Defining parameters
Level: | \( N \) | = | \( 567 = 3^{4} \cdot 7 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 22 \) | ||
Newform subspaces: | \( 98 \) | ||
Sturm bound: | \(46656\) | ||
Trace bound: | \(21\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(567))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12312 | 9112 | 3200 |
Cusp forms | 11017 | 8552 | 2465 |
Eisenstein series | 1295 | 560 | 735 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(567))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(567))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(567)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 2}\)