0 0
\(939\) −30.8733 −1.00751
\(940\) 0 0
\(941\) −16.0325 −0.522645 −0.261322 0.965252i \(-0.584159\pi\)
−0.261322 + 0.965252i \(0.584159\pi\)
\(942\) 0 0
\(943\) −69.2098 −2.25378
\(944\) 0 0
\(945\) 2.27274 0.0739324
\(946\) 0 0
\(947\) −26.8311 −0.871894 −0.435947 0.899972i \(-0.643587\pi\)
−0.435947 + 0.899972i \(0.643587\pi\)
\(948\) 0 0
\(949\) 11.6883 0.379418
\(950\) 0 0
\(951\) −11.6622 −0.378174
\(952\) 0 0
\(953\) 29.5627 0.957629 0.478814 0.877916i \(-0.341067\pi\)
0.478814 + 0.877916i \(0.341067\pi\)
\(954\) 0 0
\(955\) −59.0321 −1.91023
\(956\) 0 0
\(957\) −12.6421 −0.408662
\(958\) 0 0
\(959\) −22.7696 −0.735269
\(960\) 0 0
\(961\) 57.2286 1.84608
\(962\) 0 0
\(963\) −4.23731 −0.136545
\(964\) 0 0
\(965\) 17.0380 0.548474
\(966\) 0 0
\(967\) 54.2060 1.74315 0.871575 0.490263i \(-0.163099\pi\)
0.871575 + 0.490263i \(0.163099\pi\)
\(968\) 0 0
\(969\) −2.87007 −0.0922000
\(970\) 0 0
\(971\) 12.3117 0.395101 0.197551 0.980293i \(-0.436701\pi\)
0.197551 + 0.980293i \(0.436701\pi\)
\(972\) 0 0
\(973\) −16.8121 −0.538971
\(974\) 0 0
\(975\) 0.375836 0.0120364
\(976\) 0 0
\(977\) −2.44884 −0.0783454 −0.0391727 0.999232i \(-0.512472\pi\)
−0.0391727 + 0.999232i \(0.512472\pi\)
\(978\) 0 0
\(979\) −13.1928 −0.421644
\(980\) 0 0
\(981\) −5.65287 −0.180482
\(982\) 0 0
\(983\) 41.3843 1.31995 0.659977 0.751286i \(-0.270566\pi\)
0.659977 + 0.751286i \(0.270566\pi\)
\(984\) 0 0
\(985\) 37.5524 1.19652
\(986\) 0 0
\(987\) 2.08728 0.0664387
\(988\) 0 0
\(989\) 63.0491 2.00484
\(990\) 0 0
\(991\) 37.8252 1.20156 0.600778 0.799416i \(-0.294858\pi\)
0.600778 + 0.799416i \(0.294858\pi\)
\(992\) 0 0
\(993\) −1.33992 −0.0425210
\(994\) 0 0
\(995\) −50.9978 −1.61674
\(996\) 0 0
\(997\) −1.80612 −0.0572003 −0.0286002 0.999591i \(-0.509105\pi\)
−0.0286002 + 0.999591i \(0.509105\pi\)
\(998\) 0 0
\(999\) 2.51005 0.0794145
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5712.2.a.ca.1.3 4
4.3 odd 2 2856.2.a.v.1.3 4
12.11 even 2 8568.2.a.bf.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2856.2.a.v.1.3 4 4.3 odd 2
5712.2.a.ca.1.3 4 1.1 even 1 trivial
8568.2.a.bf.1.2 4 12.11 even 2