Properties

Label 5625.2.a.s.1.5
Level $5625$
Weight $2$
Character 5625.1
Self dual yes
Analytic conductor $44.916$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5625,2,Mod(1,5625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5625, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5625.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5625 = 3^{2} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5625.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-5,0,11,0,0,10,-15,0,0,-1,0,10,8,0,13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.9158511370\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.6152203125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 8x^{6} + 20x^{5} + 26x^{4} - 35x^{3} - 27x^{2} + 16x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 625)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.499011\) of defining polynomial
Character \(\chi\) \(=\) 5625.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.500989 q^{2} -1.74901 q^{4} +0.0237879 q^{7} +1.87821 q^{8} -3.58329 q^{11} +3.77587 q^{13} -0.0119175 q^{14} +2.55705 q^{16} +3.62303 q^{17} -2.43084 q^{19} +1.79519 q^{22} -1.71538 q^{23} -1.89167 q^{26} -0.0416052 q^{28} -3.85734 q^{29} -6.00979 q^{31} -5.03748 q^{32} -1.81510 q^{34} -0.369309 q^{37} +1.21782 q^{38} +7.80900 q^{41} +0.174574 q^{43} +6.26720 q^{44} +0.859388 q^{46} -7.81082 q^{47} -6.99943 q^{49} -6.60403 q^{52} +8.97184 q^{53} +0.0446787 q^{56} +1.93249 q^{58} +4.45536 q^{59} +9.21403 q^{61} +3.01084 q^{62} -2.59038 q^{64} -4.47385 q^{67} -6.33671 q^{68} +9.69458 q^{71} -3.95387 q^{73} +0.185020 q^{74} +4.25156 q^{76} -0.0852388 q^{77} -9.68349 q^{79} -3.91223 q^{82} +8.95717 q^{83} -0.0874600 q^{86} -6.73018 q^{88} +17.0151 q^{89} +0.0898200 q^{91} +3.00022 q^{92} +3.91314 q^{94} +2.76438 q^{97} +3.50664 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{2} + 11 q^{4} + 10 q^{7} - 15 q^{8} - q^{11} + 10 q^{13} + 8 q^{14} + 13 q^{16} - 15 q^{17} - 10 q^{19} - 5 q^{22} - 30 q^{23} - 11 q^{26} - 5 q^{28} - 10 q^{29} - 9 q^{31} - 30 q^{32} + 7 q^{34}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500989 −0.354253 −0.177126 0.984188i \(-0.556680\pi\)
−0.177126 + 0.984188i \(0.556680\pi\)
\(3\) 0 0
\(4\) −1.74901 −0.874505
\(5\) 0 0
\(6\) 0 0
\(7\) 0.0237879 0.00899097 0.00449549 0.999990i \(-0.498569\pi\)
0.00449549 + 0.999990i \(0.498569\pi\)
\(8\) 1.87821 0.664049
\(9\) 0 0
\(10\) 0 0
\(11\) −3.58329 −1.08040 −0.540201 0.841536i \(-0.681652\pi\)
−0.540201 + 0.841536i \(0.681652\pi\)
\(12\) 0 0
\(13\) 3.77587 1.04724 0.523619 0.851952i \(-0.324582\pi\)
0.523619 + 0.851952i \(0.324582\pi\)
\(14\) −0.0119175 −0.00318508
\(15\) 0 0
\(16\) 2.55705 0.639264
\(17\) 3.62303 0.878713 0.439357 0.898313i \(-0.355206\pi\)
0.439357 + 0.898313i \(0.355206\pi\)
\(18\) 0 0
\(19\) −2.43084 −0.557672 −0.278836 0.960339i \(-0.589949\pi\)
−0.278836 + 0.960339i \(0.589949\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.79519 0.382736
\(23\) −1.71538 −0.357682 −0.178841 0.983878i \(-0.557235\pi\)
−0.178841 + 0.983878i \(0.557235\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.89167 −0.370987
\(27\) 0 0
\(28\) −0.0416052 −0.00786265
\(29\) −3.85734 −0.716290 −0.358145 0.933666i \(-0.616591\pi\)
−0.358145 + 0.933666i \(0.616591\pi\)
\(30\) 0 0
\(31\) −6.00979 −1.07939 −0.539695 0.841861i \(-0.681460\pi\)
−0.539695 + 0.841861i \(0.681460\pi\)
\(32\) −5.03748 −0.890510
\(33\) 0 0
\(34\) −1.81510 −0.311287
\(35\) 0 0
\(36\) 0 0
\(37\) −0.369309 −0.0607139 −0.0303570 0.999539i \(-0.509664\pi\)
−0.0303570 + 0.999539i \(0.509664\pi\)
\(38\) 1.21782 0.197557
\(39\) 0 0
\(40\) 0 0
\(41\) 7.80900 1.21956 0.609780 0.792570i \(-0.291258\pi\)
0.609780 + 0.792570i \(0.291258\pi\)
\(42\) 0 0
\(43\) 0.174574 0.0266224 0.0133112 0.999911i \(-0.495763\pi\)
0.0133112 + 0.999911i \(0.495763\pi\)
\(44\) 6.26720 0.944817
\(45\) 0 0
\(46\) 0.859388 0.126710
\(47\) −7.81082 −1.13932 −0.569662 0.821879i \(-0.692926\pi\)
−0.569662 + 0.821879i \(0.692926\pi\)
\(48\) 0 0
\(49\) −6.99943 −0.999919
\(50\) 0 0
\(51\) 0 0
\(52\) −6.60403 −0.915815
\(53\) 8.97184 1.23238 0.616189 0.787599i \(-0.288676\pi\)
0.616189 + 0.787599i \(0.288676\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.0446787 0.00597045
\(57\) 0 0
\(58\) 1.93249 0.253748
\(59\) 4.45536 0.580038 0.290019 0.957021i \(-0.406338\pi\)
0.290019 + 0.957021i \(0.406338\pi\)
\(60\) 0 0
\(61\) 9.21403 1.17974 0.589868 0.807500i \(-0.299180\pi\)
0.589868 + 0.807500i \(0.299180\pi\)
\(62\) 3.01084 0.382377
\(63\) 0 0
\(64\) −2.59038 −0.323798
\(65\) 0 0
\(66\) 0 0
\(67\) −4.47385 −0.546568 −0.273284 0.961933i \(-0.588110\pi\)
−0.273284 + 0.961933i \(0.588110\pi\)
\(68\) −6.33671 −0.768439
\(69\) 0 0
\(70\) 0 0
\(71\) 9.69458 1.15054 0.575268 0.817965i \(-0.304898\pi\)
0.575268 + 0.817965i \(0.304898\pi\)
\(72\) 0 0
\(73\) −3.95387 −0.462765 −0.231383 0.972863i \(-0.574325\pi\)
−0.231383 + 0.972863i \(0.574325\pi\)
\(74\) 0.185020 0.0215081
\(75\) 0 0
\(76\) 4.25156 0.487687
\(77\) −0.0852388 −0.00971386
\(78\) 0 0
\(79\) −9.68349 −1.08948 −0.544739 0.838606i \(-0.683371\pi\)
−0.544739 + 0.838606i \(0.683371\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −3.91223 −0.432033
\(83\) 8.95717 0.983177 0.491589 0.870828i \(-0.336416\pi\)
0.491589 + 0.870828i \(0.336416\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.0874600 −0.00943105
\(87\) 0 0
\(88\) −6.73018 −0.717440
\(89\) 17.0151 1.80359 0.901797 0.432161i \(-0.142249\pi\)
0.901797 + 0.432161i \(0.142249\pi\)
\(90\) 0 0
\(91\) 0.0898200 0.00941569
\(92\) 3.00022 0.312795
\(93\) 0 0
\(94\) 3.91314 0.403609
\(95\) 0 0
\(96\) 0 0
\(97\) 2.76438 0.280680 0.140340 0.990103i \(-0.455180\pi\)
0.140340 + 0.990103i \(0.455180\pi\)
\(98\) 3.50664 0.354224
\(99\) 0 0
\(100\) 0 0
\(101\) −10.3526 −1.03012 −0.515062 0.857153i \(-0.672231\pi\)
−0.515062 + 0.857153i \(0.672231\pi\)
\(102\) 0 0
\(103\) 18.2913 1.80230 0.901150 0.433508i \(-0.142724\pi\)
0.901150 + 0.433508i \(0.142724\pi\)
\(104\) 7.09189 0.695417
\(105\) 0 0
\(106\) −4.49480 −0.436573
\(107\) −15.8786 −1.53504 −0.767522 0.641023i \(-0.778510\pi\)
−0.767522 + 0.641023i \(0.778510\pi\)
\(108\) 0 0
\(109\) 5.96109 0.570969 0.285484 0.958383i \(-0.407845\pi\)
0.285484 + 0.958383i \(0.407845\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.0608269 0.00574760
\(113\) −2.42830 −0.228435 −0.114218 0.993456i \(-0.536436\pi\)
−0.114218 + 0.993456i \(0.536436\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.74652 0.626399
\(117\) 0 0
\(118\) −2.23209 −0.205480
\(119\) 0.0861842 0.00790049
\(120\) 0 0
\(121\) 1.83995 0.167268
\(122\) −4.61613 −0.417925
\(123\) 0 0
\(124\) 10.5112 0.943932
\(125\) 0 0
\(126\) 0 0
\(127\) −17.1073 −1.51803 −0.759013 0.651075i \(-0.774318\pi\)
−0.759013 + 0.651075i \(0.774318\pi\)
\(128\) 11.3727 1.00522
\(129\) 0 0
\(130\) 0 0
\(131\) −4.78955 −0.418464 −0.209232 0.977866i \(-0.567096\pi\)
−0.209232 + 0.977866i \(0.567096\pi\)
\(132\) 0 0
\(133\) −0.0578245 −0.00501402
\(134\) 2.24135 0.193623
\(135\) 0 0
\(136\) 6.80482 0.583509
\(137\) −12.8104 −1.09446 −0.547231 0.836982i \(-0.684318\pi\)
−0.547231 + 0.836982i \(0.684318\pi\)
\(138\) 0 0
\(139\) −7.94020 −0.673479 −0.336739 0.941598i \(-0.609324\pi\)
−0.336739 + 0.941598i \(0.609324\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.85688 −0.407581
\(143\) −13.5300 −1.13144
\(144\) 0 0
\(145\) 0 0
\(146\) 1.98085 0.163936
\(147\) 0 0
\(148\) 0.645924 0.0530946
\(149\) 5.62724 0.461002 0.230501 0.973072i \(-0.425964\pi\)
0.230501 + 0.973072i \(0.425964\pi\)
\(150\) 0 0
\(151\) −7.36960 −0.599730 −0.299865 0.953982i \(-0.596942\pi\)
−0.299865 + 0.953982i \(0.596942\pi\)
\(152\) −4.56563 −0.370322
\(153\) 0 0
\(154\) 0.0427037 0.00344116
\(155\) 0 0
\(156\) 0 0
\(157\) 8.63091 0.688822 0.344411 0.938819i \(-0.388079\pi\)
0.344411 + 0.938819i \(0.388079\pi\)
\(158\) 4.85133 0.385951
\(159\) 0 0
\(160\) 0 0
\(161\) −0.0408053 −0.00321591
\(162\) 0 0
\(163\) 4.74964 0.372020 0.186010 0.982548i \(-0.440444\pi\)
0.186010 + 0.982548i \(0.440444\pi\)
\(164\) −13.6580 −1.06651
\(165\) 0 0
\(166\) −4.48745 −0.348293
\(167\) −18.5967 −1.43906 −0.719528 0.694463i \(-0.755642\pi\)
−0.719528 + 0.694463i \(0.755642\pi\)
\(168\) 0 0
\(169\) 1.25720 0.0967079
\(170\) 0 0
\(171\) 0 0
\(172\) −0.305332 −0.0232814
\(173\) −15.7957 −1.20092 −0.600462 0.799653i \(-0.705017\pi\)
−0.600462 + 0.799653i \(0.705017\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −9.16266 −0.690661
\(177\) 0 0
\(178\) −8.52437 −0.638928
\(179\) −9.36946 −0.700306 −0.350153 0.936692i \(-0.613870\pi\)
−0.350153 + 0.936692i \(0.613870\pi\)
\(180\) 0 0
\(181\) −5.84630 −0.434552 −0.217276 0.976110i \(-0.569717\pi\)
−0.217276 + 0.976110i \(0.569717\pi\)
\(182\) −0.0449988 −0.00333554
\(183\) 0 0
\(184\) −3.22186 −0.237518
\(185\) 0 0
\(186\) 0 0
\(187\) −12.9824 −0.949364
\(188\) 13.6612 0.996345
\(189\) 0 0
\(190\) 0 0
\(191\) 21.8947 1.58425 0.792123 0.610362i \(-0.208976\pi\)
0.792123 + 0.610362i \(0.208976\pi\)
\(192\) 0 0
\(193\) −25.2541 −1.81783 −0.908916 0.416980i \(-0.863089\pi\)
−0.908916 + 0.416980i \(0.863089\pi\)
\(194\) −1.38492 −0.0994317
\(195\) 0 0
\(196\) 12.2421 0.874434
\(197\) −14.4538 −1.02979 −0.514897 0.857252i \(-0.672170\pi\)
−0.514897 + 0.857252i \(0.672170\pi\)
\(198\) 0 0
\(199\) −3.77734 −0.267768 −0.133884 0.990997i \(-0.542745\pi\)
−0.133884 + 0.990997i \(0.542745\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 5.18655 0.364924
\(203\) −0.0917579 −0.00644014
\(204\) 0 0
\(205\) 0 0
\(206\) −9.16377 −0.638470
\(207\) 0 0
\(208\) 9.65511 0.669461
\(209\) 8.71039 0.602510
\(210\) 0 0
\(211\) −18.9006 −1.30117 −0.650586 0.759432i \(-0.725477\pi\)
−0.650586 + 0.759432i \(0.725477\pi\)
\(212\) −15.6918 −1.07772
\(213\) 0 0
\(214\) 7.95502 0.543794
\(215\) 0 0
\(216\) 0 0
\(217\) −0.142960 −0.00970477
\(218\) −2.98644 −0.202267
\(219\) 0 0
\(220\) 0 0
\(221\) 13.6801 0.920222
\(222\) 0 0
\(223\) −11.3556 −0.760426 −0.380213 0.924899i \(-0.624149\pi\)
−0.380213 + 0.924899i \(0.624149\pi\)
\(224\) −0.119831 −0.00800655
\(225\) 0 0
\(226\) 1.21655 0.0809239
\(227\) −11.1977 −0.743216 −0.371608 0.928390i \(-0.621194\pi\)
−0.371608 + 0.928390i \(0.621194\pi\)
\(228\) 0 0
\(229\) 9.64969 0.637669 0.318835 0.947810i \(-0.396709\pi\)
0.318835 + 0.947810i \(0.396709\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −7.24491 −0.475651
\(233\) 15.5261 1.01715 0.508573 0.861019i \(-0.330173\pi\)
0.508573 + 0.861019i \(0.330173\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −7.79246 −0.507246
\(237\) 0 0
\(238\) −0.0431773 −0.00279877
\(239\) −14.3342 −0.927203 −0.463601 0.886044i \(-0.653443\pi\)
−0.463601 + 0.886044i \(0.653443\pi\)
\(240\) 0 0
\(241\) 25.3114 1.63045 0.815224 0.579145i \(-0.196614\pi\)
0.815224 + 0.579145i \(0.196614\pi\)
\(242\) −0.921794 −0.0592552
\(243\) 0 0
\(244\) −16.1154 −1.03168
\(245\) 0 0
\(246\) 0 0
\(247\) −9.17853 −0.584016
\(248\) −11.2877 −0.716768
\(249\) 0 0
\(250\) 0 0
\(251\) −4.23698 −0.267436 −0.133718 0.991019i \(-0.542692\pi\)
−0.133718 + 0.991019i \(0.542692\pi\)
\(252\) 0 0
\(253\) 6.14671 0.386440
\(254\) 8.57057 0.537766
\(255\) 0 0
\(256\) −0.516849 −0.0323031
\(257\) 20.4007 1.27256 0.636281 0.771458i \(-0.280472\pi\)
0.636281 + 0.771458i \(0.280472\pi\)
\(258\) 0 0
\(259\) −0.00878507 −0.000545877 0
\(260\) 0 0
\(261\) 0 0
\(262\) 2.39951 0.148242
\(263\) −28.6678 −1.76773 −0.883865 0.467741i \(-0.845068\pi\)
−0.883865 + 0.467741i \(0.845068\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.0289694 0.00177623
\(267\) 0 0
\(268\) 7.82481 0.477977
\(269\) −7.94652 −0.484508 −0.242254 0.970213i \(-0.577887\pi\)
−0.242254 + 0.970213i \(0.577887\pi\)
\(270\) 0 0
\(271\) 9.55487 0.580417 0.290208 0.956963i \(-0.406275\pi\)
0.290208 + 0.956963i \(0.406275\pi\)
\(272\) 9.26428 0.561729
\(273\) 0 0
\(274\) 6.41785 0.387717
\(275\) 0 0
\(276\) 0 0
\(277\) 17.1904 1.03287 0.516436 0.856326i \(-0.327258\pi\)
0.516436 + 0.856326i \(0.327258\pi\)
\(278\) 3.97795 0.238582
\(279\) 0 0
\(280\) 0 0
\(281\) −27.2182 −1.62370 −0.811851 0.583864i \(-0.801540\pi\)
−0.811851 + 0.583864i \(0.801540\pi\)
\(282\) 0 0
\(283\) −3.47901 −0.206806 −0.103403 0.994640i \(-0.532973\pi\)
−0.103403 + 0.994640i \(0.532973\pi\)
\(284\) −16.9559 −1.00615
\(285\) 0 0
\(286\) 6.77840 0.400815
\(287\) 0.185760 0.0109650
\(288\) 0 0
\(289\) −3.87366 −0.227863
\(290\) 0 0
\(291\) 0 0
\(292\) 6.91535 0.404690
\(293\) −23.4941 −1.37254 −0.686271 0.727346i \(-0.740754\pi\)
−0.686271 + 0.727346i \(0.740754\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −0.693640 −0.0403170
\(297\) 0 0
\(298\) −2.81919 −0.163311
\(299\) −6.47706 −0.374578
\(300\) 0 0
\(301\) 0.00415276 0.000239361 0
\(302\) 3.69209 0.212456
\(303\) 0 0
\(304\) −6.21578 −0.356500
\(305\) 0 0
\(306\) 0 0
\(307\) 1.11253 0.0634952 0.0317476 0.999496i \(-0.489893\pi\)
0.0317476 + 0.999496i \(0.489893\pi\)
\(308\) 0.149083 0.00849482
\(309\) 0 0
\(310\) 0 0
\(311\) 14.7529 0.836561 0.418280 0.908318i \(-0.362633\pi\)
0.418280 + 0.908318i \(0.362633\pi\)
\(312\) 0 0
\(313\) 4.94834 0.279697 0.139848 0.990173i \(-0.455339\pi\)
0.139848 + 0.990173i \(0.455339\pi\)
\(314\) −4.32400 −0.244017
\(315\) 0 0
\(316\) 16.9365 0.952754
\(317\) −22.6855 −1.27414 −0.637072 0.770804i \(-0.719855\pi\)
−0.637072 + 0.770804i \(0.719855\pi\)
\(318\) 0 0
\(319\) 13.8220 0.773881
\(320\) 0 0
\(321\) 0 0
\(322\) 0.0204430 0.00113925
\(323\) −8.80699 −0.490034
\(324\) 0 0
\(325\) 0 0
\(326\) −2.37952 −0.131789
\(327\) 0 0
\(328\) 14.6670 0.809848
\(329\) −0.185803 −0.0102436
\(330\) 0 0
\(331\) 1.73258 0.0952312 0.0476156 0.998866i \(-0.484838\pi\)
0.0476156 + 0.998866i \(0.484838\pi\)
\(332\) −15.6662 −0.859793
\(333\) 0 0
\(334\) 9.31676 0.509790
\(335\) 0 0
\(336\) 0 0
\(337\) 13.9811 0.761596 0.380798 0.924658i \(-0.375649\pi\)
0.380798 + 0.924658i \(0.375649\pi\)
\(338\) −0.629845 −0.0342590
\(339\) 0 0
\(340\) 0 0
\(341\) 21.5348 1.16617
\(342\) 0 0
\(343\) −0.333017 −0.0179812
\(344\) 0.327888 0.0176785
\(345\) 0 0
\(346\) 7.91347 0.425431
\(347\) −5.08173 −0.272802 −0.136401 0.990654i \(-0.543553\pi\)
−0.136401 + 0.990654i \(0.543553\pi\)
\(348\) 0 0
\(349\) −8.88643 −0.475680 −0.237840 0.971304i \(-0.576439\pi\)
−0.237840 + 0.971304i \(0.576439\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 18.0508 0.962108
\(353\) −9.41440 −0.501078 −0.250539 0.968107i \(-0.580608\pi\)
−0.250539 + 0.968107i \(0.580608\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −29.7595 −1.57725
\(357\) 0 0
\(358\) 4.69400 0.248086
\(359\) −9.11498 −0.481070 −0.240535 0.970640i \(-0.577323\pi\)
−0.240535 + 0.970640i \(0.577323\pi\)
\(360\) 0 0
\(361\) −13.0910 −0.689002
\(362\) 2.92893 0.153941
\(363\) 0 0
\(364\) −0.157096 −0.00823407
\(365\) 0 0
\(366\) 0 0
\(367\) −17.8784 −0.933246 −0.466623 0.884456i \(-0.654529\pi\)
−0.466623 + 0.884456i \(0.654529\pi\)
\(368\) −4.38633 −0.228653
\(369\) 0 0
\(370\) 0 0
\(371\) 0.213421 0.0110803
\(372\) 0 0
\(373\) −3.07395 −0.159163 −0.0795814 0.996828i \(-0.525358\pi\)
−0.0795814 + 0.996828i \(0.525358\pi\)
\(374\) 6.50402 0.336315
\(375\) 0 0
\(376\) −14.6704 −0.756567
\(377\) −14.5648 −0.750126
\(378\) 0 0
\(379\) 25.5866 1.31430 0.657149 0.753761i \(-0.271762\pi\)
0.657149 + 0.753761i \(0.271762\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −10.9690 −0.561224
\(383\) 2.22529 0.113707 0.0568535 0.998383i \(-0.481893\pi\)
0.0568535 + 0.998383i \(0.481893\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12.6520 0.643972
\(387\) 0 0
\(388\) −4.83492 −0.245456
\(389\) −4.64413 −0.235467 −0.117733 0.993045i \(-0.537563\pi\)
−0.117733 + 0.993045i \(0.537563\pi\)
\(390\) 0 0
\(391\) −6.21488 −0.314300
\(392\) −13.1464 −0.663995
\(393\) 0 0
\(394\) 7.24122 0.364807
\(395\) 0 0
\(396\) 0 0
\(397\) −37.9452 −1.90442 −0.952208 0.305452i \(-0.901193\pi\)
−0.952208 + 0.305452i \(0.901193\pi\)
\(398\) 1.89241 0.0948577
\(399\) 0 0
\(400\) 0 0
\(401\) 16.7187 0.834890 0.417445 0.908702i \(-0.362926\pi\)
0.417445 + 0.908702i \(0.362926\pi\)
\(402\) 0 0
\(403\) −22.6922 −1.13038
\(404\) 18.1068 0.900848
\(405\) 0 0
\(406\) 0.0459697 0.00228144
\(407\) 1.32334 0.0655955
\(408\) 0 0
\(409\) 0.473132 0.0233949 0.0116974 0.999932i \(-0.496277\pi\)
0.0116974 + 0.999932i \(0.496277\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −31.9917 −1.57612
\(413\) 0.105983 0.00521511
\(414\) 0 0
\(415\) 0 0
\(416\) −19.0209 −0.932576
\(417\) 0 0
\(418\) −4.36381 −0.213441
\(419\) −24.2348 −1.18395 −0.591975 0.805957i \(-0.701651\pi\)
−0.591975 + 0.805957i \(0.701651\pi\)
\(420\) 0 0
\(421\) −31.3482 −1.52782 −0.763908 0.645325i \(-0.776722\pi\)
−0.763908 + 0.645325i \(0.776722\pi\)
\(422\) 9.46901 0.460944
\(423\) 0 0
\(424\) 16.8510 0.818359
\(425\) 0 0
\(426\) 0 0
\(427\) 0.219182 0.0106070
\(428\) 27.7719 1.34240
\(429\) 0 0
\(430\) 0 0
\(431\) 2.00066 0.0963686 0.0481843 0.998838i \(-0.484657\pi\)
0.0481843 + 0.998838i \(0.484657\pi\)
\(432\) 0 0
\(433\) 7.07253 0.339884 0.169942 0.985454i \(-0.445642\pi\)
0.169942 + 0.985454i \(0.445642\pi\)
\(434\) 0.0716215 0.00343794
\(435\) 0 0
\(436\) −10.4260 −0.499315
\(437\) 4.16981 0.199469
\(438\) 0 0
\(439\) 12.9620 0.618644 0.309322 0.950957i \(-0.399898\pi\)
0.309322 + 0.950957i \(0.399898\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −6.85358 −0.325991
\(443\) −21.8687 −1.03901 −0.519506 0.854467i \(-0.673884\pi\)
−0.519506 + 0.854467i \(0.673884\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 5.68902 0.269383
\(447\) 0 0
\(448\) −0.0616197 −0.00291126
\(449\) −0.399626 −0.0188595 −0.00942976 0.999956i \(-0.503002\pi\)
−0.00942976 + 0.999956i \(0.503002\pi\)
\(450\) 0 0
\(451\) −27.9819 −1.31762
\(452\) 4.24712 0.199768
\(453\) 0 0
\(454\) 5.60992 0.263287
\(455\) 0 0
\(456\) 0 0
\(457\) −35.2247 −1.64774 −0.823872 0.566777i \(-0.808190\pi\)
−0.823872 + 0.566777i \(0.808190\pi\)
\(458\) −4.83439 −0.225896
\(459\) 0 0
\(460\) 0 0
\(461\) 15.9615 0.743402 0.371701 0.928353i \(-0.378775\pi\)
0.371701 + 0.928353i \(0.378775\pi\)
\(462\) 0 0
\(463\) −30.4831 −1.41667 −0.708336 0.705875i \(-0.750554\pi\)
−0.708336 + 0.705875i \(0.750554\pi\)
\(464\) −9.86342 −0.457898
\(465\) 0 0
\(466\) −7.77839 −0.360327
\(467\) −6.64657 −0.307567 −0.153783 0.988105i \(-0.549146\pi\)
−0.153783 + 0.988105i \(0.549146\pi\)
\(468\) 0 0
\(469\) −0.106424 −0.00491418
\(470\) 0 0
\(471\) 0 0
\(472\) 8.36811 0.385174
\(473\) −0.625551 −0.0287628
\(474\) 0 0
\(475\) 0 0
\(476\) −0.150737 −0.00690902
\(477\) 0 0
\(478\) 7.18129 0.328464
\(479\) −22.2408 −1.01621 −0.508104 0.861296i \(-0.669653\pi\)
−0.508104 + 0.861296i \(0.669653\pi\)
\(480\) 0 0
\(481\) −1.39446 −0.0635820
\(482\) −12.6807 −0.577591
\(483\) 0 0
\(484\) −3.21809 −0.146277
\(485\) 0 0
\(486\) 0 0
\(487\) 10.1851 0.461531 0.230765 0.973009i \(-0.425877\pi\)
0.230765 + 0.973009i \(0.425877\pi\)
\(488\) 17.3059 0.783402
\(489\) 0 0
\(490\) 0 0
\(491\) −6.64004 −0.299661 −0.149830 0.988712i \(-0.547873\pi\)
−0.149830 + 0.988712i \(0.547873\pi\)
\(492\) 0 0
\(493\) −13.9752 −0.629413
\(494\) 4.59834 0.206889
\(495\) 0 0
\(496\) −15.3674 −0.690015
\(497\) 0.230614 0.0103444
\(498\) 0 0
\(499\) 1.08397 0.0485253 0.0242626 0.999706i \(-0.492276\pi\)
0.0242626 + 0.999706i \(0.492276\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2.12268 0.0947399
\(503\) 1.98603 0.0885525 0.0442762 0.999019i \(-0.485902\pi\)
0.0442762 + 0.999019i \(0.485902\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.07944 −0.136898
\(507\) 0 0
\(508\) 29.9208 1.32752
\(509\) −2.30915 −0.102351 −0.0511757 0.998690i \(-0.516297\pi\)
−0.0511757 + 0.998690i \(0.516297\pi\)
\(510\) 0 0
\(511\) −0.0940541 −0.00416071
\(512\) −22.4865 −0.993773
\(513\) 0 0
\(514\) −10.2205 −0.450809
\(515\) 0 0
\(516\) 0 0
\(517\) 27.9884 1.23093
\(518\) 0.00440122 0.000193379 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.0447 0.483879 0.241940 0.970291i \(-0.422216\pi\)
0.241940 + 0.970291i \(0.422216\pi\)
\(522\) 0 0
\(523\) 26.0025 1.13701 0.568505 0.822680i \(-0.307522\pi\)
0.568505 + 0.822680i \(0.307522\pi\)
\(524\) 8.37696 0.365949
\(525\) 0 0
\(526\) 14.3623 0.626224
\(527\) −21.7736 −0.948475
\(528\) 0 0
\(529\) −20.0575 −0.872064
\(530\) 0 0
\(531\) 0 0
\(532\) 0.101136 0.00438478
\(533\) 29.4858 1.27717
\(534\) 0 0
\(535\) 0 0
\(536\) −8.40286 −0.362948
\(537\) 0 0
\(538\) 3.98112 0.171638
\(539\) 25.0810 1.08031
\(540\) 0 0
\(541\) −0.0182391 −0.000784162 0 −0.000392081 1.00000i \(-0.500125\pi\)
−0.000392081 1.00000i \(0.500125\pi\)
\(542\) −4.78689 −0.205614
\(543\) 0 0
\(544\) −18.2510 −0.782503
\(545\) 0 0
\(546\) 0 0
\(547\) −9.96048 −0.425879 −0.212940 0.977065i \(-0.568304\pi\)
−0.212940 + 0.977065i \(0.568304\pi\)
\(548\) 22.4054 0.957113
\(549\) 0 0
\(550\) 0 0
\(551\) 9.37656 0.399455
\(552\) 0 0
\(553\) −0.230350 −0.00979547
\(554\) −8.61222 −0.365898
\(555\) 0 0
\(556\) 13.8875 0.588960
\(557\) 34.9291 1.47999 0.739996 0.672611i \(-0.234827\pi\)
0.739996 + 0.672611i \(0.234827\pi\)
\(558\) 0 0
\(559\) 0.659171 0.0278800
\(560\) 0 0
\(561\) 0 0
\(562\) 13.6360 0.575201
\(563\) −15.7939 −0.665634 −0.332817 0.942991i \(-0.607999\pi\)
−0.332817 + 0.942991i \(0.607999\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.74295 0.0732616
\(567\) 0 0
\(568\) 18.2085 0.764012
\(569\) 14.5605 0.610408 0.305204 0.952287i \(-0.401275\pi\)
0.305204 + 0.952287i \(0.401275\pi\)
\(570\) 0 0
\(571\) 27.6138 1.15560 0.577802 0.816177i \(-0.303911\pi\)
0.577802 + 0.816177i \(0.303911\pi\)
\(572\) 23.6642 0.989448
\(573\) 0 0
\(574\) −0.0930636 −0.00388440
\(575\) 0 0
\(576\) 0 0
\(577\) −27.1520 −1.13035 −0.565176 0.824970i \(-0.691192\pi\)
−0.565176 + 0.824970i \(0.691192\pi\)
\(578\) 1.94066 0.0807210
\(579\) 0 0
\(580\) 0 0
\(581\) 0.213072 0.00883972
\(582\) 0 0
\(583\) −32.1487 −1.33146
\(584\) −7.42621 −0.307299
\(585\) 0 0
\(586\) 11.7703 0.486227
\(587\) 10.7037 0.441787 0.220894 0.975298i \(-0.429103\pi\)
0.220894 + 0.975298i \(0.429103\pi\)
\(588\) 0 0
\(589\) 14.6088 0.601946
\(590\) 0 0
\(591\) 0 0
\(592\) −0.944342 −0.0388122
\(593\) 3.84629 0.157948 0.0789740 0.996877i \(-0.474836\pi\)
0.0789740 + 0.996877i \(0.474836\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −9.84210 −0.403148
\(597\) 0 0
\(598\) 3.24494 0.132695
\(599\) −46.1423 −1.88532 −0.942662 0.333750i \(-0.891686\pi\)
−0.942662 + 0.333750i \(0.891686\pi\)
\(600\) 0 0
\(601\) −13.3119 −0.543005 −0.271503 0.962438i \(-0.587521\pi\)
−0.271503 + 0.962438i \(0.587521\pi\)
\(602\) −0.00208049 −8.47943e−5 0
\(603\) 0 0
\(604\) 12.8895 0.524466
\(605\) 0 0
\(606\) 0 0
\(607\) 34.0838 1.38342 0.691709 0.722176i \(-0.256858\pi\)
0.691709 + 0.722176i \(0.256858\pi\)
\(608\) 12.2453 0.496613
\(609\) 0 0
\(610\) 0 0
\(611\) −29.4926 −1.19314
\(612\) 0 0
\(613\) 25.4809 1.02916 0.514582 0.857441i \(-0.327947\pi\)
0.514582 + 0.857441i \(0.327947\pi\)
\(614\) −0.557363 −0.0224933
\(615\) 0 0
\(616\) −0.160097 −0.00645048
\(617\) 26.9453 1.08478 0.542389 0.840127i \(-0.317520\pi\)
0.542389 + 0.840127i \(0.317520\pi\)
\(618\) 0 0
\(619\) 39.3289 1.58076 0.790381 0.612615i \(-0.209882\pi\)
0.790381 + 0.612615i \(0.209882\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −7.39105 −0.296354
\(623\) 0.404752 0.0162161
\(624\) 0 0
\(625\) 0 0
\(626\) −2.47906 −0.0990833
\(627\) 0 0
\(628\) −15.0956 −0.602378
\(629\) −1.33802 −0.0533502
\(630\) 0 0
\(631\) 11.2443 0.447630 0.223815 0.974632i \(-0.428149\pi\)
0.223815 + 0.974632i \(0.428149\pi\)
\(632\) −18.1877 −0.723467
\(633\) 0 0
\(634\) 11.3652 0.451369
\(635\) 0 0
\(636\) 0 0
\(637\) −26.4290 −1.04715
\(638\) −6.92465 −0.274150
\(639\) 0 0
\(640\) 0 0
\(641\) −17.4773 −0.690311 −0.345155 0.938546i \(-0.612174\pi\)
−0.345155 + 0.938546i \(0.612174\pi\)
\(642\) 0 0
\(643\) −8.72320 −0.344009 −0.172005 0.985096i \(-0.555024\pi\)
−0.172005 + 0.985096i \(0.555024\pi\)
\(644\) 0.0713689 0.00281233
\(645\) 0 0
\(646\) 4.41221 0.173596
\(647\) −25.0654 −0.985421 −0.492710 0.870193i \(-0.663994\pi\)
−0.492710 + 0.870193i \(0.663994\pi\)
\(648\) 0 0
\(649\) −15.9648 −0.626674
\(650\) 0 0
\(651\) 0 0
\(652\) −8.30716 −0.325334
\(653\) −29.9777 −1.17312 −0.586559 0.809906i \(-0.699518\pi\)
−0.586559 + 0.809906i \(0.699518\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 19.9680 0.779621
\(657\) 0 0
\(658\) 0.0930852 0.00362884
\(659\) 4.36601 0.170076 0.0850379 0.996378i \(-0.472899\pi\)
0.0850379 + 0.996378i \(0.472899\pi\)
\(660\) 0 0
\(661\) −19.4529 −0.756628 −0.378314 0.925677i \(-0.623496\pi\)
−0.378314 + 0.925677i \(0.623496\pi\)
\(662\) −0.868004 −0.0337359
\(663\) 0 0
\(664\) 16.8235 0.652878
\(665\) 0 0
\(666\) 0 0
\(667\) 6.61681 0.256204
\(668\) 32.5258 1.25846
\(669\) 0 0
\(670\) 0 0
\(671\) −33.0165 −1.27459
\(672\) 0 0
\(673\) −36.2275 −1.39647 −0.698234 0.715870i \(-0.746030\pi\)
−0.698234 + 0.715870i \(0.746030\pi\)
\(674\) −7.00436 −0.269798
\(675\) 0 0
\(676\) −2.19886 −0.0845715
\(677\) −2.04046 −0.0784214 −0.0392107 0.999231i \(-0.512484\pi\)
−0.0392107 + 0.999231i \(0.512484\pi\)
\(678\) 0 0
\(679\) 0.0657586 0.00252359
\(680\) 0 0
\(681\) 0 0
\(682\) −10.7887 −0.413121
\(683\) −15.9105 −0.608799 −0.304400 0.952544i \(-0.598456\pi\)
−0.304400 + 0.952544i \(0.598456\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.166838 0.00636990
\(687\) 0 0
\(688\) 0.446396 0.0170187
\(689\) 33.8765 1.29059
\(690\) 0 0
\(691\) −3.90166 −0.148426 −0.0742130 0.997242i \(-0.523644\pi\)
−0.0742130 + 0.997242i \(0.523644\pi\)
\(692\) 27.6268 1.05021
\(693\) 0 0
\(694\) 2.54589 0.0966408
\(695\) 0 0
\(696\) 0 0
\(697\) 28.2922 1.07164
\(698\) 4.45201 0.168511
\(699\) 0 0
\(700\) 0 0
\(701\) −30.3587 −1.14663 −0.573316 0.819335i \(-0.694343\pi\)
−0.573316 + 0.819335i \(0.694343\pi\)
\(702\) 0 0
\(703\) 0.897729 0.0338585
\(704\) 9.28208 0.349832
\(705\) 0 0
\(706\) 4.71651 0.177508
\(707\) −0.246267 −0.00926181
\(708\) 0 0
\(709\) −48.5677 −1.82400 −0.911999 0.410193i \(-0.865461\pi\)
−0.911999 + 0.410193i \(0.865461\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 31.9579 1.19767
\(713\) 10.3091 0.386078
\(714\) 0 0
\(715\) 0 0
\(716\) 16.3873 0.612421
\(717\) 0 0
\(718\) 4.56651 0.170421
\(719\) −4.76238 −0.177607 −0.0888033 0.996049i \(-0.528304\pi\)
−0.0888033 + 0.996049i \(0.528304\pi\)
\(720\) 0 0
\(721\) 0.435112 0.0162044
\(722\) 6.55847 0.244081
\(723\) 0 0
\(724\) 10.2252 0.380018
\(725\) 0 0
\(726\) 0 0
\(727\) −3.38691 −0.125614 −0.0628068 0.998026i \(-0.520005\pi\)
−0.0628068 + 0.998026i \(0.520005\pi\)
\(728\) 0.168701 0.00625248
\(729\) 0 0
\(730\) 0 0
\(731\) 0.632488 0.0233934
\(732\) 0 0
\(733\) 15.4009 0.568847 0.284423 0.958699i \(-0.408198\pi\)
0.284423 + 0.958699i \(0.408198\pi\)
\(734\) 8.95690 0.330605
\(735\) 0 0
\(736\) 8.64121 0.318519
\(737\) 16.0311 0.590513
\(738\) 0 0
\(739\) 9.98465 0.367291 0.183646 0.982993i \(-0.441210\pi\)
0.183646 + 0.982993i \(0.441210\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.106922 −0.00392522
\(743\) 41.4419 1.52036 0.760178 0.649715i \(-0.225112\pi\)
0.760178 + 0.649715i \(0.225112\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.54001 0.0563839
\(747\) 0 0
\(748\) 22.7063 0.830223
\(749\) −0.377719 −0.0138015
\(750\) 0 0
\(751\) 21.1036 0.770082 0.385041 0.922900i \(-0.374187\pi\)
0.385041 + 0.922900i \(0.374187\pi\)
\(752\) −19.9727 −0.728329
\(753\) 0 0
\(754\) 7.29682 0.265734
\(755\) 0 0
\(756\) 0 0
\(757\) 40.7168 1.47988 0.739938 0.672675i \(-0.234855\pi\)
0.739938 + 0.672675i \(0.234855\pi\)
\(758\) −12.8186 −0.465594
\(759\) 0 0
\(760\) 0 0
\(761\) 5.07664 0.184028 0.0920140 0.995758i \(-0.470670\pi\)
0.0920140 + 0.995758i \(0.470670\pi\)
\(762\) 0 0
\(763\) 0.141802 0.00513357
\(764\) −38.2941 −1.38543
\(765\) 0 0
\(766\) −1.11485 −0.0402810
\(767\) 16.8229 0.607438
\(768\) 0 0
\(769\) −46.7687 −1.68652 −0.843261 0.537505i \(-0.819367\pi\)
−0.843261 + 0.537505i \(0.819367\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 44.1697 1.58970
\(773\) −19.0938 −0.686756 −0.343378 0.939197i \(-0.611571\pi\)
−0.343378 + 0.939197i \(0.611571\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 5.19209 0.186385
\(777\) 0 0
\(778\) 2.32666 0.0834147
\(779\) −18.9824 −0.680115
\(780\) 0 0
\(781\) −34.7385 −1.24304
\(782\) 3.11359 0.111342
\(783\) 0 0
\(784\) −17.8979 −0.639212
\(785\) 0 0
\(786\) 0 0
\(787\) −4.02513 −0.143481 −0.0717403 0.997423i \(-0.522855\pi\)
−0.0717403 + 0.997423i \(0.522855\pi\)
\(788\) 25.2799 0.900559
\(789\) 0 0
\(790\) 0 0
\(791\) −0.0577642 −0.00205386
\(792\) 0 0
\(793\) 34.7910 1.23546
\(794\) 19.0101 0.674645
\(795\) 0 0
\(796\) 6.60660 0.234165
\(797\) 15.9847 0.566205 0.283103 0.959090i \(-0.408636\pi\)
0.283103 + 0.959090i \(0.408636\pi\)
\(798\) 0 0
\(799\) −28.2988 −1.00114
\(800\) 0 0
\(801\) 0 0
\(802\) −8.37587 −0.295762
\(803\) 14.1678 0.499972
\(804\) 0 0
\(805\) 0 0
\(806\) 11.3685 0.400440
\(807\) 0 0
\(808\) −19.4444 −0.684052
\(809\) 29.2015 1.02667 0.513335 0.858188i \(-0.328410\pi\)
0.513335 + 0.858188i \(0.328410\pi\)
\(810\) 0 0
\(811\) 7.11719 0.249918 0.124959 0.992162i \(-0.460120\pi\)
0.124959 + 0.992162i \(0.460120\pi\)
\(812\) 0.160485 0.00563194
\(813\) 0 0
\(814\) −0.662978 −0.0232374
\(815\) 0 0
\(816\) 0 0
\(817\) −0.424362 −0.0148466
\(818\) −0.237034 −0.00828770
\(819\) 0 0
\(820\) 0 0
\(821\) 32.6032 1.13786 0.568929 0.822387i \(-0.307358\pi\)
0.568929 + 0.822387i \(0.307358\pi\)
\(822\) 0 0
\(823\) 27.1361 0.945905 0.472953 0.881088i \(-0.343188\pi\)
0.472953 + 0.881088i \(0.343188\pi\)
\(824\) 34.3551 1.19681
\(825\) 0 0
\(826\) −0.0530966 −0.00184747
\(827\) 54.8232 1.90639 0.953195 0.302357i \(-0.0977736\pi\)
0.953195 + 0.302357i \(0.0977736\pi\)
\(828\) 0 0
\(829\) 0.471969 0.0163922 0.00819608 0.999966i \(-0.497391\pi\)
0.00819608 + 0.999966i \(0.497391\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −9.78095 −0.339093
\(833\) −25.3591 −0.878642
\(834\) 0 0
\(835\) 0 0
\(836\) −15.2346 −0.526898
\(837\) 0 0
\(838\) 12.1414 0.419418
\(839\) 38.4737 1.32826 0.664129 0.747618i \(-0.268802\pi\)
0.664129 + 0.747618i \(0.268802\pi\)
\(840\) 0 0
\(841\) −14.1209 −0.486929
\(842\) 15.7051 0.541233
\(843\) 0 0
\(844\) 33.0574 1.13788
\(845\) 0 0
\(846\) 0 0
\(847\) 0.0437684 0.00150390
\(848\) 22.9415 0.787814
\(849\) 0 0
\(850\) 0 0
\(851\) 0.633505 0.0217163
\(852\) 0 0
\(853\) −35.8541 −1.22762 −0.613811 0.789453i \(-0.710364\pi\)
−0.613811 + 0.789453i \(0.710364\pi\)
\(854\) −0.109808 −0.00375755
\(855\) 0 0
\(856\) −29.8234 −1.01934
\(857\) −0.386299 −0.0131957 −0.00659786 0.999978i \(-0.502100\pi\)
−0.00659786 + 0.999978i \(0.502100\pi\)
\(858\) 0 0
\(859\) 22.2889 0.760487 0.380244 0.924886i \(-0.375840\pi\)
0.380244 + 0.924886i \(0.375840\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.00231 −0.0341389
\(863\) −9.29808 −0.316510 −0.158255 0.987398i \(-0.550587\pi\)
−0.158255 + 0.987398i \(0.550587\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −3.54326 −0.120405
\(867\) 0 0
\(868\) 0.250039 0.00848686
\(869\) 34.6987 1.17707
\(870\) 0 0
\(871\) −16.8927 −0.572387
\(872\) 11.1962 0.379151
\(873\) 0 0
\(874\) −2.08903 −0.0706626
\(875\) 0 0
\(876\) 0 0
\(877\) 29.1786 0.985292 0.492646 0.870230i \(-0.336030\pi\)
0.492646 + 0.870230i \(0.336030\pi\)
\(878\) −6.49384 −0.219156
\(879\) 0 0
\(880\) 0 0
\(881\) 40.0737 1.35012 0.675059 0.737764i \(-0.264118\pi\)
0.675059 + 0.737764i \(0.264118\pi\)
\(882\) 0 0
\(883\) 30.8339 1.03764 0.518822 0.854882i \(-0.326371\pi\)
0.518822 + 0.854882i \(0.326371\pi\)
\(884\) −23.9266 −0.804739
\(885\) 0 0
\(886\) 10.9560 0.368073
\(887\) 38.5528 1.29448 0.647239 0.762287i \(-0.275924\pi\)
0.647239 + 0.762287i \(0.275924\pi\)
\(888\) 0 0
\(889\) −0.406946 −0.0136485
\(890\) 0 0
\(891\) 0 0
\(892\) 19.8610 0.664996
\(893\) 18.9868 0.635370
\(894\) 0 0
\(895\) 0 0
\(896\) 0.270533 0.00903787
\(897\) 0 0
\(898\) 0.200208 0.00668104
\(899\) 23.1818 0.773156
\(900\) 0 0
\(901\) 32.5052 1.08291
\(902\) 14.0186 0.466769
\(903\) 0 0
\(904\) −4.56087 −0.151692
\(905\) 0 0
\(906\) 0 0
\(907\) −4.77670 −0.158608 −0.0793038 0.996850i \(-0.525270\pi\)
−0.0793038 + 0.996850i \(0.525270\pi\)
\(908\) 19.5849 0.649946
\(909\) 0 0
\(910\) 0 0
\(911\) 11.5332 0.382111 0.191056 0.981579i \(-0.438809\pi\)
0.191056 + 0.981579i \(0.438809\pi\)
\(912\) 0 0
\(913\) −32.0961 −1.06223
\(914\) 17.6472 0.583718
\(915\) 0 0
\(916\) −16.8774 −0.557645
\(917\) −0.113933 −0.00376240
\(918\) 0 0
\(919\) −41.3268 −1.36325 −0.681623 0.731704i \(-0.738726\pi\)
−0.681623 + 0.731704i \(0.738726\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −7.99655 −0.263352
\(923\) 36.6055 1.20488
\(924\) 0 0
\(925\) 0 0
\(926\) 15.2717 0.501860
\(927\) 0 0
\(928\) 19.4313 0.637863
\(929\) 13.4174 0.440212 0.220106 0.975476i \(-0.429360\pi\)
0.220106 + 0.975476i \(0.429360\pi\)
\(930\) 0 0
\(931\) 17.0145 0.557627
\(932\) −27.1552 −0.889499
\(933\) 0 0
\(934\) 3.32986 0.108956
\(935\) 0 0
\(936\) 0 0
\(937\) 41.9929 1.37185 0.685923 0.727674i \(-0.259398\pi\)
0.685923 + 0.727674i \(0.259398\pi\)
\(938\) 0.0533170 0.00174086
\(939\) 0 0
\(940\) 0 0
\(941\) −40.0565 −1.30580 −0.652902 0.757443i \(-0.726449\pi\)
−0.652902 + 0.757443i \(0.726449\pi\)
\(942\) 0 0
\(943\) −13.3954 −0.436215
\(944\) 11.3926 0.370797
\(945\) 0 0
\(946\) 0.313394 0.0101893
\(947\) −43.9751 −1.42900 −0.714499 0.699637i \(-0.753345\pi\)
−0.714499 + 0.699637i \(0.753345\pi\)
\(948\) 0 0
\(949\) −14.9293 −0.484625
\(950\) 0 0
\(951\) 0 0
\(952\) 0.161872 0.00524631
\(953\) −40.6171 −1.31572 −0.657859 0.753141i \(-0.728538\pi\)
−0.657859 + 0.753141i \(0.728538\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 25.0707 0.810843
\(957\) 0 0
\(958\) 11.1424 0.359994
\(959\) −0.304731 −0.00984028
\(960\) 0 0
\(961\) 5.11756 0.165083
\(962\) 0.698610 0.0225241
\(963\) 0 0
\(964\) −44.2698 −1.42584
\(965\) 0 0
\(966\) 0 0
\(967\) −16.0002 −0.514531 −0.257265 0.966341i \(-0.582821\pi\)
−0.257265 + 0.966341i \(0.582821\pi\)
\(968\) 3.45581 0.111074
\(969\) 0 0
\(970\) 0 0
\(971\) −55.5201 −1.78173 −0.890863 0.454272i \(-0.849899\pi\)
−0.890863 + 0.454272i \(0.849899\pi\)
\(972\) 0 0
\(973\) −0.188880 −0.00605523
\(974\) −5.10263 −0.163499
\(975\) 0 0
\(976\) 23.5608 0.754162
\(977\) −6.32539 −0.202367 −0.101184 0.994868i \(-0.532263\pi\)
−0.101184 + 0.994868i \(0.532263\pi\)
\(978\) 0 0
\(979\) −60.9699 −1.94861
\(980\) 0 0
\(981\) 0 0
\(982\) 3.32659 0.106156
\(983\) −48.6422 −1.55144 −0.775722 0.631074i \(-0.782614\pi\)
−0.775722 + 0.631074i \(0.782614\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 7.00145 0.222972
\(987\) 0 0
\(988\) 16.0533 0.510725
\(989\) −0.299462 −0.00952234
\(990\) 0 0
\(991\) −44.1763 −1.40331 −0.701653 0.712519i \(-0.747554\pi\)
−0.701653 + 0.712519i \(0.747554\pi\)
\(992\) 30.2742 0.961207
\(993\) 0 0
\(994\) −0.115535 −0.00366455
\(995\) 0 0
\(996\) 0 0
\(997\) 40.2262 1.27398 0.636988 0.770873i \(-0.280180\pi\)
0.636988 + 0.770873i \(0.280180\pi\)
\(998\) −0.543059 −0.0171902
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5625.2.a.s.1.5 8
3.2 odd 2 625.2.a.g.1.4 yes 8
5.4 even 2 5625.2.a.be.1.4 8
12.11 even 2 10000.2.a.be.1.1 8
15.2 even 4 625.2.b.d.624.10 16
15.8 even 4 625.2.b.d.624.7 16
15.14 odd 2 625.2.a.e.1.5 8
60.59 even 2 10000.2.a.bn.1.8 8
75.2 even 20 625.2.e.k.124.5 32
75.8 even 20 625.2.e.j.374.5 32
75.11 odd 10 625.2.d.n.501.2 16
75.14 odd 10 625.2.d.p.501.3 16
75.17 even 20 625.2.e.j.374.4 32
75.23 even 20 625.2.e.k.124.4 32
75.29 odd 10 625.2.d.q.376.2 16
75.38 even 20 625.2.e.k.499.5 32
75.41 odd 10 625.2.d.n.126.2 16
75.44 odd 10 625.2.d.q.251.2 16
75.47 even 20 625.2.e.j.249.5 32
75.53 even 20 625.2.e.j.249.4 32
75.56 odd 10 625.2.d.m.251.3 16
75.59 odd 10 625.2.d.p.126.3 16
75.62 even 20 625.2.e.k.499.4 32
75.71 odd 10 625.2.d.m.376.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
625.2.a.e.1.5 8 15.14 odd 2
625.2.a.g.1.4 yes 8 3.2 odd 2
625.2.b.d.624.7 16 15.8 even 4
625.2.b.d.624.10 16 15.2 even 4
625.2.d.m.251.3 16 75.56 odd 10
625.2.d.m.376.3 16 75.71 odd 10
625.2.d.n.126.2 16 75.41 odd 10
625.2.d.n.501.2 16 75.11 odd 10
625.2.d.p.126.3 16 75.59 odd 10
625.2.d.p.501.3 16 75.14 odd 10
625.2.d.q.251.2 16 75.44 odd 10
625.2.d.q.376.2 16 75.29 odd 10
625.2.e.j.249.4 32 75.53 even 20
625.2.e.j.249.5 32 75.47 even 20
625.2.e.j.374.4 32 75.17 even 20
625.2.e.j.374.5 32 75.8 even 20
625.2.e.k.124.4 32 75.23 even 20
625.2.e.k.124.5 32 75.2 even 20
625.2.e.k.499.4 32 75.62 even 20
625.2.e.k.499.5 32 75.38 even 20
5625.2.a.s.1.5 8 1.1 even 1 trivial
5625.2.a.be.1.4 8 5.4 even 2
10000.2.a.be.1.1 8 12.11 even 2
10000.2.a.bn.1.8 8 60.59 even 2