L(s) = 1 | + (1.5 + 0.866i)2-s + (0.5 + 0.866i)4-s + (1.5 − 2.59i)5-s + (0.5 + 2.59i)7-s − 1.73i·8-s + (4.5 − 2.59i)10-s + (1.5 − 0.866i)11-s − 1.73i·13-s + (−1.5 + 4.33i)14-s + (2.49 − 4.33i)16-s + (1.5 + 2.59i)17-s + (−4.5 − 2.59i)19-s + 3.00·20-s + 3·22-s + (4.5 + 2.59i)23-s + ⋯ |
L(s) = 1 | + (1.06 + 0.612i)2-s + (0.250 + 0.433i)4-s + (0.670 − 1.16i)5-s + (0.188 + 0.981i)7-s − 0.612i·8-s + (1.42 − 0.821i)10-s + (0.452 − 0.261i)11-s − 0.480i·13-s + (−0.400 + 1.15i)14-s + (0.624 − 1.08i)16-s + (0.363 + 0.630i)17-s + (−1.03 − 0.596i)19-s + 0.670·20-s + 0.639·22-s + (0.938 + 0.541i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.78153 + 0.0881697i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.78153 + 0.0881697i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 2.59i)T \) |
good | 2 | \( 1 + (-1.5 - 0.866i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.5 + 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 0.866i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.73iT - 13T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.5 + 2.59i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.5 - 2.59i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 5.19iT - 29T^{2} \) |
| 31 | \( 1 + (-3 + 1.73i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.5 - 6.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 - T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (7.5 - 4.33i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (12 + 6.92i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 3.46iT - 71T^{2} \) |
| 73 | \( 1 + (4.5 - 2.59i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 15T + 83T^{2} \) |
| 89 | \( 1 + (-1.5 + 2.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 1.73iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83612539544925063462619053251, −9.641543751662888161345136036094, −8.950563405968829149034967475248, −8.177470631215673143637332892235, −6.73591855180941546792822897588, −5.90683315443345150031852315037, −5.22630748811403514302725045696, −4.54559088279150914636302971862, −3.14008897957664352112289749253, −1.42296098956808189743847050329,
1.88282122431754066292592030799, 2.98111872008725473374828761447, 3.98099744189407645154422530661, 4.85339783024823087286445123010, 6.15738775980917794869699719771, 6.85760792396199183012022457743, 7.904104209556466368867919522013, 9.203138542373742024064459302700, 10.34941416175605210783341552978, 10.73735800302809156860829307937