Properties

Label 567.2.p.b.404.1
Level $567$
Weight $2$
Character 567.404
Analytic conductor $4.528$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,2,Mod(80,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.80"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,3,0,1,3,0,1,0,0,9,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 404.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 567.404
Dual form 567.2.p.b.80.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{4} +(1.50000 - 2.59808i) q^{5} +(0.500000 + 2.59808i) q^{7} -1.73205i q^{8} +(4.50000 - 2.59808i) q^{10} +(1.50000 - 0.866025i) q^{11} -1.73205i q^{13} +(-1.50000 + 4.33013i) q^{14} +(2.50000 - 4.33013i) q^{16} +(1.50000 + 2.59808i) q^{17} +(-4.50000 - 2.59808i) q^{19} +3.00000 q^{20} +3.00000 q^{22} +(4.50000 + 2.59808i) q^{23} +(-2.00000 - 3.46410i) q^{25} +(1.50000 - 2.59808i) q^{26} +(-2.00000 + 1.73205i) q^{28} +5.19615i q^{29} +(3.00000 - 1.73205i) q^{31} +(4.50000 - 2.59808i) q^{32} +5.19615i q^{34} +(7.50000 + 2.59808i) q^{35} +(-3.50000 + 6.06218i) q^{37} +(-4.50000 - 7.79423i) q^{38} +(-4.50000 - 2.59808i) q^{40} -3.00000 q^{41} +1.00000 q^{43} +(1.50000 + 0.866025i) q^{44} +(4.50000 + 7.79423i) q^{46} +(-6.50000 + 2.59808i) q^{49} -6.92820i q^{50} +(1.50000 - 0.866025i) q^{52} +(-7.50000 + 4.33013i) q^{53} -5.19615i q^{55} +(4.50000 - 0.866025i) q^{56} +(-4.50000 + 7.79423i) q^{58} +(-12.0000 - 6.92820i) q^{61} +6.00000 q^{62} -1.00000 q^{64} +(-4.50000 - 2.59808i) q^{65} +(2.00000 + 3.46410i) q^{67} +(-1.50000 + 2.59808i) q^{68} +(9.00000 + 10.3923i) q^{70} +3.46410i q^{71} +(-4.50000 + 2.59808i) q^{73} +(-10.5000 + 6.06218i) q^{74} -5.19615i q^{76} +(3.00000 + 3.46410i) q^{77} +(-4.00000 + 6.92820i) q^{79} +(-7.50000 - 12.9904i) q^{80} +(-4.50000 - 2.59808i) q^{82} +15.0000 q^{83} +9.00000 q^{85} +(1.50000 + 0.866025i) q^{86} +(-1.50000 - 2.59808i) q^{88} +(1.50000 - 2.59808i) q^{89} +(4.50000 - 0.866025i) q^{91} +5.19615i q^{92} +(-13.5000 + 7.79423i) q^{95} +1.73205i q^{97} +(-12.0000 - 1.73205i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + q^{4} + 3 q^{5} + q^{7} + 9 q^{10} + 3 q^{11} - 3 q^{14} + 5 q^{16} + 3 q^{17} - 9 q^{19} + 6 q^{20} + 6 q^{22} + 9 q^{23} - 4 q^{25} + 3 q^{26} - 4 q^{28} + 6 q^{31} + 9 q^{32} + 15 q^{35}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50000 + 0.866025i 1.06066 + 0.612372i 0.925615 0.378467i \(-0.123549\pi\)
0.135045 + 0.990839i \(0.456882\pi\)
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 1.73205i 0.612372i
\(9\) 0 0
\(10\) 4.50000 2.59808i 1.42302 0.821584i
\(11\) 1.50000 0.866025i 0.452267 0.261116i −0.256520 0.966539i \(-0.582576\pi\)
0.708787 + 0.705422i \(0.249243\pi\)
\(12\) 0 0
\(13\) 1.73205i 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.970725 0.240192i \(-0.0772105\pi\)
\(14\) −1.50000 + 4.33013i −0.400892 + 1.15728i
\(15\) 0 0
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −4.50000 2.59808i −1.03237 0.596040i −0.114708 0.993399i \(-0.536593\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 3.00000 0.670820
\(21\) 0 0
\(22\) 3.00000 0.639602
\(23\) 4.50000 + 2.59808i 0.938315 + 0.541736i 0.889432 0.457068i \(-0.151100\pi\)
0.0488832 + 0.998805i \(0.484434\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 1.50000 2.59808i 0.294174 0.509525i
\(27\) 0 0
\(28\) −2.00000 + 1.73205i −0.377964 + 0.327327i
\(29\) 5.19615i 0.964901i 0.875923 + 0.482451i \(0.160253\pi\)
−0.875923 + 0.482451i \(0.839747\pi\)
\(30\) 0 0
\(31\) 3.00000 1.73205i 0.538816 0.311086i −0.205783 0.978598i \(-0.565974\pi\)
0.744599 + 0.667512i \(0.232641\pi\)
\(32\) 4.50000 2.59808i 0.795495 0.459279i
\(33\) 0 0
\(34\) 5.19615i 0.891133i
\(35\) 7.50000 + 2.59808i 1.26773 + 0.439155i
\(36\) 0 0
\(37\) −3.50000 + 6.06218i −0.575396 + 0.996616i 0.420602 + 0.907245i \(0.361819\pi\)
−0.995998 + 0.0893706i \(0.971514\pi\)
\(38\) −4.50000 7.79423i −0.729996 1.26439i
\(39\) 0 0
\(40\) −4.50000 2.59808i −0.711512 0.410792i
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 1.50000 + 0.866025i 0.226134 + 0.130558i
\(45\) 0 0
\(46\) 4.50000 + 7.79423i 0.663489 + 1.14920i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 6.92820i 0.979796i
\(51\) 0 0
\(52\) 1.50000 0.866025i 0.208013 0.120096i
\(53\) −7.50000 + 4.33013i −1.03020 + 0.594789i −0.917043 0.398788i \(-0.869431\pi\)
−0.113161 + 0.993577i \(0.536098\pi\)
\(54\) 0 0
\(55\) 5.19615i 0.700649i
\(56\) 4.50000 0.866025i 0.601338 0.115728i
\(57\) 0 0
\(58\) −4.50000 + 7.79423i −0.590879 + 1.02343i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −12.0000 6.92820i −1.53644 0.887066i −0.999043 0.0437377i \(-0.986073\pi\)
−0.537400 0.843328i \(-0.680593\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.50000 2.59808i −0.558156 0.322252i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) 0 0
\(70\) 9.00000 + 10.3923i 1.07571 + 1.24212i
\(71\) 3.46410i 0.411113i 0.978645 + 0.205557i \(0.0659005\pi\)
−0.978645 + 0.205557i \(0.934100\pi\)
\(72\) 0 0
\(73\) −4.50000 + 2.59808i −0.526685 + 0.304082i −0.739666 0.672975i \(-0.765016\pi\)
0.212980 + 0.977056i \(0.431683\pi\)
\(74\) −10.5000 + 6.06218i −1.22060 + 0.704714i
\(75\) 0 0
\(76\) 5.19615i 0.596040i
\(77\) 3.00000 + 3.46410i 0.341882 + 0.394771i
\(78\) 0 0
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) −7.50000 12.9904i −0.838525 1.45237i
\(81\) 0 0
\(82\) −4.50000 2.59808i −0.496942 0.286910i
\(83\) 15.0000 1.64646 0.823232 0.567705i \(-0.192169\pi\)
0.823232 + 0.567705i \(0.192169\pi\)
\(84\) 0 0
\(85\) 9.00000 0.976187
\(86\) 1.50000 + 0.866025i 0.161749 + 0.0933859i
\(87\) 0 0
\(88\) −1.50000 2.59808i −0.159901 0.276956i
\(89\) 1.50000 2.59808i 0.159000 0.275396i −0.775509 0.631337i \(-0.782506\pi\)
0.934508 + 0.355942i \(0.115840\pi\)
\(90\) 0 0
\(91\) 4.50000 0.866025i 0.471728 0.0907841i
\(92\) 5.19615i 0.541736i
\(93\) 0 0
\(94\) 0 0
\(95\) −13.5000 + 7.79423i −1.38507 + 0.799671i
\(96\) 0 0
\(97\) 1.73205i 0.175863i 0.996127 + 0.0879316i \(0.0280257\pi\)
−0.996127 + 0.0879316i \(0.971974\pi\)
\(98\) −12.0000 1.73205i −1.21218 0.174964i
\(99\) 0 0
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) 1.50000 + 2.59808i 0.149256 + 0.258518i 0.930953 0.365140i \(-0.118979\pi\)
−0.781697 + 0.623658i \(0.785646\pi\)
\(102\) 0 0
\(103\) −10.5000 6.06218i −1.03460 0.597324i −0.116298 0.993214i \(-0.537103\pi\)
−0.918298 + 0.395890i \(0.870436\pi\)
\(104\) −3.00000 −0.294174
\(105\) 0 0
\(106\) −15.0000 −1.45693
\(107\) −7.50000 4.33013i −0.725052 0.418609i 0.0915571 0.995800i \(-0.470816\pi\)
−0.816609 + 0.577191i \(0.804149\pi\)
\(108\) 0 0
\(109\) −9.50000 16.4545i −0.909935 1.57605i −0.814152 0.580651i \(-0.802798\pi\)
−0.0957826 0.995402i \(-0.530535\pi\)
\(110\) 4.50000 7.79423i 0.429058 0.743151i
\(111\) 0 0
\(112\) 12.5000 + 4.33013i 1.18114 + 0.409159i
\(113\) 1.73205i 0.162938i 0.996676 + 0.0814688i \(0.0259611\pi\)
−0.996676 + 0.0814688i \(0.974039\pi\)
\(114\) 0 0
\(115\) 13.5000 7.79423i 1.25888 0.726816i
\(116\) −4.50000 + 2.59808i −0.417815 + 0.241225i
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 + 5.19615i −0.550019 + 0.476331i
\(120\) 0 0
\(121\) −4.00000 + 6.92820i −0.363636 + 0.629837i
\(122\) −12.0000 20.7846i −1.08643 1.88175i
\(123\) 0 0
\(124\) 3.00000 + 1.73205i 0.269408 + 0.155543i
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) −10.5000 6.06218i −0.928078 0.535826i
\(129\) 0 0
\(130\) −4.50000 7.79423i −0.394676 0.683599i
\(131\) 4.50000 7.79423i 0.393167 0.680985i −0.599699 0.800226i \(-0.704713\pi\)
0.992865 + 0.119241i \(0.0380462\pi\)
\(132\) 0 0
\(133\) 4.50000 12.9904i 0.390199 1.12641i
\(134\) 6.92820i 0.598506i
\(135\) 0 0
\(136\) 4.50000 2.59808i 0.385872 0.222783i
\(137\) −10.5000 + 6.06218i −0.897076 + 0.517927i −0.876250 0.481856i \(-0.839963\pi\)
−0.0208253 + 0.999783i \(0.506629\pi\)
\(138\) 0 0
\(139\) 8.66025i 0.734553i −0.930112 0.367277i \(-0.880290\pi\)
0.930112 0.367277i \(-0.119710\pi\)
\(140\) 1.50000 + 7.79423i 0.126773 + 0.658733i
\(141\) 0 0
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) −1.50000 2.59808i −0.125436 0.217262i
\(144\) 0 0
\(145\) 13.5000 + 7.79423i 1.12111 + 0.647275i
\(146\) −9.00000 −0.744845
\(147\) 0 0
\(148\) −7.00000 −0.575396
\(149\) 1.50000 + 0.866025i 0.122885 + 0.0709476i 0.560182 0.828369i \(-0.310731\pi\)
−0.437298 + 0.899317i \(0.644064\pi\)
\(150\) 0 0
\(151\) 8.50000 + 14.7224i 0.691720 + 1.19809i 0.971274 + 0.237964i \(0.0764802\pi\)
−0.279554 + 0.960130i \(0.590186\pi\)
\(152\) −4.50000 + 7.79423i −0.364998 + 0.632195i
\(153\) 0 0
\(154\) 1.50000 + 7.79423i 0.120873 + 0.628077i
\(155\) 10.3923i 0.834730i
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) −12.0000 + 6.92820i −0.954669 + 0.551178i
\(159\) 0 0
\(160\) 15.5885i 1.23238i
\(161\) −4.50000 + 12.9904i −0.354650 + 1.02379i
\(162\) 0 0
\(163\) −5.50000 + 9.52628i −0.430793 + 0.746156i −0.996942 0.0781474i \(-0.975100\pi\)
0.566149 + 0.824303i \(0.308433\pi\)
\(164\) −1.50000 2.59808i −0.117130 0.202876i
\(165\) 0 0
\(166\) 22.5000 + 12.9904i 1.74634 + 1.00825i
\(167\) 9.00000 0.696441 0.348220 0.937413i \(-0.386786\pi\)
0.348220 + 0.937413i \(0.386786\pi\)
\(168\) 0 0
\(169\) 10.0000 0.769231
\(170\) 13.5000 + 7.79423i 1.03540 + 0.597790i
\(171\) 0 0
\(172\) 0.500000 + 0.866025i 0.0381246 + 0.0660338i
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) 8.00000 6.92820i 0.604743 0.523723i
\(176\) 8.66025i 0.652791i
\(177\) 0 0
\(178\) 4.50000 2.59808i 0.337289 0.194734i
\(179\) 13.5000 7.79423i 1.00904 0.582568i 0.0981277 0.995174i \(-0.468715\pi\)
0.910910 + 0.412606i \(0.135381\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 7.50000 + 2.59808i 0.555937 + 0.192582i
\(183\) 0 0
\(184\) 4.50000 7.79423i 0.331744 0.574598i
\(185\) 10.5000 + 18.1865i 0.771975 + 1.33710i
\(186\) 0 0
\(187\) 4.50000 + 2.59808i 0.329073 + 0.189990i
\(188\) 0 0
\(189\) 0 0
\(190\) −27.0000 −1.95879
\(191\) 15.0000 + 8.66025i 1.08536 + 0.626634i 0.932338 0.361588i \(-0.117765\pi\)
0.153024 + 0.988222i \(0.451099\pi\)
\(192\) 0 0
\(193\) 1.00000 + 1.73205i 0.0719816 + 0.124676i 0.899770 0.436365i \(-0.143734\pi\)
−0.827788 + 0.561041i \(0.810401\pi\)
\(194\) −1.50000 + 2.59808i −0.107694 + 0.186531i
\(195\) 0 0
\(196\) −5.50000 4.33013i −0.392857 0.309295i
\(197\) 13.8564i 0.987228i −0.869681 0.493614i \(-0.835676\pi\)
0.869681 0.493614i \(-0.164324\pi\)
\(198\) 0 0
\(199\) −7.50000 + 4.33013i −0.531661 + 0.306955i −0.741693 0.670740i \(-0.765977\pi\)
0.210032 + 0.977695i \(0.432643\pi\)
\(200\) −6.00000 + 3.46410i −0.424264 + 0.244949i
\(201\) 0 0
\(202\) 5.19615i 0.365600i
\(203\) −13.5000 + 2.59808i −0.947514 + 0.182349i
\(204\) 0 0
\(205\) −4.50000 + 7.79423i −0.314294 + 0.544373i
\(206\) −10.5000 18.1865i −0.731570 1.26712i
\(207\) 0 0
\(208\) −7.50000 4.33013i −0.520031 0.300240i
\(209\) −9.00000 −0.622543
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) −7.50000 4.33013i −0.515102 0.297394i
\(213\) 0 0
\(214\) −7.50000 12.9904i −0.512689 0.888004i
\(215\) 1.50000 2.59808i 0.102299 0.177187i
\(216\) 0 0
\(217\) 6.00000 + 6.92820i 0.407307 + 0.470317i
\(218\) 32.9090i 2.22888i
\(219\) 0 0
\(220\) 4.50000 2.59808i 0.303390 0.175162i
\(221\) 4.50000 2.59808i 0.302703 0.174766i
\(222\) 0 0
\(223\) 5.19615i 0.347960i 0.984749 + 0.173980i \(0.0556628\pi\)
−0.984749 + 0.173980i \(0.944337\pi\)
\(224\) 9.00000 + 10.3923i 0.601338 + 0.694365i
\(225\) 0 0
\(226\) −1.50000 + 2.59808i −0.0997785 + 0.172821i
\(227\) −10.5000 18.1865i −0.696909 1.20708i −0.969533 0.244962i \(-0.921225\pi\)
0.272623 0.962121i \(-0.412109\pi\)
\(228\) 0 0
\(229\) −7.50000 4.33013i −0.495614 0.286143i 0.231287 0.972886i \(-0.425707\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 27.0000 1.78033
\(231\) 0 0
\(232\) 9.00000 0.590879
\(233\) 4.50000 + 2.59808i 0.294805 + 0.170206i 0.640107 0.768286i \(-0.278890\pi\)
−0.345302 + 0.938492i \(0.612223\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) −13.5000 + 2.59808i −0.875075 + 0.168408i
\(239\) 1.73205i 0.112037i 0.998430 + 0.0560185i \(0.0178406\pi\)
−0.998430 + 0.0560185i \(0.982159\pi\)
\(240\) 0 0
\(241\) −19.5000 + 11.2583i −1.25611 + 0.725213i −0.972315 0.233674i \(-0.924925\pi\)
−0.283790 + 0.958886i \(0.591592\pi\)
\(242\) −12.0000 + 6.92820i −0.771389 + 0.445362i
\(243\) 0 0
\(244\) 13.8564i 0.887066i
\(245\) −3.00000 + 20.7846i −0.191663 + 1.32788i
\(246\) 0 0
\(247\) −4.50000 + 7.79423i −0.286328 + 0.495935i
\(248\) −3.00000 5.19615i −0.190500 0.329956i
\(249\) 0 0
\(250\) 4.50000 + 2.59808i 0.284605 + 0.164317i
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 9.00000 0.565825
\(254\) 30.0000 + 17.3205i 1.88237 + 1.08679i
\(255\) 0 0
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) 1.50000 2.59808i 0.0935674 0.162064i −0.815442 0.578838i \(-0.803506\pi\)
0.909010 + 0.416775i \(0.136840\pi\)
\(258\) 0 0
\(259\) −17.5000 6.06218i −1.08740 0.376685i
\(260\) 5.19615i 0.322252i
\(261\) 0 0
\(262\) 13.5000 7.79423i 0.834033 0.481529i
\(263\) 19.5000 11.2583i 1.20242 0.694218i 0.241329 0.970443i \(-0.422417\pi\)
0.961093 + 0.276225i \(0.0890835\pi\)
\(264\) 0 0
\(265\) 25.9808i 1.59599i
\(266\) 18.0000 15.5885i 1.10365 0.955790i
\(267\) 0 0
\(268\) −2.00000 + 3.46410i −0.122169 + 0.211604i
\(269\) 7.50000 + 12.9904i 0.457283 + 0.792038i 0.998816 0.0486418i \(-0.0154893\pi\)
−0.541533 + 0.840679i \(0.682156\pi\)
\(270\) 0 0
\(271\) −10.5000 6.06218i −0.637830 0.368251i 0.145948 0.989292i \(-0.453377\pi\)
−0.783778 + 0.621041i \(0.786710\pi\)
\(272\) 15.0000 0.909509
\(273\) 0 0
\(274\) −21.0000 −1.26866
\(275\) −6.00000 3.46410i −0.361814 0.208893i
\(276\) 0 0
\(277\) 0.500000 + 0.866025i 0.0300421 + 0.0520344i 0.880656 0.473757i \(-0.157103\pi\)
−0.850613 + 0.525792i \(0.823769\pi\)
\(278\) 7.50000 12.9904i 0.449820 0.779111i
\(279\) 0 0
\(280\) 4.50000 12.9904i 0.268926 0.776324i
\(281\) 19.0526i 1.13658i 0.822828 + 0.568290i \(0.192395\pi\)
−0.822828 + 0.568290i \(0.807605\pi\)
\(282\) 0 0
\(283\) −3.00000 + 1.73205i −0.178331 + 0.102960i −0.586509 0.809943i \(-0.699498\pi\)
0.408177 + 0.912903i \(0.366165\pi\)
\(284\) −3.00000 + 1.73205i −0.178017 + 0.102778i
\(285\) 0 0
\(286\) 5.19615i 0.307255i
\(287\) −1.50000 7.79423i −0.0885422 0.460079i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 13.5000 + 23.3827i 0.792747 + 1.37308i
\(291\) 0 0
\(292\) −4.50000 2.59808i −0.263343 0.152041i
\(293\) 9.00000 0.525786 0.262893 0.964825i \(-0.415323\pi\)
0.262893 + 0.964825i \(0.415323\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 10.5000 + 6.06218i 0.610300 + 0.352357i
\(297\) 0 0
\(298\) 1.50000 + 2.59808i 0.0868927 + 0.150503i
\(299\) 4.50000 7.79423i 0.260242 0.450752i
\(300\) 0 0
\(301\) 0.500000 + 2.59808i 0.0288195 + 0.149751i
\(302\) 29.4449i 1.69436i
\(303\) 0 0
\(304\) −22.5000 + 12.9904i −1.29046 + 0.745049i
\(305\) −36.0000 + 20.7846i −2.06135 + 1.19012i
\(306\) 0 0
\(307\) 24.2487i 1.38395i 0.721923 + 0.691974i \(0.243259\pi\)
−0.721923 + 0.691974i \(0.756741\pi\)
\(308\) −1.50000 + 4.33013i −0.0854704 + 0.246732i
\(309\) 0 0
\(310\) 9.00000 15.5885i 0.511166 0.885365i
\(311\) −12.0000 20.7846i −0.680458 1.17859i −0.974841 0.222900i \(-0.928448\pi\)
0.294384 0.955687i \(-0.404886\pi\)
\(312\) 0 0
\(313\) 18.0000 + 10.3923i 1.01742 + 0.587408i 0.913356 0.407163i \(-0.133482\pi\)
0.104065 + 0.994571i \(0.466815\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 4.50000 + 7.79423i 0.251952 + 0.436393i
\(320\) −1.50000 + 2.59808i −0.0838525 + 0.145237i
\(321\) 0 0
\(322\) −18.0000 + 15.5885i −1.00310 + 0.868711i
\(323\) 15.5885i 0.867365i
\(324\) 0 0
\(325\) −6.00000 + 3.46410i −0.332820 + 0.192154i
\(326\) −16.5000 + 9.52628i −0.913850 + 0.527612i
\(327\) 0 0
\(328\) 5.19615i 0.286910i
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000 6.92820i 0.219860 0.380808i −0.734905 0.678170i \(-0.762773\pi\)
0.954765 + 0.297361i \(0.0961066\pi\)
\(332\) 7.50000 + 12.9904i 0.411616 + 0.712940i
\(333\) 0 0
\(334\) 13.5000 + 7.79423i 0.738687 + 0.426481i
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) 19.0000 1.03500 0.517498 0.855684i \(-0.326864\pi\)
0.517498 + 0.855684i \(0.326864\pi\)
\(338\) 15.0000 + 8.66025i 0.815892 + 0.471056i
\(339\) 0 0
\(340\) 4.50000 + 7.79423i 0.244047 + 0.422701i
\(341\) 3.00000 5.19615i 0.162459 0.281387i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 1.73205i 0.0933859i
\(345\) 0 0
\(346\) −9.00000 + 5.19615i −0.483843 + 0.279347i
\(347\) 3.00000 1.73205i 0.161048 0.0929814i −0.417310 0.908764i \(-0.637027\pi\)
0.578358 + 0.815783i \(0.303694\pi\)
\(348\) 0 0
\(349\) 12.1244i 0.649002i −0.945885 0.324501i \(-0.894804\pi\)
0.945885 0.324501i \(-0.105196\pi\)
\(350\) 18.0000 3.46410i 0.962140 0.185164i
\(351\) 0 0
\(352\) 4.50000 7.79423i 0.239851 0.415434i
\(353\) −10.5000 18.1865i −0.558859 0.967972i −0.997592 0.0693543i \(-0.977906\pi\)
0.438733 0.898617i \(-0.355427\pi\)
\(354\) 0 0
\(355\) 9.00000 + 5.19615i 0.477670 + 0.275783i
\(356\) 3.00000 0.159000
\(357\) 0 0
\(358\) 27.0000 1.42699
\(359\) −19.5000 11.2583i −1.02917 0.594192i −0.112424 0.993660i \(-0.535861\pi\)
−0.916747 + 0.399468i \(0.869195\pi\)
\(360\) 0 0
\(361\) 4.00000 + 6.92820i 0.210526 + 0.364642i
\(362\) 0 0
\(363\) 0 0
\(364\) 3.00000 + 3.46410i 0.157243 + 0.181568i
\(365\) 15.5885i 0.815937i
\(366\) 0 0
\(367\) 4.50000 2.59808i 0.234898 0.135618i −0.377932 0.925834i \(-0.623365\pi\)
0.612830 + 0.790215i \(0.290031\pi\)
\(368\) 22.5000 12.9904i 1.17289 0.677170i
\(369\) 0 0
\(370\) 36.3731i 1.89095i
\(371\) −15.0000 17.3205i −0.778761 0.899236i
\(372\) 0 0
\(373\) 18.5000 32.0429i 0.957894 1.65912i 0.230291 0.973122i \(-0.426032\pi\)
0.727603 0.685999i \(-0.240634\pi\)
\(374\) 4.50000 + 7.79423i 0.232689 + 0.403030i
\(375\) 0 0
\(376\) 0 0
\(377\) 9.00000 0.463524
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) −13.5000 7.79423i −0.692535 0.399835i
\(381\) 0 0
\(382\) 15.0000 + 25.9808i 0.767467 + 1.32929i
\(383\) 4.50000 7.79423i 0.229939 0.398266i −0.727851 0.685736i \(-0.759481\pi\)
0.957790 + 0.287469i \(0.0928139\pi\)
\(384\) 0 0
\(385\) 13.5000 2.59808i 0.688024 0.132410i
\(386\) 3.46410i 0.176318i
\(387\) 0 0
\(388\) −1.50000 + 0.866025i −0.0761510 + 0.0439658i
\(389\) 31.5000 18.1865i 1.59711 0.922094i 0.605074 0.796170i \(-0.293144\pi\)
0.992040 0.125924i \(-0.0401896\pi\)
\(390\) 0 0
\(391\) 15.5885i 0.788342i
\(392\) 4.50000 + 11.2583i 0.227284 + 0.568632i
\(393\) 0 0
\(394\) 12.0000 20.7846i 0.604551 1.04711i
\(395\) 12.0000 + 20.7846i 0.603786 + 1.04579i
\(396\) 0 0
\(397\) 7.50000 + 4.33013i 0.376414 + 0.217323i 0.676257 0.736666i \(-0.263601\pi\)
−0.299843 + 0.953989i \(0.596934\pi\)
\(398\) −15.0000 −0.751882
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) −28.5000 16.4545i −1.42322 0.821698i −0.426649 0.904417i \(-0.640306\pi\)
−0.996573 + 0.0827195i \(0.973639\pi\)
\(402\) 0 0
\(403\) −3.00000 5.19615i −0.149441 0.258839i
\(404\) −1.50000 + 2.59808i −0.0746278 + 0.129259i
\(405\) 0 0
\(406\) −22.5000 7.79423i −1.11666 0.386821i
\(407\) 12.1244i 0.600982i
\(408\) 0 0
\(409\) 6.00000 3.46410i 0.296681 0.171289i −0.344270 0.938871i \(-0.611874\pi\)
0.640951 + 0.767582i \(0.278540\pi\)
\(410\) −13.5000 + 7.79423i −0.666717 + 0.384930i
\(411\) 0 0
\(412\) 12.1244i 0.597324i
\(413\) 0 0
\(414\) 0 0
\(415\) 22.5000 38.9711i 1.10448 1.91302i
\(416\) −4.50000 7.79423i −0.220631 0.382143i
\(417\) 0 0
\(418\) −13.5000 7.79423i −0.660307 0.381228i
\(419\) 33.0000 1.61216 0.806078 0.591810i \(-0.201586\pi\)
0.806078 + 0.591810i \(0.201586\pi\)
\(420\) 0 0
\(421\) 11.0000 0.536107 0.268054 0.963404i \(-0.413620\pi\)
0.268054 + 0.963404i \(0.413620\pi\)
\(422\) −7.50000 4.33013i −0.365094 0.210787i
\(423\) 0 0
\(424\) 7.50000 + 12.9904i 0.364232 + 0.630869i
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 0 0
\(427\) 12.0000 34.6410i 0.580721 1.67640i
\(428\) 8.66025i 0.418609i
\(429\) 0 0
\(430\) 4.50000 2.59808i 0.217009 0.125290i
\(431\) 13.5000 7.79423i 0.650272 0.375435i −0.138288 0.990392i \(-0.544160\pi\)
0.788560 + 0.614957i \(0.210827\pi\)
\(432\) 0 0
\(433\) 13.8564i 0.665896i −0.942945 0.332948i \(-0.891957\pi\)
0.942945 0.332948i \(-0.108043\pi\)
\(434\) 3.00000 + 15.5885i 0.144005 + 0.748270i
\(435\) 0 0
\(436\) 9.50000 16.4545i 0.454967 0.788027i
\(437\) −13.5000 23.3827i −0.645793 1.11855i
\(438\) 0 0
\(439\) −27.0000 15.5885i −1.28864 0.743996i −0.310228 0.950662i \(-0.600405\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) −9.00000 −0.429058
\(441\) 0 0
\(442\) 9.00000 0.428086
\(443\) −27.0000 15.5885i −1.28281 0.740630i −0.305448 0.952209i \(-0.598806\pi\)
−0.977361 + 0.211579i \(0.932139\pi\)
\(444\) 0 0
\(445\) −4.50000 7.79423i −0.213320 0.369482i
\(446\) −4.50000 + 7.79423i −0.213081 + 0.369067i
\(447\) 0 0
\(448\) −0.500000 2.59808i −0.0236228 0.122748i
\(449\) 34.6410i 1.63481i 0.576063 + 0.817405i \(0.304588\pi\)
−0.576063 + 0.817405i \(0.695412\pi\)
\(450\) 0 0
\(451\) −4.50000 + 2.59808i −0.211897 + 0.122339i
\(452\) −1.50000 + 0.866025i −0.0705541 + 0.0407344i
\(453\) 0 0
\(454\) 36.3731i 1.70707i
\(455\) 4.50000 12.9904i 0.210963 0.608998i
\(456\) 0 0
\(457\) 13.0000 22.5167i 0.608114 1.05328i −0.383437 0.923567i \(-0.625260\pi\)
0.991551 0.129718i \(-0.0414071\pi\)
\(458\) −7.50000 12.9904i −0.350452 0.607001i
\(459\) 0 0
\(460\) 13.5000 + 7.79423i 0.629441 + 0.363408i
\(461\) −15.0000 −0.698620 −0.349310 0.937007i \(-0.613584\pi\)
−0.349310 + 0.937007i \(0.613584\pi\)
\(462\) 0 0
\(463\) −1.00000 −0.0464739 −0.0232370 0.999730i \(-0.507397\pi\)
−0.0232370 + 0.999730i \(0.507397\pi\)
\(464\) 22.5000 + 12.9904i 1.04454 + 0.603063i
\(465\) 0 0
\(466\) 4.50000 + 7.79423i 0.208458 + 0.361061i
\(467\) 1.50000 2.59808i 0.0694117 0.120225i −0.829231 0.558906i \(-0.811221\pi\)
0.898642 + 0.438682i \(0.144554\pi\)
\(468\) 0 0
\(469\) −8.00000 + 6.92820i −0.369406 + 0.319915i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.50000 0.866025i 0.0689701 0.0398199i
\(474\) 0 0
\(475\) 20.7846i 0.953663i
\(476\) −7.50000 2.59808i −0.343762 0.119083i
\(477\) 0 0
\(478\) −1.50000 + 2.59808i −0.0686084 + 0.118833i
\(479\) 13.5000 + 23.3827i 0.616831 + 1.06838i 0.990060 + 0.140643i \(0.0449170\pi\)
−0.373230 + 0.927739i \(0.621750\pi\)
\(480\) 0 0
\(481\) 10.5000 + 6.06218i 0.478759 + 0.276412i
\(482\) −39.0000 −1.77640
\(483\) 0 0
\(484\) −8.00000 −0.363636
\(485\) 4.50000 + 2.59808i 0.204334 + 0.117973i
\(486\) 0 0
\(487\) 11.5000 + 19.9186i 0.521115 + 0.902597i 0.999698 + 0.0245553i \(0.00781698\pi\)
−0.478584 + 0.878042i \(0.658850\pi\)
\(488\) −12.0000 + 20.7846i −0.543214 + 0.940875i
\(489\) 0 0
\(490\) −22.5000 + 28.5788i −1.01645 + 1.29106i
\(491\) 25.9808i 1.17250i −0.810132 0.586248i \(-0.800605\pi\)
0.810132 0.586248i \(-0.199395\pi\)
\(492\) 0 0
\(493\) −13.5000 + 7.79423i −0.608009 + 0.351034i
\(494\) −13.5000 + 7.79423i −0.607394 + 0.350679i
\(495\) 0 0
\(496\) 17.3205i 0.777714i
\(497\) −9.00000 + 1.73205i −0.403705 + 0.0776931i
\(498\) 0 0
\(499\) −12.5000 + 21.6506i −0.559577 + 0.969216i 0.437955 + 0.898997i \(0.355703\pi\)
−0.997532 + 0.0702185i \(0.977630\pi\)
\(500\) 1.50000 + 2.59808i 0.0670820 + 0.116190i
\(501\) 0 0
\(502\) 18.0000 + 10.3923i 0.803379 + 0.463831i
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) 13.5000 + 7.79423i 0.600148 + 0.346496i
\(507\) 0 0
\(508\) 10.0000 + 17.3205i 0.443678 + 0.768473i
\(509\) −16.5000 + 28.5788i −0.731350 + 1.26673i 0.224957 + 0.974369i \(0.427776\pi\)
−0.956306 + 0.292366i \(0.905557\pi\)
\(510\) 0 0
\(511\) −9.00000 10.3923i −0.398137 0.459728i
\(512\) 8.66025i 0.382733i
\(513\) 0 0
\(514\) 4.50000 2.59808i 0.198486 0.114596i
\(515\) −31.5000 + 18.1865i −1.38806 + 0.801394i
\(516\) 0 0
\(517\) 0 0
\(518\) −21.0000 24.2487i −0.922687 1.06543i
\(519\) 0 0
\(520\) −4.50000 + 7.79423i −0.197338 + 0.341800i
\(521\) −22.5000 38.9711i −0.985743 1.70736i −0.638588 0.769549i \(-0.720481\pi\)
−0.347155 0.937808i \(-0.612852\pi\)
\(522\) 0 0
\(523\) −16.5000 9.52628i −0.721495 0.416555i 0.0938079 0.995590i \(-0.470096\pi\)
−0.815303 + 0.579035i \(0.803429\pi\)
\(524\) 9.00000 0.393167
\(525\) 0 0
\(526\) 39.0000 1.70048
\(527\) 9.00000 + 5.19615i 0.392046 + 0.226348i
\(528\) 0 0
\(529\) 2.00000 + 3.46410i 0.0869565 + 0.150613i
\(530\) −22.5000 + 38.9711i −0.977338 + 1.69280i
\(531\) 0 0
\(532\) 13.5000 2.59808i 0.585299 0.112641i
\(533\) 5.19615i 0.225070i
\(534\) 0 0
\(535\) −22.5000 + 12.9904i −0.972760 + 0.561623i
\(536\) 6.00000 3.46410i 0.259161 0.149626i
\(537\) 0 0
\(538\) 25.9808i 1.12011i
\(539\) −7.50000 + 9.52628i −0.323048 + 0.410326i
\(540\) 0 0
\(541\) 6.50000 11.2583i 0.279457 0.484033i −0.691793 0.722096i \(-0.743179\pi\)
0.971250 + 0.238062i \(0.0765123\pi\)
\(542\) −10.5000 18.1865i −0.451014 0.781179i
\(543\) 0 0
\(544\) 13.5000 + 7.79423i 0.578808 + 0.334175i
\(545\) −57.0000 −2.44161
\(546\) 0 0
\(547\) −19.0000 −0.812381 −0.406191 0.913788i \(-0.633143\pi\)
−0.406191 + 0.913788i \(0.633143\pi\)
\(548\) −10.5000 6.06218i −0.448538 0.258963i
\(549\) 0 0
\(550\) −6.00000 10.3923i −0.255841 0.443129i
\(551\) 13.5000 23.3827i 0.575119 0.996136i
\(552\) 0 0
\(553\) −20.0000 6.92820i −0.850487 0.294617i
\(554\) 1.73205i 0.0735878i
\(555\) 0 0
\(556\) 7.50000 4.33013i 0.318071 0.183638i
\(557\) 10.5000 6.06218i 0.444899 0.256863i −0.260774 0.965400i \(-0.583978\pi\)
0.705674 + 0.708537i \(0.250645\pi\)
\(558\) 0 0
\(559\) 1.73205i 0.0732579i
\(560\) 30.0000 25.9808i 1.26773 1.09789i
\(561\) 0 0
\(562\) −16.5000 + 28.5788i −0.696010 + 1.20553i
\(563\) 18.0000 + 31.1769i 0.758610 + 1.31395i 0.943560 + 0.331202i \(0.107454\pi\)
−0.184950 + 0.982748i \(0.559212\pi\)
\(564\) 0 0
\(565\) 4.50000 + 2.59808i 0.189316 + 0.109302i
\(566\) −6.00000 −0.252199
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −6.00000 3.46410i −0.251533 0.145223i 0.368933 0.929456i \(-0.379723\pi\)
−0.620466 + 0.784233i \(0.713057\pi\)
\(570\) 0 0
\(571\) −16.0000 27.7128i −0.669579 1.15975i −0.978022 0.208502i \(-0.933141\pi\)
0.308443 0.951243i \(-0.400192\pi\)
\(572\) 1.50000 2.59808i 0.0627182 0.108631i
\(573\) 0 0
\(574\) 4.50000 12.9904i 0.187826 0.542208i
\(575\) 20.7846i 0.866778i
\(576\) 0 0
\(577\) −34.5000 + 19.9186i −1.43625 + 0.829222i −0.997587 0.0694283i \(-0.977883\pi\)
−0.438667 + 0.898650i \(0.644549\pi\)
\(578\) 12.0000 6.92820i 0.499134 0.288175i
\(579\) 0 0
\(580\) 15.5885i 0.647275i
\(581\) 7.50000 + 38.9711i 0.311152 + 1.61680i
\(582\) 0 0
\(583\) −7.50000 + 12.9904i −0.310618 + 0.538007i
\(584\) 4.50000 + 7.79423i 0.186211 + 0.322527i
\(585\) 0 0
\(586\) 13.5000 + 7.79423i 0.557680 + 0.321977i
\(587\) −21.0000 −0.866763 −0.433381 0.901211i \(-0.642680\pi\)
−0.433381 + 0.901211i \(0.642680\pi\)
\(588\) 0 0
\(589\) −18.0000 −0.741677
\(590\) 0 0
\(591\) 0 0
\(592\) 17.5000 + 30.3109i 0.719246 + 1.24577i
\(593\) 19.5000 33.7750i 0.800769 1.38697i −0.118342 0.992973i \(-0.537758\pi\)
0.919111 0.394000i \(-0.128909\pi\)
\(594\) 0 0
\(595\) 4.50000 + 23.3827i 0.184482 + 0.958597i
\(596\) 1.73205i 0.0709476i
\(597\) 0 0
\(598\) 13.5000 7.79423i 0.552056 0.318730i
\(599\) 21.0000 12.1244i 0.858037 0.495388i −0.00531761 0.999986i \(-0.501693\pi\)
0.863354 + 0.504598i \(0.168359\pi\)
\(600\) 0 0
\(601\) 29.4449i 1.20108i 0.799594 + 0.600541i \(0.205048\pi\)
−0.799594 + 0.600541i \(0.794952\pi\)
\(602\) −1.50000 + 4.33013i −0.0611354 + 0.176483i
\(603\) 0 0
\(604\) −8.50000 + 14.7224i −0.345860 + 0.599047i
\(605\) 12.0000 + 20.7846i 0.487869 + 0.845015i
\(606\) 0 0
\(607\) 13.5000 + 7.79423i 0.547948 + 0.316358i 0.748294 0.663367i \(-0.230873\pi\)
−0.200346 + 0.979725i \(0.564207\pi\)
\(608\) −27.0000 −1.09499
\(609\) 0 0
\(610\) −72.0000 −2.91519
\(611\) 0 0
\(612\) 0 0
\(613\) −23.5000 40.7032i −0.949156 1.64399i −0.747208 0.664590i \(-0.768606\pi\)
−0.201948 0.979396i \(-0.564727\pi\)
\(614\) −21.0000 + 36.3731i −0.847491 + 1.46790i
\(615\) 0 0
\(616\) 6.00000 5.19615i 0.241747 0.209359i
\(617\) 5.19615i 0.209189i −0.994515 0.104595i \(-0.966645\pi\)
0.994515 0.104595i \(-0.0333545\pi\)
\(618\) 0 0
\(619\) 16.5000 9.52628i 0.663191 0.382893i −0.130301 0.991475i \(-0.541594\pi\)
0.793492 + 0.608581i \(0.208261\pi\)
\(620\) 9.00000 5.19615i 0.361449 0.208683i
\(621\) 0 0
\(622\) 41.5692i 1.66677i
\(623\) 7.50000 + 2.59808i 0.300481 + 0.104090i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 18.0000 + 31.1769i 0.719425 + 1.24608i
\(627\) 0 0
\(628\) 0 0
\(629\) −21.0000 −0.837325
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 12.0000 + 6.92820i 0.477334 + 0.275589i
\(633\) 0 0
\(634\) 0 0
\(635\) 30.0000 51.9615i 1.19051 2.06203i
\(636\) 0 0
\(637\) 4.50000 + 11.2583i 0.178296 + 0.446071i
\(638\) 15.5885i 0.617153i
\(639\) 0 0
\(640\) −31.5000 + 18.1865i −1.24515 + 0.718886i
\(641\) −10.5000 + 6.06218i −0.414725 + 0.239442i −0.692818 0.721113i \(-0.743631\pi\)
0.278093 + 0.960554i \(0.410298\pi\)
\(642\) 0 0
\(643\) 12.1244i 0.478138i 0.971003 + 0.239069i \(0.0768422\pi\)
−0.971003 + 0.239069i \(0.923158\pi\)
\(644\) −13.5000 + 2.59808i −0.531975 + 0.102379i
\(645\) 0 0
\(646\) 13.5000 23.3827i 0.531150 0.919979i
\(647\) −1.50000 2.59808i −0.0589711 0.102141i 0.835033 0.550200i \(-0.185449\pi\)
−0.894004 + 0.448059i \(0.852115\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −12.0000 −0.470679
\(651\) 0 0
\(652\) −11.0000 −0.430793
\(653\) −34.5000 19.9186i −1.35009 0.779474i −0.361828 0.932245i \(-0.617847\pi\)
−0.988262 + 0.152771i \(0.951180\pi\)
\(654\) 0 0
\(655\) −13.5000 23.3827i −0.527489 0.913637i
\(656\) −7.50000 + 12.9904i −0.292826 + 0.507189i
\(657\) 0 0
\(658\) 0 0
\(659\) 12.1244i 0.472298i −0.971717 0.236149i \(-0.924115\pi\)
0.971717 0.236149i \(-0.0758853\pi\)
\(660\) 0 0
\(661\) −36.0000 + 20.7846i −1.40024 + 0.808428i −0.994417 0.105525i \(-0.966348\pi\)
−0.405821 + 0.913953i \(0.633014\pi\)
\(662\) 12.0000 6.92820i 0.466393 0.269272i
\(663\) 0 0
\(664\) 25.9808i 1.00825i
\(665\) −27.0000 31.1769i −1.04702 1.20899i
\(666\) 0 0
\(667\) −13.5000 + 23.3827i −0.522722 + 0.905381i
\(668\) 4.50000 + 7.79423i 0.174110 + 0.301568i
\(669\) 0 0
\(670\) 18.0000 + 10.3923i 0.695401 + 0.401490i
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) −29.0000 −1.11787 −0.558934 0.829212i \(-0.688789\pi\)
−0.558934 + 0.829212i \(0.688789\pi\)
\(674\) 28.5000 + 16.4545i 1.09778 + 0.633803i
\(675\) 0 0
\(676\) 5.00000 + 8.66025i 0.192308 + 0.333087i
\(677\) 9.00000 15.5885i 0.345898 0.599113i −0.639618 0.768693i \(-0.720908\pi\)
0.985517 + 0.169580i \(0.0542410\pi\)
\(678\) 0 0
\(679\) −4.50000 + 0.866025i −0.172694 + 0.0332350i
\(680\) 15.5885i 0.597790i
\(681\) 0 0
\(682\) 9.00000 5.19615i 0.344628 0.198971i
\(683\) 7.50000 4.33013i 0.286980 0.165688i −0.349599 0.936899i \(-0.613682\pi\)
0.636579 + 0.771212i \(0.280349\pi\)
\(684\) 0 0
\(685\) 36.3731i 1.38974i
\(686\) −1.50000 32.0429i −0.0572703 1.22341i
\(687\) 0 0
\(688\) 2.50000 4.33013i 0.0953116 0.165085i
\(689\) 7.50000 + 12.9904i 0.285727 + 0.494894i
\(690\) 0 0
\(691\) 3.00000 + 1.73205i 0.114125 + 0.0658903i 0.555976 0.831198i \(-0.312345\pi\)
−0.441851 + 0.897089i \(0.645678\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 6.00000 0.227757
\(695\) −22.5000 12.9904i −0.853474 0.492753i
\(696\) 0 0
\(697\) −4.50000 7.79423i −0.170450 0.295227i
\(698\) 10.5000 18.1865i 0.397431 0.688370i
\(699\) 0 0
\(700\) 10.0000 + 3.46410i 0.377964 + 0.130931i
\(701\) 34.6410i 1.30837i 0.756333 + 0.654187i \(0.226989\pi\)
−0.756333 + 0.654187i \(0.773011\pi\)
\(702\) 0 0
\(703\) 31.5000 18.1865i 1.18805 0.685918i
\(704\) −1.50000 + 0.866025i −0.0565334 + 0.0326396i
\(705\) 0 0
\(706\) 36.3731i 1.36892i
\(707\) −6.00000 + 5.19615i −0.225653 + 0.195421i
\(708\) 0 0
\(709\) −5.00000 + 8.66025i −0.187779 + 0.325243i −0.944509 0.328484i \(-0.893462\pi\)
0.756730 + 0.653727i \(0.226796\pi\)
\(710\) 9.00000 + 15.5885i 0.337764 + 0.585024i
\(711\) 0 0
\(712\) −4.50000 2.59808i −0.168645 0.0973670i
\(713\) 18.0000 0.674105
\(714\) 0 0
\(715\) −9.00000 −0.336581
\(716\) 13.5000 + 7.79423i 0.504519 + 0.291284i
\(717\) 0 0
\(718\) −19.5000 33.7750i −0.727734 1.26047i
\(719\) −4.50000 + 7.79423i −0.167822 + 0.290676i −0.937654 0.347571i \(-0.887007\pi\)
0.769832 + 0.638247i \(0.220340\pi\)
\(720\) 0 0
\(721\) 10.5000 30.3109i 0.391040 1.12884i
\(722\) 13.8564i 0.515682i
\(723\) 0 0
\(724\) 0 0
\(725\) 18.0000 10.3923i 0.668503 0.385961i
\(726\) 0 0
\(727\) 12.1244i 0.449667i 0.974397 + 0.224834i \(0.0721839\pi\)
−0.974397 + 0.224834i \(0.927816\pi\)
\(728\) −1.50000 7.79423i −0.0555937 0.288873i
\(729\) 0 0
\(730\) −13.5000 + 23.3827i −0.499657 + 0.865432i
\(731\) 1.50000 + 2.59808i 0.0554795 + 0.0960933i
\(732\) 0 0
\(733\) −37.5000 21.6506i −1.38509 0.799684i −0.392337 0.919822i \(-0.628333\pi\)
−0.992757 + 0.120137i \(0.961667\pi\)
\(734\) 9.00000 0.332196
\(735\) 0 0
\(736\) 27.0000 0.995233
\(737\) 6.00000 + 3.46410i 0.221013 + 0.127602i
\(738\) 0 0
\(739\) 3.50000 + 6.06218i 0.128750 + 0.223001i 0.923192 0.384338i \(-0.125570\pi\)
−0.794443 + 0.607339i \(0.792237\pi\)
\(740\) −10.5000 + 18.1865i −0.385988 + 0.668550i
\(741\) 0 0
\(742\) −7.50000 38.9711i −0.275334 1.43068i
\(743\) 12.1244i 0.444799i −0.974956 0.222400i \(-0.928611\pi\)
0.974956 0.222400i \(-0.0713890\pi\)
\(744\) 0 0
\(745\) 4.50000 2.59808i 0.164867 0.0951861i
\(746\) 55.5000 32.0429i 2.03200 1.17318i
\(747\) 0 0
\(748\) 5.19615i 0.189990i
\(749\) 7.50000 21.6506i 0.274044 0.791097i
\(750\) 0 0
\(751\) −18.5000 + 32.0429i −0.675075 + 1.16926i 0.301373 + 0.953506i \(0.402555\pi\)
−0.976447 + 0.215757i \(0.930778\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 13.5000 + 7.79423i 0.491641 + 0.283849i
\(755\) 51.0000 1.85608
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) −30.0000 17.3205i −1.08965 0.629109i
\(759\) 0 0
\(760\) 13.5000 + 23.3827i 0.489696 + 0.848179i
\(761\) −22.5000 + 38.9711i −0.815624 + 1.41270i 0.0932544 + 0.995642i \(0.470273\pi\)
−0.908879 + 0.417061i \(0.863060\pi\)
\(762\) 0 0
\(763\) 38.0000 32.9090i 1.37569 1.19138i
\(764\) 17.3205i 0.626634i
\(765\) 0 0
\(766\) 13.5000 7.79423i 0.487775 0.281617i
\(767\) 0 0
\(768\) 0 0
\(769\) 15.5885i 0.562134i −0.959688 0.281067i \(-0.909312\pi\)
0.959688 0.281067i \(-0.0906883\pi\)
\(770\) 22.5000 + 7.79423i 0.810844 + 0.280885i
\(771\) 0 0
\(772\) −1.00000 + 1.73205i −0.0359908 + 0.0623379i
\(773\) 25.5000 + 44.1673i 0.917171 + 1.58859i 0.803691 + 0.595047i \(0.202867\pi\)
0.113480 + 0.993540i \(0.463800\pi\)
\(774\) 0 0
\(775\) −12.0000 6.92820i −0.431053 0.248868i
\(776\) 3.00000 0.107694
\(777\) 0 0
\(778\) 63.0000 2.25866
\(779\) 13.5000 + 7.79423i 0.483688 + 0.279257i
\(780\) 0 0
\(781\) 3.00000 + 5.19615i 0.107348 + 0.185933i
\(782\) −13.5000 + 23.3827i −0.482759 + 0.836163i
\(783\) 0 0
\(784\) −5.00000 + 34.6410i −0.178571 + 1.23718i
\(785\) 0 0
\(786\) 0 0
\(787\) 33.0000 19.0526i 1.17632 0.679150i 0.221162 0.975237i \(-0.429015\pi\)
0.955161 + 0.296087i \(0.0956817\pi\)
\(788\) 12.0000 6.92820i 0.427482 0.246807i
\(789\) 0 0
\(790\) 41.5692i 1.47897i
\(791\) −4.50000 + 0.866025i −0.160002 + 0.0307923i
\(792\) 0 0
\(793\) −12.0000 + 20.7846i −0.426132 + 0.738083i
\(794\) 7.50000 + 12.9904i 0.266165 + 0.461011i
\(795\) 0 0
\(796\) −7.50000 4.33013i −0.265830 0.153477i
\(797\) 45.0000 1.59398 0.796991 0.603991i \(-0.206424\pi\)
0.796991 + 0.603991i \(0.206424\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −18.0000 10.3923i −0.636396 0.367423i
\(801\) 0 0
\(802\) −28.5000 49.3634i −1.00637 1.74308i
\(803\) −4.50000 + 7.79423i −0.158802 + 0.275052i
\(804\) 0 0
\(805\) 27.0000 + 31.1769i 0.951625 + 1.09884i
\(806\) 10.3923i 0.366053i
\(807\) 0 0
\(808\) 4.50000 2.59808i 0.158309 0.0914000i
\(809\) −1.50000 + 0.866025i −0.0527372 + 0.0304478i −0.526137 0.850400i \(-0.676360\pi\)
0.473400 + 0.880848i \(0.343027\pi\)
\(810\) 0 0
\(811\) 10.3923i 0.364923i 0.983213 + 0.182462i \(0.0584065\pi\)
−0.983213 + 0.182462i \(0.941593\pi\)
\(812\) −9.00000 10.3923i −0.315838 0.364698i
\(813\) 0 0
\(814\) −10.5000 + 18.1865i −0.368025 + 0.637438i
\(815\) 16.5000 + 28.5788i 0.577970 + 1.00107i
\(816\) 0 0
\(817\) −4.50000 2.59808i −0.157435 0.0908952i
\(818\) 12.0000 0.419570
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) −6.00000 3.46410i −0.209401 0.120898i 0.391632 0.920122i \(-0.371911\pi\)
−0.601033 + 0.799224i \(0.705244\pi\)
\(822\) 0 0
\(823\) 8.00000 + 13.8564i 0.278862 + 0.483004i 0.971102 0.238664i \(-0.0767093\pi\)
−0.692240 + 0.721668i \(0.743376\pi\)
\(824\) −10.5000 + 18.1865i −0.365785 + 0.633558i
\(825\) 0 0
\(826\) 0 0
\(827\) 24.2487i 0.843210i −0.906780 0.421605i \(-0.861467\pi\)
0.906780 0.421605i \(-0.138533\pi\)
\(828\) 0 0
\(829\) 31.5000 18.1865i 1.09404 0.631644i 0.159391 0.987216i \(-0.449047\pi\)
0.934649 + 0.355571i \(0.115714\pi\)
\(830\) 67.5000 38.9711i 2.34296 1.35271i
\(831\) 0 0
\(832\) 1.73205i 0.0600481i
\(833\) −16.5000 12.9904i −0.571691 0.450090i
\(834\) 0 0
\(835\) 13.5000 23.3827i 0.467187 0.809191i
\(836\) −4.50000 7.79423i −0.155636 0.269569i
\(837\) 0 0
\(838\) 49.5000 + 28.5788i 1.70995 + 0.987240i
\(839\) 39.0000 1.34643 0.673215 0.739447i \(-0.264913\pi\)
0.673215 + 0.739447i \(0.264913\pi\)
\(840\) 0 0
\(841\) 2.00000 0.0689655
\(842\) 16.5000 + 9.52628i 0.568628 + 0.328297i
\(843\) 0 0
\(844\) −2.50000 4.33013i −0.0860535 0.149049i
\(845\) 15.0000 25.9808i 0.516016 0.893765i
\(846\) 0 0
\(847\) −20.0000 6.92820i −0.687208 0.238056i
\(848\) 43.3013i 1.48697i
\(849\) 0 0
\(850\) 18.0000 10.3923i 0.617395 0.356453i
\(851\) −31.5000 + 18.1865i −1.07981 + 0.623426i
\(852\) 0 0
\(853\) 25.9808i 0.889564i −0.895639 0.444782i \(-0.853281\pi\)
0.895639 0.444782i \(-0.146719\pi\)
\(854\) 48.0000 41.5692i 1.64253 1.42247i
\(855\) 0 0
\(856\) −7.50000 + 12.9904i −0.256345 + 0.444002i
\(857\) 13.5000 + 23.3827i 0.461151 + 0.798737i 0.999019 0.0442921i \(-0.0141032\pi\)
−0.537867 + 0.843029i \(0.680770\pi\)
\(858\) 0 0
\(859\) 43.5000 + 25.1147i 1.48420 + 0.856904i 0.999839 0.0179638i \(-0.00571836\pi\)
0.484362 + 0.874868i \(0.339052\pi\)
\(860\) 3.00000 0.102299
\(861\) 0 0
\(862\) 27.0000 0.919624
\(863\) −37.5000 21.6506i −1.27651 0.736996i −0.300309 0.953842i \(-0.597090\pi\)
−0.976206 + 0.216846i \(0.930423\pi\)
\(864\) 0 0
\(865\) 9.00000 + 15.5885i 0.306009 + 0.530023i
\(866\) 12.0000 20.7846i 0.407777 0.706290i
\(867\) 0 0
\(868\) −3.00000 + 8.66025i −0.101827 + 0.293948i
\(869\) 13.8564i 0.470046i
\(870\) 0 0
\(871\) 6.00000 3.46410i 0.203302 0.117377i
\(872\) −28.5000 + 16.4545i −0.965132 + 0.557219i
\(873\) 0 0
\(874\) 46.7654i 1.58186i
\(875\) 1.50000 + 7.79423i 0.0507093 + 0.263493i
\(876\) 0 0
\(877\) −11.5000 + 19.9186i −0.388327 + 0.672603i −0.992225 0.124459i \(-0.960280\pi\)
0.603897 + 0.797062i \(0.293614\pi\)
\(878\) −27.0000 46.7654i −0.911206 1.57825i
\(879\) 0 0
\(880\) −22.5000 12.9904i −0.758475 0.437906i
\(881\) −54.0000 −1.81931 −0.909653 0.415369i \(-0.863653\pi\)
−0.909653 + 0.415369i \(0.863653\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 4.50000 + 2.59808i 0.151351 + 0.0873828i
\(885\) 0 0
\(886\) −27.0000 46.7654i −0.907083 1.57111i
\(887\) −7.50000 + 12.9904i −0.251825 + 0.436174i −0.964028 0.265799i \(-0.914364\pi\)
0.712203 + 0.701974i \(0.247698\pi\)
\(888\) 0 0
\(889\) 10.0000 + 51.9615i 0.335389 + 1.74273i
\(890\) 15.5885i 0.522526i
\(891\) 0 0
\(892\) −4.50000 + 2.59808i −0.150671 + 0.0869900i
\(893\) 0 0
\(894\) 0 0
\(895\) 46.7654i 1.56319i
\(896\) 10.5000 30.3109i 0.350780 1.01262i
\(897\) 0 0
\(898\) −30.0000 + 51.9615i −1.00111 + 1.73398i
\(899\) 9.00000 + 15.5885i 0.300167 + 0.519904i
\(900\) 0 0
\(901\) −22.5000 12.9904i −0.749584 0.432772i
\(902\) −9.00000 −0.299667
\(903\) 0 0
\(904\) 3.00000 0.0997785
\(905\) 0 0
\(906\) 0 0
\(907\) −9.50000 16.4545i −0.315442 0.546362i 0.664089 0.747653i \(-0.268820\pi\)
−0.979531 + 0.201291i \(0.935486\pi\)
\(908\) 10.5000 18.1865i 0.348455 0.603541i
\(909\) 0 0
\(910\) 18.0000 15.5885i 0.596694 0.516752i
\(911\) 5.19615i 0.172156i −0.996288 0.0860781i \(-0.972567\pi\)
0.996288 0.0860781i \(-0.0274335\pi\)
\(912\) 0 0
\(913\) 22.5000 12.9904i 0.744641 0.429919i
\(914\) 39.0000 22.5167i 1.29001 0.744785i
\(915\) 0 0
\(916\) 8.66025i 0.286143i
\(917\) 22.5000 + 7.79423i 0.743015 + 0.257388i
\(918\) 0 0
\(919\) 14.5000 25.1147i 0.478311 0.828459i −0.521380 0.853325i \(-0.674583\pi\)
0.999691 + 0.0248659i \(0.00791589\pi\)
\(920\) −13.5000 23.3827i −0.445082 0.770904i
\(921\) 0 0
\(922\) −22.5000 12.9904i −0.740998 0.427815i
\(923\) 6.00000 0.197492
\(924\) 0 0
\(925\) 28.0000 0.920634
\(926\) −1.50000 0.866025i −0.0492931 0.0284594i
\(927\) 0 0
\(928\) 13.5000 + 23.3827i 0.443159 + 0.767574i
\(929\) −15.0000 + 25.9808i −0.492134 + 0.852401i −0.999959 0.00905914i \(-0.997116\pi\)
0.507825 + 0.861460i \(0.330450\pi\)
\(930\) 0 0
\(931\) 36.0000 + 5.19615i 1.17985 + 0.170297i
\(932\) 5.19615i 0.170206i
\(933\) 0 0
\(934\) 4.50000 2.59808i 0.147244 0.0850117i
\(935\) 13.5000 7.79423i 0.441497 0.254899i
\(936\) 0 0
\(937\) 13.8564i 0.452669i −0.974050 0.226335i \(-0.927326\pi\)
0.974050 0.226335i \(-0.0726743\pi\)
\(938\) −18.0000 + 3.46410i −0.587721 + 0.113107i
\(939\) 0 0
\(940\) 0 0
\(941\) 9.00000 + 15.5885i 0.293392 + 0.508169i 0.974609 0.223912i \(-0.0718827\pi\)
−0.681218 + 0.732081i \(0.738549\pi\)
\(942\) 0 0
\(943\) −13.5000 7.79423i −0.439620 0.253815i
\(944\) 0 0
\(945\) 0 0
\(946\) 3.00000 0.0975384
\(947\) 45.0000 + 25.9808i 1.46230 + 0.844261i 0.999118 0.0419998i \(-0.0133729\pi\)
0.463186 + 0.886261i \(0.346706\pi\)
\(948\) 0 0
\(949\) 4.50000 + 7.79423i 0.146076 + 0.253011i
\(950\) −18.0000 + 31.1769i −0.583997 + 1.01151i
\(951\) 0 0
\(952\) 9.00000 + 10.3923i 0.291692 + 0.336817i
\(953\) 20.7846i 0.673280i 0.941634 + 0.336640i \(0.109290\pi\)
−0.941634 + 0.336640i \(0.890710\pi\)
\(954\) 0 0
\(955\) 45.0000 25.9808i 1.45617 0.840718i
\(956\) −1.50000 + 0.866025i −0.0485135 + 0.0280093i
\(957\) 0 0
\(958\) 46.7654i 1.51092i
\(959\) −21.0000 24.2487i −0.678125 0.783032i
\(960\) 0 0
\(961\) −9.50000 + 16.4545i −0.306452 + 0.530790i
\(962\) 10.5000 + 18.1865i 0.338534 + 0.586357i
\(963\) 0 0
\(964\) −19.5000 11.2583i −0.628053 0.362606i
\(965\) 6.00000 0.193147
\(966\) 0 0
\(967\) −25.0000 −0.803946 −0.401973 0.915652i \(-0.631675\pi\)
−0.401973 + 0.915652i \(0.631675\pi\)
\(968\) 12.0000 + 6.92820i 0.385695 + 0.222681i
\(969\) 0 0
\(970\) 4.50000 + 7.79423i 0.144486 + 0.250258i
\(971\) −28.5000 + 49.3634i −0.914609 + 1.58415i −0.107135 + 0.994244i \(0.534168\pi\)
−0.807473 + 0.589904i \(0.799166\pi\)
\(972\) 0 0
\(973\) 22.5000 4.33013i 0.721317 0.138817i
\(974\) 39.8372i 1.27647i
\(975\) 0 0
\(976\) −60.0000 + 34.6410i −1.92055 + 1.10883i
\(977\) 36.0000 20.7846i 1.15174 0.664959i 0.202431 0.979297i \(-0.435116\pi\)
0.949311 + 0.314338i \(0.101783\pi\)
\(978\) 0 0
\(979\) 5.19615i 0.166070i
\(980\) −19.5000 + 7.79423i −0.622905 + 0.248978i
\(981\) 0 0
\(982\) 22.5000 38.9711i 0.718004 1.24362i
\(983\) 19.5000 + 33.7750i 0.621953 + 1.07725i 0.989122 + 0.147100i \(0.0469940\pi\)
−0.367168 + 0.930155i \(0.619673\pi\)
\(984\) 0 0
\(985\) −36.0000 20.7846i −1.14706 0.662253i
\(986\) −27.0000 −0.859855
\(987\) 0 0
\(988\) −9.00000 −0.286328
\(989\) 4.50000 + 2.59808i 0.143092 + 0.0826140i
\(990\) 0 0
\(991\) 23.5000 + 40.7032i 0.746502 + 1.29298i 0.949490 + 0.313798i \(0.101602\pi\)
−0.202988 + 0.979181i \(0.565065\pi\)
\(992\) 9.00000 15.5885i 0.285750 0.494934i
\(993\) 0 0
\(994\) −15.0000 5.19615i −0.475771 0.164812i
\(995\) 25.9808i 0.823646i
\(996\) 0 0
\(997\) −7.50000 + 4.33013i −0.237527 + 0.137136i −0.614040 0.789275i \(-0.710457\pi\)
0.376512 + 0.926412i \(0.377123\pi\)
\(998\) −37.5000 + 21.6506i −1.18704 + 0.685339i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.p.b.404.1 2
3.2 odd 2 567.2.p.a.404.1 2
7.3 odd 6 567.2.p.a.80.1 2
9.2 odd 6 63.2.i.a.5.1 2
9.4 even 3 63.2.s.a.47.1 yes 2
9.5 odd 6 189.2.s.a.89.1 2
9.7 even 3 189.2.i.a.152.1 2
21.17 even 6 inner 567.2.p.b.80.1 2
36.7 odd 6 3024.2.ca.a.2609.1 2
36.11 even 6 1008.2.ca.a.257.1 2
36.23 even 6 3024.2.df.a.1601.1 2
36.31 odd 6 1008.2.df.a.929.1 2
63.2 odd 6 441.2.o.a.293.1 2
63.4 even 3 441.2.i.a.227.1 2
63.5 even 6 1323.2.o.b.440.1 2
63.11 odd 6 441.2.s.a.374.1 2
63.13 odd 6 441.2.s.a.362.1 2
63.16 even 3 1323.2.o.b.881.1 2
63.20 even 6 441.2.i.a.68.1 2
63.23 odd 6 1323.2.o.a.440.1 2
63.25 even 3 1323.2.s.a.962.1 2
63.31 odd 6 63.2.i.a.38.1 yes 2
63.32 odd 6 1323.2.i.a.521.1 2
63.34 odd 6 1323.2.i.a.1097.1 2
63.38 even 6 63.2.s.a.59.1 yes 2
63.40 odd 6 441.2.o.a.146.1 2
63.41 even 6 1323.2.s.a.656.1 2
63.47 even 6 441.2.o.b.293.1 2
63.52 odd 6 189.2.s.a.17.1 2
63.58 even 3 441.2.o.b.146.1 2
63.59 even 6 189.2.i.a.143.1 2
63.61 odd 6 1323.2.o.a.881.1 2
252.31 even 6 1008.2.ca.a.353.1 2
252.59 odd 6 3024.2.ca.a.2033.1 2
252.115 even 6 3024.2.df.a.17.1 2
252.227 odd 6 1008.2.df.a.689.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.i.a.5.1 2 9.2 odd 6
63.2.i.a.38.1 yes 2 63.31 odd 6
63.2.s.a.47.1 yes 2 9.4 even 3
63.2.s.a.59.1 yes 2 63.38 even 6
189.2.i.a.143.1 2 63.59 even 6
189.2.i.a.152.1 2 9.7 even 3
189.2.s.a.17.1 2 63.52 odd 6
189.2.s.a.89.1 2 9.5 odd 6
441.2.i.a.68.1 2 63.20 even 6
441.2.i.a.227.1 2 63.4 even 3
441.2.o.a.146.1 2 63.40 odd 6
441.2.o.a.293.1 2 63.2 odd 6
441.2.o.b.146.1 2 63.58 even 3
441.2.o.b.293.1 2 63.47 even 6
441.2.s.a.362.1 2 63.13 odd 6
441.2.s.a.374.1 2 63.11 odd 6
567.2.p.a.80.1 2 7.3 odd 6
567.2.p.a.404.1 2 3.2 odd 2
567.2.p.b.80.1 2 21.17 even 6 inner
567.2.p.b.404.1 2 1.1 even 1 trivial
1008.2.ca.a.257.1 2 36.11 even 6
1008.2.ca.a.353.1 2 252.31 even 6
1008.2.df.a.689.1 2 252.227 odd 6
1008.2.df.a.929.1 2 36.31 odd 6
1323.2.i.a.521.1 2 63.32 odd 6
1323.2.i.a.1097.1 2 63.34 odd 6
1323.2.o.a.440.1 2 63.23 odd 6
1323.2.o.a.881.1 2 63.61 odd 6
1323.2.o.b.440.1 2 63.5 even 6
1323.2.o.b.881.1 2 63.16 even 3
1323.2.s.a.656.1 2 63.41 even 6
1323.2.s.a.962.1 2 63.25 even 3
3024.2.ca.a.2033.1 2 252.59 odd 6
3024.2.ca.a.2609.1 2 36.7 odd 6
3024.2.df.a.17.1 2 252.115 even 6
3024.2.df.a.1601.1 2 36.23 even 6