Properties

Label 5712.2.a.ca
Level $5712$
Weight $2$
Character orbit 5712.a
Self dual yes
Analytic conductor $45.611$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5712,2,Mod(1,5712)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5712, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5712.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,5,0,4,0,4,0,-1,0,5,0,5,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.183064.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 6x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2856)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + (\beta_1 + 1) q^{5} + q^{7} + q^{9} - \beta_{2} q^{11} + (\beta_1 + 1) q^{13} + (\beta_1 + 1) q^{15} + q^{17} + \beta_{3} q^{19} + q^{21} + (\beta_{3} + \beta_{2} - \beta_1 + 1) q^{23}+ \cdots - \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 5 q^{5} + 4 q^{7} + 4 q^{9} - q^{11} + 5 q^{13} + 5 q^{15} + 4 q^{17} + 4 q^{21} + 4 q^{23} + 7 q^{25} + 4 q^{27} + 8 q^{29} - 4 q^{31} - q^{33} + 5 q^{35} + 7 q^{37} + 5 q^{39} + 8 q^{41}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 10x^{2} + 6x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 8\nu + 4 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + \beta_{2} + 8\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.87183
−0.669601
1.27274
3.26869
0 1.00000 0 −1.87183 0 1.00000 0 1.00000 0
1.2 0 1.00000 0 0.330399 0 1.00000 0 1.00000 0
1.3 0 1.00000 0 2.27274 0 1.00000 0 1.00000 0
1.4 0 1.00000 0 4.26869 0 1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5712.2.a.ca 4
4.b odd 2 1 2856.2.a.v 4
12.b even 2 1 8568.2.a.bf 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2856.2.a.v 4 4.b odd 2 1
5712.2.a.ca 4 1.a even 1 1 trivial
8568.2.a.bf 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5712))\):

\( T_{5}^{4} - 5T_{5}^{3} - T_{5}^{2} + 19T_{5} - 6 \) Copy content Toggle raw display
\( T_{11}^{4} + T_{11}^{3} - 37T_{11}^{2} - 9T_{11} + 284 \) Copy content Toggle raw display
\( T_{13}^{4} - 5T_{13}^{3} - T_{13}^{2} + 19T_{13} - 6 \) Copy content Toggle raw display
\( T_{19}^{4} - 17T_{19}^{2} - 14T_{19} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 5 T^{3} + \cdots - 6 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + T^{3} + \cdots + 284 \) Copy content Toggle raw display
$13$ \( T^{4} - 5 T^{3} + \cdots - 6 \) Copy content Toggle raw display
$17$ \( (T - 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 17 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots - 192 \) Copy content Toggle raw display
$29$ \( T^{4} - 8 T^{3} + \cdots + 480 \) Copy content Toggle raw display
$31$ \( T^{4} + 4 T^{3} + \cdots - 640 \) Copy content Toggle raw display
$37$ \( T^{4} - 7 T^{3} + \cdots + 268 \) Copy content Toggle raw display
$41$ \( T^{4} - 8 T^{3} + \cdots + 1240 \) Copy content Toggle raw display
$43$ \( T^{4} - 7 T^{3} + \cdots - 1396 \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots - 384 \) Copy content Toggle raw display
$53$ \( T^{4} - 7 T^{3} + \cdots - 108 \) Copy content Toggle raw display
$59$ \( T^{4} - 262 T^{2} + \cdots + 12576 \) Copy content Toggle raw display
$61$ \( T^{4} - 16 T^{3} + \cdots - 5864 \) Copy content Toggle raw display
$67$ \( T^{4} - 3 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$71$ \( T^{4} - 8 T^{3} + \cdots - 3072 \) Copy content Toggle raw display
$73$ \( T^{4} - 5 T^{3} + \cdots - 40 \) Copy content Toggle raw display
$79$ \( T^{4} + 17 T^{3} + \cdots - 1424 \) Copy content Toggle raw display
$83$ \( T^{4} + 3 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$89$ \( T^{4} - 29 T^{3} + \cdots - 2512 \) Copy content Toggle raw display
$97$ \( T^{4} - 5 T^{3} + \cdots + 64 \) Copy content Toggle raw display
show more
show less