Properties

Label 625.2.e.j.374.4
Level $625$
Weight $2$
Character 625.374
Analytic conductor $4.991$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [625,2,Mod(124,625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(625, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("625.124"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.e (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,6,0,14,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 374.4
Character \(\chi\) \(=\) 625.374
Dual form 625.2.e.j.249.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.294474 - 0.405309i) q^{2} +(-2.94186 - 0.955869i) q^{3} +(0.540474 - 1.66341i) q^{4} +(0.478880 + 1.47384i) q^{6} +0.0237879i q^{7} +(-1.78629 + 0.580400i) q^{8} +(5.31382 + 3.86071i) q^{9} +(-2.89894 + 2.10620i) q^{11} +(-3.18000 + 4.37689i) q^{12} +(-2.21940 + 3.05474i) q^{13} +(0.00964144 - 0.00700492i) q^{14} +(-2.06870 - 1.50300i) q^{16} +(3.44570 - 1.11958i) q^{17} -3.29062i q^{18} +(0.751170 + 2.31186i) q^{19} +(0.0227381 - 0.0699807i) q^{21} +(1.70733 + 0.554744i) q^{22} +(1.00828 + 1.38777i) q^{23} +5.80980 q^{24} +1.89167 q^{26} +(-6.48766 - 8.92950i) q^{27} +(0.0395689 + 0.0128567i) q^{28} +(-1.19198 + 3.66855i) q^{29} +(-1.85713 - 5.71565i) q^{31} +5.03748i q^{32} +(10.5415 - 3.42515i) q^{33} +(-1.46845 - 1.06689i) q^{34} +(9.29391 - 6.75242i) q^{36} +(-0.217074 + 0.298777i) q^{37} +(0.715819 - 0.985240i) q^{38} +(9.44911 - 6.86518i) q^{39} +(6.31761 + 4.59002i) q^{41} +(-0.0350596 + 0.0113915i) q^{42} -0.174574i q^{43} +(1.93667 + 5.96047i) q^{44} +(0.265566 - 0.817327i) q^{46} +(7.42853 + 2.41368i) q^{47} +(4.64916 + 6.39902i) q^{48} +6.99943 q^{49} -11.2070 q^{51} +(3.88175 + 5.34278i) q^{52} +(8.53273 + 2.77245i) q^{53} +(-1.70876 + 5.25902i) q^{54} +(-0.0138065 - 0.0424920i) q^{56} -7.51920i q^{57} +(1.83790 - 0.597171i) q^{58} +(-3.60446 - 2.61879i) q^{59} +(-7.45430 + 5.41587i) q^{61} +(-1.76973 + 2.43582i) q^{62} +(-0.0918382 + 0.126404i) q^{63} +(-2.09566 + 1.52259i) q^{64} +(-4.49246 - 3.26396i) q^{66} +(4.25489 - 1.38250i) q^{67} -6.33671i q^{68} +(-1.63968 - 5.04642i) q^{69} +(-2.99579 + 9.22010i) q^{71} +(-11.7328 - 3.81221i) q^{72} +(-2.32403 - 3.19875i) q^{73} +0.185020 q^{74} +4.25156 q^{76} +(-0.0501021 - 0.0689596i) q^{77} +(-5.56504 - 1.80819i) q^{78} +(2.99236 - 9.20955i) q^{79} +(4.46129 + 13.7304i) q^{81} -3.91223i q^{82} +(-8.51877 + 2.76792i) q^{83} +(-0.104117 - 0.0756454i) q^{84} +(-0.0707566 + 0.0514077i) q^{86} +(7.01330 - 9.65298i) q^{87} +(3.95590 - 5.44483i) q^{88} +(-13.7655 + 10.0012i) q^{89} +(-0.0726659 - 0.0527948i) q^{91} +(2.85338 - 0.927119i) q^{92} +18.5898i q^{93} +(-1.20923 - 3.72161i) q^{94} +(4.81518 - 14.8196i) q^{96} +(2.62908 + 0.854239i) q^{97} +(-2.06115 - 2.83693i) q^{98} -23.5359 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{4} + 14 q^{6} + 24 q^{9} - 6 q^{11} + 2 q^{14} + 2 q^{16} - 20 q^{19} + 14 q^{21} - 20 q^{24} + 44 q^{26} - 16 q^{31} + 12 q^{34} + 2 q^{36} - 2 q^{39} - 16 q^{41} + 62 q^{44} + 84 q^{46} + 16 q^{49}+ \cdots + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.294474 0.405309i −0.208225 0.286597i 0.692113 0.721790i \(-0.256680\pi\)
−0.900337 + 0.435193i \(0.856680\pi\)
\(3\) −2.94186 0.955869i −1.69848 0.551871i −0.710134 0.704066i \(-0.751366\pi\)
−0.988350 + 0.152195i \(0.951366\pi\)
\(4\) 0.540474 1.66341i 0.270237 0.831704i
\(5\) 0 0
\(6\) 0.478880 + 1.47384i 0.195502 + 0.601693i
\(7\) 0.0237879i 0.00899097i 0.999990 + 0.00449549i \(0.00143096\pi\)
−0.999990 + 0.00449549i \(0.998569\pi\)
\(8\) −1.78629 + 0.580400i −0.631548 + 0.205202i
\(9\) 5.31382 + 3.86071i 1.77127 + 1.28690i
\(10\) 0 0
\(11\) −2.89894 + 2.10620i −0.874063 + 0.635044i −0.931674 0.363295i \(-0.881652\pi\)
0.0576108 + 0.998339i \(0.481652\pi\)
\(12\) −3.18000 + 4.37689i −0.917986 + 1.26350i
\(13\) −2.21940 + 3.05474i −0.615551 + 0.847234i −0.997020 0.0771484i \(-0.975418\pi\)
0.381468 + 0.924382i \(0.375418\pi\)
\(14\) 0.00964144 0.00700492i 0.00257678 0.00187214i
\(15\) 0 0
\(16\) −2.06870 1.50300i −0.517175 0.375750i
\(17\) 3.44570 1.11958i 0.835706 0.271537i 0.140259 0.990115i \(-0.455206\pi\)
0.695447 + 0.718577i \(0.255206\pi\)
\(18\) 3.29062i 0.775606i
\(19\) 0.751170 + 2.31186i 0.172330 + 0.530378i 0.999501 0.0315721i \(-0.0100514\pi\)
−0.827171 + 0.561950i \(0.810051\pi\)
\(20\) 0 0
\(21\) 0.0227381 0.0699807i 0.00496186 0.0152710i
\(22\) 1.70733 + 0.554744i 0.364003 + 0.118272i
\(23\) 1.00828 + 1.38777i 0.210240 + 0.289371i 0.901094 0.433624i \(-0.142765\pi\)
−0.690854 + 0.722994i \(0.742765\pi\)
\(24\) 5.80980 1.18592
\(25\) 0 0
\(26\) 1.89167 0.370987
\(27\) −6.48766 8.92950i −1.24855 1.71848i
\(28\) 0.0395689 + 0.0128567i 0.00747782 + 0.00242969i
\(29\) −1.19198 + 3.66855i −0.221346 + 0.681232i 0.777296 + 0.629135i \(0.216591\pi\)
−0.998642 + 0.0520974i \(0.983409\pi\)
\(30\) 0 0
\(31\) −1.85713 5.71565i −0.333550 1.02656i −0.967432 0.253131i \(-0.918540\pi\)
0.633882 0.773430i \(-0.281460\pi\)
\(32\) 5.03748i 0.890510i
\(33\) 10.5415 3.42515i 1.83505 0.596243i
\(34\) −1.46845 1.06689i −0.251836 0.182970i
\(35\) 0 0
\(36\) 9.29391 6.75242i 1.54899 1.12540i
\(37\) −0.217074 + 0.298777i −0.0356868 + 0.0491186i −0.826488 0.562955i \(-0.809664\pi\)
0.790801 + 0.612074i \(0.209664\pi\)
\(38\) 0.715819 0.985240i 0.116121 0.159827i
\(39\) 9.44911 6.86518i 1.51307 1.09931i
\(40\) 0 0
\(41\) 6.31761 + 4.59002i 0.986646 + 0.716840i 0.959184 0.282783i \(-0.0912576\pi\)
0.0274616 + 0.999623i \(0.491258\pi\)
\(42\) −0.0350596 + 0.0113915i −0.00540981 + 0.00175775i
\(43\) 0.174574i 0.0266224i −0.999911 0.0133112i \(-0.995763\pi\)
0.999911 0.0133112i \(-0.00423721\pi\)
\(44\) 1.93667 + 5.96047i 0.291964 + 0.898574i
\(45\) 0 0
\(46\) 0.265566 0.817327i 0.0391555 0.120508i
\(47\) 7.42853 + 2.41368i 1.08356 + 0.352071i 0.795756 0.605618i \(-0.207074\pi\)
0.287807 + 0.957689i \(0.407074\pi\)
\(48\) 4.64916 + 6.39902i 0.671049 + 0.923619i
\(49\) 6.99943 0.999919
\(50\) 0 0
\(51\) −11.2070 −1.56929
\(52\) 3.88175 + 5.34278i 0.538302 + 0.740910i
\(53\) 8.53273 + 2.77245i 1.17206 + 0.380826i 0.829412 0.558638i \(-0.188676\pi\)
0.342649 + 0.939464i \(0.388676\pi\)
\(54\) −1.70876 + 5.25902i −0.232533 + 0.715661i
\(55\) 0 0
\(56\) −0.0138065 0.0424920i −0.00184497 0.00567823i
\(57\) 7.51920i 0.995943i
\(58\) 1.83790 0.597171i 0.241328 0.0784124i
\(59\) −3.60446 2.61879i −0.469261 0.340938i 0.327892 0.944715i \(-0.393662\pi\)
−0.797153 + 0.603777i \(0.793662\pi\)
\(60\) 0 0
\(61\) −7.45430 + 5.41587i −0.954426 + 0.693431i −0.951850 0.306566i \(-0.900820\pi\)
−0.00257641 + 0.999997i \(0.500820\pi\)
\(62\) −1.76973 + 2.43582i −0.224756 + 0.309350i
\(63\) −0.0918382 + 0.126404i −0.0115705 + 0.0159255i
\(64\) −2.09566 + 1.52259i −0.261958 + 0.190324i
\(65\) 0 0
\(66\) −4.49246 3.26396i −0.552983 0.401766i
\(67\) 4.25489 1.38250i 0.519817 0.168899i −0.0373451 0.999302i \(-0.511890\pi\)
0.557162 + 0.830404i \(0.311890\pi\)
\(68\) 6.33671i 0.768439i
\(69\) −1.63968 5.04642i −0.197394 0.607517i
\(70\) 0 0
\(71\) −2.99579 + 9.22010i −0.355535 + 1.09422i 0.600164 + 0.799877i \(0.295102\pi\)
−0.955699 + 0.294347i \(0.904898\pi\)
\(72\) −11.7328 3.81221i −1.38272 0.449273i
\(73\) −2.32403 3.19875i −0.272007 0.374385i 0.651059 0.759027i \(-0.274325\pi\)
−0.923066 + 0.384642i \(0.874325\pi\)
\(74\) 0.185020 0.0215081
\(75\) 0 0
\(76\) 4.25156 0.487687
\(77\) −0.0501021 0.0689596i −0.00570967 0.00785868i
\(78\) −5.56504 1.80819i −0.630116 0.204737i
\(79\) 2.99236 9.20955i 0.336667 1.03616i −0.629228 0.777221i \(-0.716629\pi\)
0.965895 0.258934i \(-0.0833713\pi\)
\(80\) 0 0
\(81\) 4.46129 + 13.7304i 0.495699 + 1.52560i
\(82\) 3.91223i 0.432033i
\(83\) −8.51877 + 2.76792i −0.935057 + 0.303818i −0.736629 0.676297i \(-0.763584\pi\)
−0.198428 + 0.980115i \(0.563584\pi\)
\(84\) −0.104117 0.0756454i −0.0113601 0.00825359i
\(85\) 0 0
\(86\) −0.0707566 + 0.0514077i −0.00762988 + 0.00554343i
\(87\) 7.01330 9.65298i 0.751905 1.03491i
\(88\) 3.95590 5.44483i 0.421700 0.580421i
\(89\) −13.7655 + 10.0012i −1.45914 + 1.06013i −0.475551 + 0.879688i \(0.657751\pi\)
−0.983586 + 0.180438i \(0.942249\pi\)
\(90\) 0 0
\(91\) −0.0726659 0.0527948i −0.00761745 0.00553440i
\(92\) 2.85338 0.927119i 0.297485 0.0966588i
\(93\) 18.5898i 1.92767i
\(94\) −1.20923 3.72161i −0.124722 0.383855i
\(95\) 0 0
\(96\) 4.81518 14.8196i 0.491447 1.51252i
\(97\) 2.62908 + 0.854239i 0.266942 + 0.0867348i 0.439430 0.898277i \(-0.355180\pi\)
−0.172488 + 0.985012i \(0.555180\pi\)
\(98\) −2.06115 2.83693i −0.208208 0.286574i
\(99\) −23.5359 −2.36545
\(100\) 0 0
\(101\) 10.3526 1.03012 0.515062 0.857153i \(-0.327769\pi\)
0.515062 + 0.857153i \(0.327769\pi\)
\(102\) 3.30016 + 4.54228i 0.326764 + 0.449753i
\(103\) −17.3961 5.65234i −1.71409 0.556941i −0.723083 0.690761i \(-0.757276\pi\)
−0.991006 + 0.133820i \(0.957276\pi\)
\(104\) 2.19152 6.74479i 0.214896 0.661381i
\(105\) 0 0
\(106\) −1.38897 4.27481i −0.134909 0.415206i
\(107\) 15.8786i 1.53504i 0.641023 + 0.767522i \(0.278510\pi\)
−0.641023 + 0.767522i \(0.721490\pi\)
\(108\) −18.3598 + 5.96546i −1.76667 + 0.574027i
\(109\) 4.82262 + 3.50384i 0.461924 + 0.335607i 0.794285 0.607545i \(-0.207845\pi\)
−0.332362 + 0.943152i \(0.607845\pi\)
\(110\) 0 0
\(111\) 0.924194 0.671466i 0.0877206 0.0637327i
\(112\) 0.0357531 0.0492100i 0.00337836 0.00464991i
\(113\) −1.42732 + 1.96454i −0.134271 + 0.184808i −0.870858 0.491535i \(-0.836436\pi\)
0.736587 + 0.676343i \(0.236436\pi\)
\(114\) −3.04760 + 2.21421i −0.285434 + 0.207380i
\(115\) 0 0
\(116\) 5.45805 + 3.96551i 0.506767 + 0.368188i
\(117\) −23.5870 + 7.66387i −2.18062 + 0.708525i
\(118\) 2.23209i 0.205480i
\(119\) 0.0266324 + 0.0819660i 0.00244139 + 0.00751381i
\(120\) 0 0
\(121\) 0.568575 1.74989i 0.0516886 0.159081i
\(122\) 4.39020 + 1.42646i 0.397470 + 0.129146i
\(123\) −14.1981 19.5420i −1.28020 1.76204i
\(124\) −10.5112 −0.943932
\(125\) 0 0
\(126\) 0.0782768 0.00697345
\(127\) 10.0554 + 13.8401i 0.892274 + 1.22811i 0.972868 + 0.231363i \(0.0743184\pi\)
−0.0805937 + 0.996747i \(0.525682\pi\)
\(128\) 10.8161 + 3.51436i 0.956017 + 0.310629i
\(129\) −0.166870 + 0.513574i −0.0146921 + 0.0452177i
\(130\) 0 0
\(131\) 1.48005 + 4.55513i 0.129313 + 0.397983i 0.994662 0.103186i \(-0.0329035\pi\)
−0.865349 + 0.501169i \(0.832904\pi\)
\(132\) 19.3861i 1.68734i
\(133\) −0.0549943 + 0.0178687i −0.00476861 + 0.00154942i
\(134\) −1.81329 1.31743i −0.156645 0.113809i
\(135\) 0 0
\(136\) −5.50522 + 3.99977i −0.472068 + 0.342978i
\(137\) 7.52974 10.3638i 0.643309 0.885439i −0.355478 0.934685i \(-0.615682\pi\)
0.998787 + 0.0492461i \(0.0156819\pi\)
\(138\) −1.56251 + 2.15062i −0.133010 + 0.183073i
\(139\) −6.42376 + 4.66713i −0.544856 + 0.395861i −0.825885 0.563838i \(-0.809324\pi\)
0.281029 + 0.959699i \(0.409324\pi\)
\(140\) 0 0
\(141\) −19.5466 14.2014i −1.64612 1.19597i
\(142\) 4.61917 1.50086i 0.387632 0.125949i
\(143\) 13.5300i 1.13144i
\(144\) −5.19004 15.9733i −0.432504 1.33111i
\(145\) 0 0
\(146\) −0.612115 + 1.88390i −0.0506590 + 0.155912i
\(147\) −20.5914 6.69054i −1.69835 0.551827i
\(148\) 0.379665 + 0.522564i 0.0312082 + 0.0429545i
\(149\) 5.62724 0.461002 0.230501 0.973072i \(-0.425964\pi\)
0.230501 + 0.973072i \(0.425964\pi\)
\(150\) 0 0
\(151\) −7.36960 −0.599730 −0.299865 0.953982i \(-0.596942\pi\)
−0.299865 + 0.953982i \(0.596942\pi\)
\(152\) −2.68361 3.69367i −0.217670 0.299596i
\(153\) 22.6322 + 7.35365i 1.82971 + 0.594507i
\(154\) −0.0131962 + 0.0406137i −0.00106338 + 0.00327274i
\(155\) 0 0
\(156\) −6.31259 19.4282i −0.505412 1.55550i
\(157\) 8.63091i 0.688822i 0.938819 + 0.344411i \(0.111921\pi\)
−0.938819 + 0.344411i \(0.888079\pi\)
\(158\) −4.61389 + 1.49914i −0.367061 + 0.119265i
\(159\) −22.4520 16.3123i −1.78056 1.29365i
\(160\) 0 0
\(161\) −0.0330122 + 0.0239848i −0.00260172 + 0.00189026i
\(162\) 4.25133 5.85146i 0.334016 0.459734i
\(163\) −2.79177 + 3.84254i −0.218668 + 0.300971i −0.904232 0.427042i \(-0.859556\pi\)
0.685564 + 0.728012i \(0.259556\pi\)
\(164\) 11.0496 8.02798i 0.862826 0.626880i
\(165\) 0 0
\(166\) 3.63042 + 2.63765i 0.281775 + 0.204722i
\(167\) −17.6865 + 5.74670i −1.36862 + 0.444693i −0.898913 0.438127i \(-0.855642\pi\)
−0.469711 + 0.882820i \(0.655642\pi\)
\(168\) 0.138203i 0.0106626i
\(169\) −0.388497 1.19567i −0.0298844 0.0919746i
\(170\) 0 0
\(171\) −4.93386 + 15.1849i −0.377302 + 1.16122i
\(172\) −0.290388 0.0943529i −0.0221419 0.00719434i
\(173\) 9.28447 + 12.7790i 0.705885 + 0.971568i 0.999876 + 0.0157594i \(0.00501657\pi\)
−0.293991 + 0.955808i \(0.594983\pi\)
\(174\) −5.97767 −0.453166
\(175\) 0 0
\(176\) 9.16266 0.690661
\(177\) 8.10060 + 11.1495i 0.608878 + 0.838049i
\(178\) 8.10715 + 2.63417i 0.607657 + 0.197440i
\(179\) −2.89532 + 8.91088i −0.216407 + 0.666031i 0.782644 + 0.622469i \(0.213870\pi\)
−0.999051 + 0.0435615i \(0.986130\pi\)
\(180\) 0 0
\(181\) −1.80661 5.56016i −0.134284 0.413283i 0.861194 0.508276i \(-0.169717\pi\)
−0.995478 + 0.0949930i \(0.969717\pi\)
\(182\) 0.0449988i 0.00333554i
\(183\) 27.1064 8.80740i 2.00376 0.651062i
\(184\) −2.60654 1.89376i −0.192156 0.139610i
\(185\) 0 0
\(186\) 7.53462 5.47422i 0.552465 0.401389i
\(187\) −7.63083 + 10.5029i −0.558022 + 0.768051i
\(188\) 8.02985 11.0521i 0.585637 0.806060i
\(189\) 0.212414 0.154328i 0.0154508 0.0112257i
\(190\) 0 0
\(191\) 17.7132 + 12.8694i 1.28168 + 0.931196i 0.999602 0.0281951i \(-0.00897597\pi\)
0.282079 + 0.959391i \(0.408976\pi\)
\(192\) 7.62055 2.47607i 0.549966 0.178695i
\(193\) 25.2541i 1.81783i 0.416980 + 0.908916i \(0.363089\pi\)
−0.416980 + 0.908916i \(0.636911\pi\)
\(194\) −0.427965 1.31714i −0.0307261 0.0945651i
\(195\) 0 0
\(196\) 3.78301 11.6429i 0.270215 0.831636i
\(197\) 13.7464 + 4.46648i 0.979391 + 0.318224i 0.754601 0.656184i \(-0.227830\pi\)
0.224790 + 0.974407i \(0.427830\pi\)
\(198\) 6.93071 + 9.53930i 0.492544 + 0.677929i
\(199\) 3.77734 0.267768 0.133884 0.990997i \(-0.457255\pi\)
0.133884 + 0.990997i \(0.457255\pi\)
\(200\) 0 0
\(201\) −13.8388 −0.976112
\(202\) −3.04858 4.19601i −0.214497 0.295230i
\(203\) −0.0872669 0.0283547i −0.00612494 0.00199011i
\(204\) −6.05707 + 18.6417i −0.424079 + 1.30518i
\(205\) 0 0
\(206\) 2.83176 + 8.71526i 0.197298 + 0.607221i
\(207\) 11.2670i 0.783113i
\(208\) 9.18255 2.98359i 0.636695 0.206875i
\(209\) −7.04685 5.11984i −0.487441 0.354147i
\(210\) 0 0
\(211\) 15.2909 11.1095i 1.05267 0.764810i 0.0799522 0.996799i \(-0.474523\pi\)
0.972718 + 0.231989i \(0.0745232\pi\)
\(212\) 9.22343 12.6950i 0.633468 0.871894i
\(213\) 17.6264 24.2607i 1.20774 1.66231i
\(214\) 6.43574 4.67584i 0.439938 0.319634i
\(215\) 0 0
\(216\) 16.7715 + 12.1852i 1.14116 + 0.829099i
\(217\) 0.135963 0.0441771i 0.00922978 0.00299894i
\(218\) 2.98644i 0.202267i
\(219\) 3.77938 + 11.6317i 0.255387 + 0.786000i
\(220\) 0 0
\(221\) −4.22738 + 13.0105i −0.284364 + 0.875183i
\(222\) −0.544302 0.176855i −0.0365312 0.0118697i
\(223\) −6.67464 9.18686i −0.446967 0.615197i 0.524775 0.851241i \(-0.324149\pi\)
−0.971743 + 0.236043i \(0.924149\pi\)
\(224\) −0.119831 −0.00800655
\(225\) 0 0
\(226\) 1.21655 0.0809239
\(227\) −6.58183 9.05912i −0.436852 0.601275i 0.532657 0.846331i \(-0.321194\pi\)
−0.969509 + 0.245056i \(0.921194\pi\)
\(228\) −12.5075 4.06393i −0.828329 0.269140i
\(229\) −2.98192 + 9.17740i −0.197051 + 0.606459i 0.802896 + 0.596119i \(0.203291\pi\)
−0.999947 + 0.0103402i \(0.996709\pi\)
\(230\) 0 0
\(231\) 0.0814771 + 0.250761i 0.00536080 + 0.0164988i
\(232\) 7.24491i 0.475651i
\(233\) −14.7662 + 4.79782i −0.967363 + 0.314315i −0.749751 0.661720i \(-0.769827\pi\)
−0.217612 + 0.976035i \(0.569827\pi\)
\(234\) 10.0520 + 7.30320i 0.657119 + 0.477425i
\(235\) 0 0
\(236\) −6.30423 + 4.58029i −0.410371 + 0.298152i
\(237\) −17.6062 + 24.2329i −1.14365 + 1.57410i
\(238\) 0.0253790 0.0349312i 0.00164508 0.00226425i
\(239\) 11.5966 8.42544i 0.750123 0.544996i −0.145742 0.989323i \(-0.546557\pi\)
0.895865 + 0.444326i \(0.146557\pi\)
\(240\) 0 0
\(241\) −20.4773 14.8777i −1.31906 0.958354i −0.999943 0.0106385i \(-0.996614\pi\)
−0.319117 0.947715i \(-0.603386\pi\)
\(242\) −0.876678 + 0.284850i −0.0563550 + 0.0183109i
\(243\) 11.5450i 0.740613i
\(244\) 4.97994 + 15.3267i 0.318808 + 0.981190i
\(245\) 0 0
\(246\) −3.73958 + 11.5092i −0.238427 + 0.733802i
\(247\) −8.72930 2.83632i −0.555432 0.180471i
\(248\) 6.63473 + 9.13192i 0.421305 + 0.579877i
\(249\) 27.7068 1.75585
\(250\) 0 0
\(251\) 4.23698 0.267436 0.133718 0.991019i \(-0.457308\pi\)
0.133718 + 0.991019i \(0.457308\pi\)
\(252\) 0.160626 + 0.221083i 0.0101185 + 0.0139269i
\(253\) −5.84587 1.89944i −0.367526 0.119417i
\(254\) 2.64845 8.15110i 0.166179 0.511445i
\(255\) 0 0
\(256\) −0.159715 0.491553i −0.00998220 0.0307221i
\(257\) 20.4007i 1.27256i −0.771458 0.636281i \(-0.780472\pi\)
0.771458 0.636281i \(-0.219528\pi\)
\(258\) 0.257295 0.0836003i 0.0160185 0.00520472i
\(259\) −0.00710727 0.00516373i −0.000441624 0.000320859i
\(260\) 0 0
\(261\) −20.4972 + 14.8921i −1.26874 + 0.921796i
\(262\) 1.41040 1.94125i 0.0871346 0.119931i
\(263\) −16.8505 + 23.1927i −1.03905 + 1.43012i −0.141113 + 0.989994i \(0.545068\pi\)
−0.897934 + 0.440131i \(0.854932\pi\)
\(264\) −16.8423 + 12.2366i −1.03657 + 0.753112i
\(265\) 0 0
\(266\) 0.0234368 + 0.0170278i 0.00143700 + 0.00104404i
\(267\) 50.0560 16.2642i 3.06338 0.995351i
\(268\) 7.82481i 0.477977i
\(269\) −2.45561 7.55759i −0.149721 0.460794i 0.847867 0.530209i \(-0.177887\pi\)
−0.997588 + 0.0694152i \(0.977887\pi\)
\(270\) 0 0
\(271\) 2.95262 9.08722i 0.179359 0.552009i −0.820447 0.571723i \(-0.806275\pi\)
0.999806 + 0.0197133i \(0.00627535\pi\)
\(272\) −8.81085 2.86282i −0.534236 0.173584i
\(273\) 0.163308 + 0.224774i 0.00988385 + 0.0136040i
\(274\) −6.41785 −0.387717
\(275\) 0 0
\(276\) −9.28045 −0.558618
\(277\) −10.1043 13.9073i −0.607107 0.835612i 0.389228 0.921141i \(-0.372742\pi\)
−0.996336 + 0.0855297i \(0.972742\pi\)
\(278\) 3.78326 + 1.22926i 0.226905 + 0.0737259i
\(279\) 12.1981 37.5417i 0.730278 2.24757i
\(280\) 0 0
\(281\) 8.41089 + 25.8861i 0.501752 + 1.54423i 0.806164 + 0.591692i \(0.201540\pi\)
−0.304412 + 0.952540i \(0.598460\pi\)
\(282\) 12.1043i 0.720803i
\(283\) −3.30874 + 1.07507i −0.196684 + 0.0639065i −0.405703 0.914005i \(-0.632973\pi\)
0.209018 + 0.977912i \(0.432973\pi\)
\(284\) 13.7176 + 9.96644i 0.813991 + 0.591399i
\(285\) 0 0
\(286\) −5.48384 + 3.98424i −0.324266 + 0.235593i
\(287\) −0.109187 + 0.150283i −0.00644509 + 0.00887090i
\(288\) −19.4483 + 26.7683i −1.14600 + 1.57734i
\(289\) −3.13386 + 2.27688i −0.184345 + 0.133934i
\(290\) 0 0
\(291\) −6.91784 5.02611i −0.405531 0.294636i
\(292\) −6.57689 + 2.13696i −0.384883 + 0.125056i
\(293\) 23.4941i 1.37254i −0.727346 0.686271i \(-0.759246\pi\)
0.727346 0.686271i \(-0.240754\pi\)
\(294\) 3.35189 + 10.3161i 0.195486 + 0.601645i
\(295\) 0 0
\(296\) 0.214347 0.659691i 0.0124586 0.0383438i
\(297\) 37.6147 + 12.2218i 2.18263 + 0.709178i
\(298\) −1.65708 2.28077i −0.0959919 0.132122i
\(299\) −6.47706 −0.374578
\(300\) 0 0
\(301\) 0.00415276 0.000239361
\(302\) 2.17016 + 2.98696i 0.124879 + 0.171881i
\(303\) −30.4560 9.89574i −1.74965 0.568496i
\(304\) 1.92078 5.91156i 0.110164 0.339051i
\(305\) 0 0
\(306\) −3.68410 11.3385i −0.210606 0.648179i
\(307\) 1.11253i 0.0634952i 0.999496 + 0.0317476i \(0.0101073\pi\)
−0.999496 + 0.0317476i \(0.989893\pi\)
\(308\) −0.141787 + 0.0460693i −0.00807905 + 0.00262504i
\(309\) 45.7740 + 33.2568i 2.60399 + 1.89191i
\(310\) 0 0
\(311\) 11.9354 8.67154i 0.676792 0.491718i −0.195500 0.980704i \(-0.562633\pi\)
0.872292 + 0.488986i \(0.162633\pi\)
\(312\) −12.8943 + 17.7474i −0.729994 + 1.00475i
\(313\) −2.90856 + 4.00329i −0.164402 + 0.226279i −0.883268 0.468869i \(-0.844661\pi\)
0.718866 + 0.695149i \(0.244661\pi\)
\(314\) 3.49819 2.54158i 0.197414 0.143430i
\(315\) 0 0
\(316\) −13.7019 9.95504i −0.770794 0.560015i
\(317\) −21.5752 + 7.01020i −1.21178 + 0.393732i −0.844083 0.536212i \(-0.819855\pi\)
−0.367700 + 0.929944i \(0.619855\pi\)
\(318\) 13.9036i 0.779673i
\(319\) −4.27122 13.1455i −0.239142 0.736004i
\(320\) 0 0
\(321\) 15.1779 46.7127i 0.847146 2.60725i
\(322\) 0.0194425 + 0.00631724i 0.00108349 + 0.000352046i
\(323\) 5.17662 + 7.12501i 0.288035 + 0.396446i
\(324\) 25.2505 1.40281
\(325\) 0 0
\(326\) 2.37952 0.131789
\(327\) −10.8383 14.9176i −0.599358 0.824946i
\(328\) −13.9491 4.53234i −0.770211 0.250257i
\(329\) −0.0574162 + 0.176709i −0.00316546 + 0.00974228i
\(330\) 0 0
\(331\) 0.535397 + 1.64778i 0.0294281 + 0.0905702i 0.964692 0.263381i \(-0.0848378\pi\)
−0.935264 + 0.353952i \(0.884838\pi\)
\(332\) 15.6662i 0.859793i
\(333\) −2.30698 + 0.749584i −0.126422 + 0.0410770i
\(334\) 7.53741 + 5.47625i 0.412429 + 0.299647i
\(335\) 0 0
\(336\) −0.152219 + 0.110594i −0.00830423 + 0.00603338i
\(337\) 8.21786 11.3109i 0.447655 0.616144i −0.524237 0.851573i \(-0.675649\pi\)
0.971892 + 0.235428i \(0.0756493\pi\)
\(338\) −0.370214 + 0.509555i −0.0201370 + 0.0277161i
\(339\) 6.07682 4.41507i 0.330048 0.239794i
\(340\) 0 0
\(341\) 17.4220 + 12.6578i 0.943455 + 0.685460i
\(342\) 7.60746 2.47181i 0.411364 0.133660i
\(343\) 0.333017i 0.0179812i
\(344\) 0.101323 + 0.311840i 0.00546297 + 0.0168133i
\(345\) 0 0
\(346\) 2.44540 7.52616i 0.131465 0.404609i
\(347\) 4.83301 + 1.57034i 0.259450 + 0.0843003i 0.435854 0.900018i \(-0.356447\pi\)
−0.176404 + 0.984318i \(0.556447\pi\)
\(348\) −12.2663 16.8832i −0.657544 0.905032i
\(349\) 8.88643 0.475680 0.237840 0.971304i \(-0.423561\pi\)
0.237840 + 0.971304i \(0.423561\pi\)
\(350\) 0 0
\(351\) 41.6761 2.22450
\(352\) −10.6100 14.6034i −0.565513 0.778362i
\(353\) −8.95362 2.90921i −0.476553 0.154842i 0.0608848 0.998145i \(-0.480608\pi\)
−0.537438 + 0.843303i \(0.680608\pi\)
\(354\) 2.13358 6.56649i 0.113399 0.349005i
\(355\) 0 0
\(356\) 9.19620 + 28.3030i 0.487397 + 1.50005i
\(357\) 0.266590i 0.0141094i
\(358\) 4.46426 1.45053i 0.235943 0.0766627i
\(359\) 7.37418 + 5.35765i 0.389194 + 0.282766i 0.765125 0.643882i \(-0.222677\pi\)
−0.375931 + 0.926648i \(0.622677\pi\)
\(360\) 0 0
\(361\) 10.5909 7.69472i 0.557414 0.404985i
\(362\) −1.72158 + 2.36956i −0.0904844 + 0.124541i
\(363\) −3.34534 + 4.60446i −0.175585 + 0.241672i
\(364\) −0.127093 + 0.0923387i −0.00666150 + 0.00483986i
\(365\) 0 0
\(366\) −11.5519 8.39291i −0.603825 0.438705i
\(367\) 17.0034 5.52474i 0.887570 0.288389i 0.170473 0.985362i \(-0.445471\pi\)
0.717097 + 0.696974i \(0.245471\pi\)
\(368\) 4.38633i 0.228653i
\(369\) 15.8499 + 48.7810i 0.825113 + 2.53944i
\(370\) 0 0
\(371\) −0.0659507 + 0.202976i −0.00342399 + 0.0105380i
\(372\) 30.9224 + 10.0473i 1.60325 + 0.520929i
\(373\) −1.80682 2.48687i −0.0935536 0.128765i 0.759674 0.650304i \(-0.225358\pi\)
−0.853228 + 0.521538i \(0.825358\pi\)
\(374\) 6.50402 0.336315
\(375\) 0 0
\(376\) −14.6704 −0.756567
\(377\) −8.56098 11.7832i −0.440913 0.606865i
\(378\) −0.125101 0.0406477i −0.00643449 0.00209069i
\(379\) −7.90670 + 24.3343i −0.406140 + 1.24997i 0.513799 + 0.857910i \(0.328238\pi\)
−0.919939 + 0.392060i \(0.871762\pi\)
\(380\) 0 0
\(381\) −16.3523 50.3273i −0.837755 2.57835i
\(382\) 10.9690i 0.561224i
\(383\) −2.11638 + 0.687652i −0.108142 + 0.0351374i −0.362588 0.931950i \(-0.618107\pi\)
0.254446 + 0.967087i \(0.418107\pi\)
\(384\) −28.4602 20.6776i −1.45235 1.05520i
\(385\) 0 0
\(386\) 10.2357 7.43669i 0.520985 0.378517i
\(387\) 0.673982 0.927657i 0.0342604 0.0471554i
\(388\) 2.84189 3.91153i 0.144275 0.198578i
\(389\) 3.75718 2.72975i 0.190496 0.138404i −0.488449 0.872592i \(-0.662437\pi\)
0.678946 + 0.734189i \(0.262437\pi\)
\(390\) 0 0
\(391\) 5.02794 + 3.65301i 0.254274 + 0.184741i
\(392\) −12.5030 + 4.06247i −0.631497 + 0.205186i
\(393\) 14.8153i 0.747333i
\(394\) −2.23766 6.88681i −0.112732 0.346952i
\(395\) 0 0
\(396\) −12.7205 + 39.1497i −0.639230 + 1.96735i
\(397\) −36.0880 11.7257i −1.81121 0.588497i −0.999993 0.00374665i \(-0.998807\pi\)
−0.811214 0.584750i \(-0.801193\pi\)
\(398\) −1.11233 1.53099i −0.0557560 0.0767415i
\(399\) 0.178866 0.00895449
\(400\) 0 0
\(401\) −16.7187 −0.834890 −0.417445 0.908702i \(-0.637074\pi\)
−0.417445 + 0.908702i \(0.637074\pi\)
\(402\) 4.07516 + 5.60898i 0.203251 + 0.279751i
\(403\) 21.5816 + 7.01227i 1.07505 + 0.349306i
\(404\) 5.59532 17.2206i 0.278377 0.856757i
\(405\) 0 0
\(406\) 0.0142054 + 0.0437198i 0.000705004 + 0.00216978i
\(407\) 1.32334i 0.0655955i
\(408\) 20.0188 6.50452i 0.991081 0.322022i
\(409\) 0.382772 + 0.278100i 0.0189268 + 0.0137512i 0.597208 0.802086i \(-0.296277\pi\)
−0.578282 + 0.815837i \(0.696277\pi\)
\(410\) 0 0
\(411\) −32.0579 + 23.2914i −1.58130 + 1.14888i
\(412\) −18.8043 + 25.8819i −0.926420 + 1.27511i
\(413\) 0.0622955 0.0857424i 0.00306536 0.00421911i
\(414\) 4.56663 3.31785i 0.224438 0.163064i
\(415\) 0 0
\(416\) −15.3882 11.1802i −0.754470 0.548154i
\(417\) 23.3590 7.58979i 1.14389 0.371674i
\(418\) 4.36381i 0.213441i
\(419\) −7.48898 23.0487i −0.365861 1.12600i −0.949440 0.313947i \(-0.898349\pi\)
0.583580 0.812056i \(-0.301651\pi\)
\(420\) 0 0
\(421\) −9.68711 + 29.8139i −0.472121 + 1.45304i 0.377680 + 0.925936i \(0.376722\pi\)
−0.849801 + 0.527103i \(0.823278\pi\)
\(422\) −9.00556 2.92609i −0.438384 0.142440i
\(423\) 30.1553 + 41.5052i 1.46620 + 2.01805i
\(424\) −16.8510 −0.818359
\(425\) 0 0
\(426\) −15.0236 −0.727895
\(427\) −0.128832 0.177322i −0.00623462 0.00858122i
\(428\) 26.4126 + 8.58197i 1.27670 + 0.414825i
\(429\) −12.9329 + 39.8035i −0.624408 + 1.92173i
\(430\) 0 0
\(431\) −0.618239 1.90275i −0.0297795 0.0916520i 0.935062 0.354484i \(-0.115343\pi\)
−0.964842 + 0.262832i \(0.915343\pi\)
\(432\) 28.2234i 1.35790i
\(433\) 6.72637 2.18553i 0.323249 0.105030i −0.142898 0.989737i \(-0.545642\pi\)
0.466147 + 0.884708i \(0.345642\pi\)
\(434\) −0.0579430 0.0420981i −0.00278135 0.00202077i
\(435\) 0 0
\(436\) 8.43482 6.12825i 0.403954 0.293490i
\(437\) −2.45096 + 3.37345i −0.117245 + 0.161374i
\(438\) 3.60152 4.95706i 0.172087 0.236858i
\(439\) 10.4865 7.61889i 0.500493 0.363630i −0.308712 0.951156i \(-0.599898\pi\)
0.809205 + 0.587526i \(0.199898\pi\)
\(440\) 0 0
\(441\) 37.1937 + 27.0228i 1.77113 + 1.28680i
\(442\) 6.51814 2.11787i 0.310036 0.100737i
\(443\) 21.8687i 1.03901i −0.854467 0.519506i \(-0.826116\pi\)
0.854467 0.519506i \(-0.173884\pi\)
\(444\) −0.617419 1.90022i −0.0293014 0.0901804i
\(445\) 0 0
\(446\) −1.75801 + 5.41058i −0.0832440 + 0.256199i
\(447\) −16.5546 5.37890i −0.783004 0.254413i
\(448\) −0.0362191 0.0498514i −0.00171119 0.00235526i
\(449\) −0.399626 −0.0188595 −0.00942976 0.999956i \(-0.503002\pi\)
−0.00942976 + 0.999956i \(0.503002\pi\)
\(450\) 0 0
\(451\) −27.9819 −1.31762
\(452\) 2.49640 + 3.43600i 0.117421 + 0.161616i
\(453\) 21.6803 + 7.04437i 1.01863 + 0.330973i
\(454\) −1.73356 + 5.33535i −0.0813600 + 0.250400i
\(455\) 0 0
\(456\) 4.36415 + 13.4315i 0.204370 + 0.628986i
\(457\) 35.2247i 1.64774i −0.566777 0.823872i \(-0.691810\pi\)
0.566777 0.823872i \(-0.308190\pi\)
\(458\) 4.59778 1.49391i 0.214840 0.0698058i
\(459\) −32.3518 23.5050i −1.51005 1.09712i
\(460\) 0 0
\(461\) 12.9131 9.38194i 0.601425 0.436961i −0.244960 0.969533i \(-0.578775\pi\)
0.846384 + 0.532573i \(0.178775\pi\)
\(462\) 0.0776427 0.106866i 0.00361226 0.00497185i
\(463\) 17.9175 24.6614i 0.832699 1.14611i −0.154716 0.987959i \(-0.549446\pi\)
0.987415 0.158153i \(-0.0505538\pi\)
\(464\) 7.97968 5.79757i 0.370447 0.269146i
\(465\) 0 0
\(466\) 6.29285 + 4.57202i 0.291511 + 0.211795i
\(467\) −6.32127 + 2.05390i −0.292513 + 0.0950434i −0.451598 0.892222i \(-0.649146\pi\)
0.159084 + 0.987265i \(0.449146\pi\)
\(468\) 43.3769i 2.00510i
\(469\) 0.0328867 + 0.101215i 0.00151857 + 0.00467366i
\(470\) 0 0
\(471\) 8.25002 25.3910i 0.380141 1.16995i
\(472\) 7.95855 + 2.58589i 0.366322 + 0.119025i
\(473\) 0.367689 + 0.506081i 0.0169064 + 0.0232696i
\(474\) 15.0064 0.689267
\(475\) 0 0
\(476\) 0.150737 0.00690902
\(477\) 34.6377 + 47.6747i 1.58595 + 2.18288i
\(478\) −6.82981 2.21914i −0.312388 0.101501i
\(479\) −6.87278 + 21.1522i −0.314025 + 0.966471i 0.662128 + 0.749390i \(0.269653\pi\)
−0.976154 + 0.217080i \(0.930347\pi\)
\(480\) 0 0
\(481\) −0.430912 1.32621i −0.0196479 0.0604700i
\(482\) 12.6807i 0.577591i
\(483\) 0.120044 0.0390045i 0.00546217 0.00177477i
\(484\) −2.60349 1.89154i −0.118340 0.0859792i
\(485\) 0 0
\(486\) −4.67930 + 3.39971i −0.212257 + 0.154214i
\(487\) 5.98665 8.23992i 0.271281 0.373386i −0.651541 0.758614i \(-0.725877\pi\)
0.922822 + 0.385227i \(0.125877\pi\)
\(488\) 10.1722 14.0008i 0.460472 0.633785i
\(489\) 11.8860 8.63565i 0.537501 0.390518i
\(490\) 0 0
\(491\) −5.37191 3.90292i −0.242431 0.176136i 0.459935 0.887953i \(-0.347873\pi\)
−0.702366 + 0.711816i \(0.747873\pi\)
\(492\) −40.1800 + 13.0553i −1.81145 + 0.588577i
\(493\) 13.9752i 0.629413i
\(494\) 1.42097 + 4.37329i 0.0639323 + 0.196763i
\(495\) 0 0
\(496\) −4.74877 + 14.6152i −0.213226 + 0.656243i
\(497\) −0.219327 0.0712635i −0.00983814 0.00319660i
\(498\) −8.15894 11.2298i −0.365611 0.503220i
\(499\) −1.08397 −0.0485253 −0.0242626 0.999706i \(-0.507724\pi\)
−0.0242626 + 0.999706i \(0.507724\pi\)
\(500\) 0 0
\(501\) 57.5244 2.57000
\(502\) −1.24768 1.71729i −0.0556867 0.0766462i
\(503\) 1.88882 + 0.613716i 0.0842184 + 0.0273642i 0.350823 0.936442i \(-0.385902\pi\)
−0.266605 + 0.963806i \(0.585902\pi\)
\(504\) 0.0906843 0.279097i 0.00403940 0.0124320i
\(505\) 0 0
\(506\) 0.951598 + 2.92872i 0.0423037 + 0.130197i
\(507\) 3.88885i 0.172710i
\(508\) 28.4564 9.24604i 1.26255 0.410227i
\(509\) 1.86814 + 1.35729i 0.0828040 + 0.0601607i 0.628417 0.777877i \(-0.283703\pi\)
−0.545613 + 0.838037i \(0.683703\pi\)
\(510\) 0 0
\(511\) 0.0760914 0.0552836i 0.00336608 0.00244560i
\(512\) 13.2172 18.1920i 0.584125 0.803979i
\(513\) 15.7705 21.7062i 0.696283 0.958351i
\(514\) −8.26859 + 6.00748i −0.364712 + 0.264979i
\(515\) 0 0
\(516\) 0.764094 + 0.555147i 0.0336373 + 0.0244390i
\(517\) −26.6186 + 8.64889i −1.17068 + 0.380378i
\(518\) 0.00440122i 0.000193379i
\(519\) −15.0986 46.4687i −0.662755 2.03975i
\(520\) 0 0
\(521\) −3.41302 + 10.5042i −0.149527 + 0.460197i −0.997565 0.0697382i \(-0.977784\pi\)
0.848038 + 0.529935i \(0.177784\pi\)
\(522\) 12.0718 + 3.92236i 0.528368 + 0.171677i
\(523\) 15.2839 + 21.0365i 0.668318 + 0.919861i 0.999721 0.0236286i \(-0.00752191\pi\)
−0.331403 + 0.943489i \(0.607522\pi\)
\(524\) 8.37696 0.365949
\(525\) 0 0
\(526\) 14.3623 0.626224
\(527\) −12.7982 17.6152i −0.557499 0.767332i
\(528\) −26.9553 8.75830i −1.17308 0.381156i
\(529\) 6.19810 19.0758i 0.269482 0.829382i
\(530\) 0 0
\(531\) −9.04302 27.8316i −0.392434 1.20779i
\(532\) 0.101136i 0.00438478i
\(533\) −28.0426 + 9.11161i −1.21466 + 0.394667i
\(534\) −21.3322 15.4988i −0.923135 0.670697i
\(535\) 0 0
\(536\) −6.79805 + 4.93907i −0.293631 + 0.213336i
\(537\) 17.0353 23.4470i 0.735126 1.01181i
\(538\) −2.34004 + 3.22079i −0.100886 + 0.138858i
\(539\) −20.2909 + 14.7422i −0.873993 + 0.634993i
\(540\) 0 0
\(541\) 0.0147558 + 0.0107207i 0.000634400 + 0.000460919i 0.588102 0.808786i \(-0.299875\pi\)
−0.587468 + 0.809247i \(0.699875\pi\)
\(542\) −4.55260 + 1.47923i −0.195551 + 0.0635384i
\(543\) 18.0841i 0.776063i
\(544\) 5.63985 + 17.3577i 0.241807 + 0.744205i
\(545\) 0 0
\(546\) 0.0430130 0.132380i 0.00184079 0.00566536i
\(547\) −9.47298 3.07796i −0.405035 0.131604i 0.0994121 0.995046i \(-0.468304\pi\)
−0.504447 + 0.863442i \(0.668304\pi\)
\(548\) −13.1696 18.1264i −0.562577 0.774320i
\(549\) −60.5199 −2.58293
\(550\) 0 0
\(551\) −9.37656 −0.399455
\(552\) 5.85788 + 8.06268i 0.249328 + 0.343171i
\(553\) 0.219076 + 0.0711820i 0.00931604 + 0.00302697i
\(554\) −2.66132 + 8.19071i −0.113069 + 0.347990i
\(555\) 0 0
\(556\) 4.29147 + 13.2078i 0.181999 + 0.560135i
\(557\) 34.9291i 1.47999i −0.672611 0.739996i \(-0.734827\pi\)
0.672611 0.739996i \(-0.265173\pi\)
\(558\) −18.8080 + 6.11109i −0.796207 + 0.258703i
\(559\) 0.533280 + 0.387451i 0.0225554 + 0.0163874i
\(560\) 0 0
\(561\) 32.4883 23.6041i 1.37166 0.996567i
\(562\) 8.01506 11.0318i 0.338095 0.465348i
\(563\) −9.28343 + 12.7775i −0.391250 + 0.538509i −0.958521 0.285022i \(-0.907999\pi\)
0.567271 + 0.823531i \(0.307999\pi\)
\(564\) −34.1871 + 24.8384i −1.43954 + 1.04588i
\(565\) 0 0
\(566\) 1.41008 + 1.02448i 0.0592699 + 0.0430621i
\(567\) −0.326618 + 0.106125i −0.0137167 + 0.00445681i
\(568\) 18.2085i 0.764012i
\(569\) 4.49944 + 13.8479i 0.188627 + 0.580533i 0.999992 0.00400651i \(-0.00127532\pi\)
−0.811365 + 0.584539i \(0.801275\pi\)
\(570\) 0 0
\(571\) 8.53315 26.2623i 0.357101 1.09904i −0.597680 0.801735i \(-0.703911\pi\)
0.954781 0.297309i \(-0.0960892\pi\)
\(572\) −22.5059 7.31263i −0.941021 0.305756i
\(573\) −39.8083 54.7914i −1.66302 2.28895i
\(574\) 0.0930636 0.00388440
\(575\) 0 0
\(576\) −17.0142 −0.708927
\(577\) 15.9595 + 21.9664i 0.664405 + 0.914475i 0.999617 0.0276679i \(-0.00880810\pi\)
−0.335212 + 0.942143i \(0.608808\pi\)
\(578\) 1.84568 + 0.599698i 0.0767702 + 0.0249442i
\(579\) 24.1396 74.2941i 1.00321 3.08756i
\(580\) 0 0
\(581\) −0.0658429 0.202644i −0.00273162 0.00840707i
\(582\) 4.28392i 0.177574i
\(583\) −30.5752 + 9.93449i −1.26630 + 0.411445i
\(584\) 6.00793 + 4.36502i 0.248610 + 0.180626i
\(585\) 0 0
\(586\) −9.52239 + 6.91842i −0.393366 + 0.285797i
\(587\) −6.29145 + 8.65944i −0.259676 + 0.357413i −0.918871 0.394559i \(-0.870897\pi\)
0.659195 + 0.751972i \(0.270897\pi\)
\(588\) −22.2582 + 30.6358i −0.917912 + 1.26340i
\(589\) 11.8188 8.58685i 0.486984 0.353815i
\(590\) 0 0
\(591\) −36.1707 26.2795i −1.48786 1.08100i
\(592\) 0.898122 0.291818i 0.0369126 0.0119936i
\(593\) 3.84629i 0.157948i 0.996877 + 0.0789740i \(0.0251644\pi\)
−0.996877 + 0.0789740i \(0.974836\pi\)
\(594\) −6.12297 18.8446i −0.251229 0.773202i
\(595\) 0 0
\(596\) 3.04138 9.36039i 0.124580 0.383417i
\(597\) −11.1124 3.61064i −0.454801 0.147774i
\(598\) 1.90733 + 2.62521i 0.0779964 + 0.107353i
\(599\) −46.1423 −1.88532 −0.942662 0.333750i \(-0.891686\pi\)
−0.942662 + 0.333750i \(0.891686\pi\)
\(600\) 0 0
\(601\) −13.3119 −0.543005 −0.271503 0.962438i \(-0.587521\pi\)
−0.271503 + 0.962438i \(0.587521\pi\)
\(602\) −0.00122288 0.00168315i −4.98408e−5 6.86000e-5i
\(603\) 27.9471 + 9.08057i 1.13809 + 0.369789i
\(604\) −3.98308 + 12.2586i −0.162069 + 0.498797i
\(605\) 0 0
\(606\) 4.95766 + 15.2581i 0.201391 + 0.619818i
\(607\) 34.0838i 1.38342i 0.722176 + 0.691709i \(0.243142\pi\)
−0.722176 + 0.691709i \(0.756858\pi\)
\(608\) −11.6460 + 3.78401i −0.472307 + 0.153462i
\(609\) 0.229624 + 0.166832i 0.00930483 + 0.00676035i
\(610\) 0 0
\(611\) −23.8600 + 17.3353i −0.965274 + 0.701313i
\(612\) 24.4642 33.6721i 0.988908 1.36111i
\(613\) −14.9773 + 20.6145i −0.604928 + 0.832612i −0.996148 0.0876853i \(-0.972053\pi\)
0.391220 + 0.920297i \(0.372053\pi\)
\(614\) 0.450916 0.327610i 0.0181975 0.0132213i
\(615\) 0 0
\(616\) 0.129521 + 0.0941025i 0.00521855 + 0.00379150i
\(617\) 25.6265 8.32657i 1.03169 0.335215i 0.256229 0.966616i \(-0.417520\pi\)
0.775456 + 0.631401i \(0.217520\pi\)
\(618\) 28.3459i 1.14024i
\(619\) −12.1533 37.4040i −0.488482 1.50339i −0.826873 0.562389i \(-0.809882\pi\)
0.338391 0.941006i \(-0.390118\pi\)
\(620\) 0 0
\(621\) 5.85077 18.0068i 0.234783 0.722589i
\(622\) −7.02931 2.28396i −0.281849 0.0915784i
\(623\) −0.237907 0.327451i −0.00953156 0.0131191i
\(624\) −29.8657 −1.19559
\(625\) 0 0
\(626\) 2.47906 0.0990833
\(627\) 15.8370 + 21.7977i 0.632468 + 0.870517i
\(628\) 14.3567 + 4.66478i 0.572896 + 0.186145i
\(629\) −0.413469 + 1.27253i −0.0164861 + 0.0507390i
\(630\) 0 0
\(631\) 3.47469 + 10.6940i 0.138325 + 0.425722i 0.996092 0.0883169i \(-0.0281488\pi\)
−0.857767 + 0.514039i \(0.828149\pi\)
\(632\) 18.1877i 0.723467i
\(633\) −55.6030 + 18.0665i −2.21002 + 0.718080i
\(634\) 9.19463 + 6.68029i 0.365166 + 0.265308i
\(635\) 0 0
\(636\) −39.2688 + 28.5304i −1.55711 + 1.13131i
\(637\) −15.5346 + 21.3815i −0.615501 + 0.847165i
\(638\) −4.07021 + 5.60216i −0.161141 + 0.221792i
\(639\) −51.5152 + 37.4280i −2.03791 + 1.48063i
\(640\) 0 0
\(641\) −14.1394 10.2729i −0.558473 0.405755i 0.272427 0.962177i \(-0.412174\pi\)
−0.830900 + 0.556422i \(0.812174\pi\)
\(642\) −23.4026 + 7.60395i −0.923625 + 0.300104i
\(643\) 8.72320i 0.344009i 0.985096 + 0.172005i \(0.0550244\pi\)
−0.985096 + 0.172005i \(0.944976\pi\)
\(644\) 0.0220542 + 0.0678758i 0.000869057 + 0.00267468i
\(645\) 0 0
\(646\) 1.36345 4.19626i 0.0536441 0.165100i
\(647\) 23.8386 + 7.74562i 0.937191 + 0.304512i 0.737500 0.675347i \(-0.236006\pi\)
0.199691 + 0.979859i \(0.436006\pi\)
\(648\) −15.9383 21.9372i −0.626115 0.861773i
\(649\) 15.9648 0.626674
\(650\) 0 0
\(651\) −0.442212 −0.0173317
\(652\) 4.88283 + 6.72063i 0.191226 + 0.263200i
\(653\) −28.5105 9.26362i −1.11570 0.362514i −0.307576 0.951523i \(-0.599518\pi\)
−0.808126 + 0.589010i \(0.799518\pi\)
\(654\) −2.85465 + 8.78570i −0.111626 + 0.343548i
\(655\) 0 0
\(656\) −6.17046 18.9907i −0.240916 0.741464i
\(657\) 25.9699i 1.01318i
\(658\) 0.0885293 0.0287649i 0.00345123 0.00112137i
\(659\) −3.53218 2.56628i −0.137594 0.0999680i 0.516859 0.856071i \(-0.327101\pi\)
−0.654453 + 0.756102i \(0.727101\pi\)
\(660\) 0 0
\(661\) 15.7377 11.4341i 0.612125 0.444735i −0.238037 0.971256i \(-0.576504\pi\)
0.850162 + 0.526521i \(0.176504\pi\)
\(662\) 0.510200 0.702230i 0.0198295 0.0272929i
\(663\) 24.8727 34.2344i 0.965977 1.32955i
\(664\) 13.6105 9.88859i 0.528189 0.383752i
\(665\) 0 0
\(666\) 0.983160 + 0.714308i 0.0380967 + 0.0276789i
\(667\) −6.29296 + 2.04471i −0.243664 + 0.0791714i
\(668\) 32.5258i 1.25846i
\(669\) 10.8544 + 33.4065i 0.419657 + 1.29157i
\(670\) 0 0
\(671\) 10.2027 31.4006i 0.393869 1.21221i
\(672\) 0.352526 + 0.114543i 0.0135990 + 0.00441858i
\(673\) −21.2940 29.3087i −0.820823 1.12977i −0.989562 0.144105i \(-0.953970\pi\)
0.168740 0.985661i \(-0.446030\pi\)
\(674\) −7.00436 −0.269798
\(675\) 0 0
\(676\) −2.19886 −0.0845715
\(677\) −1.19936 1.65077i −0.0460950 0.0634443i 0.785347 0.619055i \(-0.212484\pi\)
−0.831442 + 0.555611i \(0.812484\pi\)
\(678\) −3.57893 1.16287i −0.137448 0.0446596i
\(679\) −0.0203205 + 0.0625402i −0.000779831 + 0.00240007i
\(680\) 0 0
\(681\) 10.7035 + 32.9420i 0.410160 + 1.26234i
\(682\) 10.7887i 0.413121i
\(683\) 15.1318 4.91662i 0.579003 0.188129i −0.00485110 0.999988i \(-0.501544\pi\)
0.583854 + 0.811859i \(0.301544\pi\)
\(684\) 22.5920 + 16.4140i 0.863826 + 0.627607i
\(685\) 0 0
\(686\) 0.134975 0.0980649i 0.00515336 0.00374413i
\(687\) 17.5448 24.1483i 0.669375 0.921316i
\(688\) −0.262385 + 0.361142i −0.0100033 + 0.0137684i
\(689\) −27.4067 + 19.9121i −1.04411 + 0.758591i
\(690\) 0 0
\(691\) 3.15651 + 2.29334i 0.120079 + 0.0872427i 0.646204 0.763165i \(-0.276356\pi\)
−0.526125 + 0.850407i \(0.676356\pi\)
\(692\) 26.2747 8.53715i 0.998812 0.324534i
\(693\) 0.559869i 0.0212677i
\(694\) −0.786724 2.42129i −0.0298636 0.0919108i
\(695\) 0 0
\(696\) −6.92518 + 21.3135i −0.262498 + 0.807887i
\(697\) 26.9075 + 8.74278i 1.01919 + 0.331156i
\(698\) −2.61683 3.60175i −0.0990483 0.136328i
\(699\) 48.0261 1.81651
\(700\) 0 0
\(701\) 30.3587 1.14663 0.573316 0.819335i \(-0.305657\pi\)
0.573316 + 0.819335i \(0.305657\pi\)
\(702\) −12.2725 16.8917i −0.463197 0.637536i
\(703\) −0.853791 0.277413i −0.0322013 0.0104628i
\(704\) 2.86832 8.82779i 0.108104 0.332710i
\(705\) 0 0
\(706\) 1.45748 + 4.48567i 0.0548531 + 0.168820i
\(707\) 0.246267i 0.00926181i
\(708\) 22.9243 7.44857i 0.861550 0.279934i
\(709\) −39.2921 28.5474i −1.47565 1.07212i −0.978928 0.204206i \(-0.934539\pi\)
−0.496717 0.867912i \(-0.665461\pi\)
\(710\) 0 0
\(711\) 51.4563 37.3852i 1.92976 1.40205i
\(712\) 18.7844 25.8545i 0.703975 0.968939i
\(713\) 6.05953 8.34023i 0.226931 0.312344i
\(714\) −0.108051 + 0.0785038i −0.00404371 + 0.00293793i
\(715\) 0 0
\(716\) 13.2576 + 9.63220i 0.495459 + 0.359972i
\(717\) −42.1693 + 13.7016i −1.57484 + 0.511697i
\(718\) 4.56651i 0.170421i
\(719\) −1.47166 4.52929i −0.0548835 0.168914i 0.919857 0.392253i \(-0.128304\pi\)
−0.974741 + 0.223339i \(0.928304\pi\)
\(720\) 0 0
\(721\) 0.134457 0.413816i 0.00500744 0.0154113i
\(722\) −6.23747 2.02668i −0.232135 0.0754251i
\(723\) 46.0204 + 63.3416i 1.71152 + 2.35570i
\(724\) −10.2252 −0.380018
\(725\) 0 0
\(726\) 2.85135 0.105823
\(727\) 1.99078 + 2.74007i 0.0738338 + 0.101624i 0.844337 0.535813i \(-0.179995\pi\)
−0.770503 + 0.637437i \(0.779995\pi\)
\(728\) 0.160444 + 0.0521315i 0.00594646 + 0.00193212i
\(729\) 2.34834 7.22745i 0.0869756 0.267683i
\(730\) 0 0
\(731\) −0.195450 0.601532i −0.00722897 0.0222485i
\(732\) 49.8491i 1.84248i
\(733\) 14.6472 4.75915i 0.541005 0.175783i −0.0257516 0.999668i \(-0.508198\pi\)
0.566757 + 0.823885i \(0.308198\pi\)
\(734\) −7.24628 5.26473i −0.267465 0.194325i
\(735\) 0 0
\(736\) −6.99089 + 5.07918i −0.257688 + 0.187221i
\(737\) −9.42285 + 12.9694i −0.347095 + 0.477735i
\(738\) 15.1040 20.7888i 0.555985 0.765248i
\(739\) 8.07775 5.86883i 0.297145 0.215888i −0.429216 0.903202i \(-0.641210\pi\)
0.726361 + 0.687314i \(0.241210\pi\)
\(740\) 0 0
\(741\) 22.9692 + 16.6881i 0.843796 + 0.613054i
\(742\) 0.101689 0.0330406i 0.00373311 0.00121296i
\(743\) 41.4419i 1.52036i 0.649715 + 0.760178i \(0.274888\pi\)
−0.649715 + 0.760178i \(0.725112\pi\)
\(744\) −10.7895 33.2068i −0.395563 1.21742i
\(745\) 0 0
\(746\) −0.475891 + 1.46464i −0.0174236 + 0.0536243i
\(747\) −55.9533 18.1803i −2.04723 0.665184i
\(748\) 13.3464 + 18.3697i 0.487993 + 0.671665i
\(749\) −0.377719 −0.0138015
\(750\) 0 0
\(751\) 21.1036 0.770082 0.385041 0.922900i \(-0.374187\pi\)
0.385041 + 0.922900i \(0.374187\pi\)
\(752\) −11.7396 16.1582i −0.428101 0.589230i
\(753\) −12.4646 4.05000i −0.454236 0.147590i
\(754\) −2.25484 + 6.93968i −0.0821164 + 0.252728i
\(755\) 0 0
\(756\) −0.141906 0.436741i −0.00516106 0.0158841i
\(757\) 40.7168i 1.47988i 0.672675 + 0.739938i \(0.265145\pi\)
−0.672675 + 0.739938i \(0.734855\pi\)
\(758\) 12.1912 3.96117i 0.442806 0.143876i
\(759\) 15.3821 + 11.1758i 0.558336 + 0.405655i
\(760\) 0 0
\(761\) 4.10708 2.98397i 0.148882 0.108169i −0.510851 0.859669i \(-0.670670\pi\)
0.659733 + 0.751500i \(0.270670\pi\)
\(762\) −15.5828 + 21.4478i −0.564504 + 0.776973i
\(763\) −0.0833489 + 0.114720i −0.00301743 + 0.00415314i
\(764\) 30.9805 22.5087i 1.12084 0.814335i
\(765\) 0 0
\(766\) 0.901929 + 0.655290i 0.0325880 + 0.0236766i
\(767\) 15.9995 5.19855i 0.577708 0.187709i
\(768\) 1.59875i 0.0576899i
\(769\) 14.4523 + 44.4797i 0.521164 + 1.60398i 0.771779 + 0.635891i \(0.219367\pi\)
−0.250615 + 0.968087i \(0.580633\pi\)
\(770\) 0 0
\(771\) −19.5004 + 60.0161i −0.702290 + 2.16143i
\(772\) 42.0079 + 13.6492i 1.51190 + 0.491245i
\(773\) 11.2231 + 15.4472i 0.403665 + 0.555598i 0.961659 0.274248i \(-0.0884288\pi\)
−0.557994 + 0.829845i \(0.688429\pi\)
\(774\) −0.574458 −0.0206485
\(775\) 0 0
\(776\) −5.19209 −0.186385
\(777\) 0.0159727 + 0.0219846i 0.000573019 + 0.000788693i
\(778\) −2.21278 0.718977i −0.0793321 0.0257766i
\(779\) −5.86589 + 18.0533i −0.210167 + 0.646828i
\(780\) 0 0
\(781\) −10.7348 33.0383i −0.384121 1.18220i
\(782\) 3.11359i 0.111342i
\(783\) 40.4915 13.1565i 1.44705 0.470174i
\(784\) −14.4797 10.5201i −0.517133 0.375719i
\(785\) 0 0
\(786\) −6.00477 + 4.36272i −0.214183 + 0.155613i
\(787\) −2.36591 + 3.25640i −0.0843357 + 0.116078i −0.849100 0.528232i \(-0.822855\pi\)
0.764765 + 0.644310i \(0.222855\pi\)
\(788\) 14.8592 20.4519i 0.529335 0.728568i
\(789\) 71.7410 52.1229i 2.55405 1.85562i
\(790\) 0 0
\(791\) −0.0467322 0.0339529i −0.00166161 0.00120723i
\(792\) 42.0419 13.6602i 1.49389 0.485395i
\(793\) 34.7910i 1.23546i
\(794\) 5.87446 + 18.0797i 0.208477 + 0.641625i
\(795\) 0 0
\(796\) 2.04155 6.28325i 0.0723609 0.222704i
\(797\) −15.2023 4.93953i −0.538493 0.174967i 0.0271283 0.999632i \(-0.491364\pi\)
−0.565622 + 0.824665i \(0.691364\pi\)
\(798\) −0.0526714 0.0724959i −0.00186455 0.00256633i
\(799\) 28.2988 1.00114
\(800\) 0 0
\(801\) −111.759 −3.94881
\(802\) 4.92321 + 6.77622i 0.173845 + 0.239277i
\(803\) 13.4744 + 4.37810i 0.475502 + 0.154500i
\(804\) −7.47950 + 23.0195i −0.263782 + 0.811836i
\(805\) 0 0
\(806\) −3.51307 10.8121i −0.123743 0.380841i
\(807\) 24.5806i 0.865279i
\(808\) −18.4927 + 6.00866i −0.650573 + 0.211384i
\(809\) −23.6245 17.1642i −0.830594 0.603462i 0.0891332 0.996020i \(-0.471590\pi\)
−0.919727 + 0.392558i \(0.871590\pi\)
\(810\) 0 0
\(811\) −5.75792 + 4.18338i −0.202188 + 0.146898i −0.684272 0.729227i \(-0.739880\pi\)
0.482084 + 0.876125i \(0.339880\pi\)
\(812\) −0.0943310 + 0.129835i −0.00331037 + 0.00455633i
\(813\) −17.3724 + 23.9110i −0.609276 + 0.838597i
\(814\) −0.536361 + 0.389689i −0.0187994 + 0.0136586i
\(815\) 0 0
\(816\) 23.1838 + 16.8440i 0.811597 + 0.589659i
\(817\) 0.403592 0.131135i 0.0141199 0.00458784i
\(818\) 0.237034i 0.00828770i
\(819\) −0.182307 0.561084i −0.00637033 0.0196059i
\(820\) 0 0
\(821\) −10.0749 + 31.0074i −0.351617 + 1.08217i 0.606327 + 0.795215i \(0.292642\pi\)
−0.957945 + 0.286952i \(0.907358\pi\)
\(822\) 18.8804 + 6.13462i 0.658531 + 0.213970i
\(823\) 15.9502 + 21.9536i 0.555989 + 0.765253i 0.990810 0.135264i \(-0.0431882\pi\)
−0.434821 + 0.900517i \(0.643188\pi\)
\(824\) 34.3551 1.19681
\(825\) 0 0
\(826\) −0.0530966 −0.00184747
\(827\) 32.2243 + 44.3529i 1.12055 + 1.54230i 0.804886 + 0.593429i \(0.202226\pi\)
0.315662 + 0.948872i \(0.397774\pi\)
\(828\) 18.7417 + 6.08954i 0.651318 + 0.211626i
\(829\) −0.145846 + 0.448869i −0.00506545 + 0.0155899i −0.953557 0.301212i \(-0.902609\pi\)
0.948492 + 0.316802i \(0.102609\pi\)
\(830\) 0 0
\(831\) 16.4318 + 50.5719i 0.570013 + 1.75432i
\(832\) 9.78095i 0.339093i
\(833\) 24.1180 7.83641i 0.835639 0.271515i
\(834\) −9.95482 7.23260i −0.344707 0.250444i
\(835\) 0 0
\(836\) −12.3250 + 8.95464i −0.426269 + 0.309703i
\(837\) −38.9895 + 53.6644i −1.34767 + 1.85491i
\(838\) −7.13653 + 9.82260i −0.246528 + 0.339316i
\(839\) −31.1259 + 22.6143i −1.07458 + 0.780731i −0.976731 0.214470i \(-0.931198\pi\)
−0.0978532 + 0.995201i \(0.531198\pi\)
\(840\) 0 0
\(841\) 11.4241 + 8.30008i 0.393934 + 0.286210i
\(842\) 14.9364 4.85314i 0.514743 0.167250i
\(843\) 84.1929i 2.89976i
\(844\) −10.2153 31.4394i −0.351625 1.08219i
\(845\) 0 0
\(846\) 7.94248 24.4444i 0.273068 0.840417i
\(847\) 0.0416263 + 0.0135252i 0.00143030 + 0.000464731i
\(848\) −13.4847 18.5601i −0.463065 0.637355i
\(849\) 10.7615 0.369333
\(850\) 0 0
\(851\) −0.633505 −0.0217163
\(852\) −30.8288 42.4321i −1.05618 1.45370i
\(853\) 34.0993 + 11.0795i 1.16754 + 0.379356i 0.827723 0.561136i \(-0.189636\pi\)
0.339815 + 0.940492i \(0.389636\pi\)
\(854\) −0.0339325 + 0.104434i −0.00116115 + 0.00357364i
\(855\) 0 0
\(856\) −9.21595 28.3638i −0.314995 0.969454i
\(857\) 0.386299i 0.0131957i 0.999978 + 0.00659786i \(0.00210018\pi\)
−0.999978 + 0.00659786i \(0.997900\pi\)
\(858\) 19.9411 6.47926i 0.680779 0.221198i
\(859\) 18.0321 + 13.1011i 0.615247 + 0.447003i 0.851258 0.524747i \(-0.175840\pi\)
−0.236011 + 0.971750i \(0.575840\pi\)
\(860\) 0 0
\(861\) 0.464863 0.337743i 0.0158425 0.0115102i
\(862\) −0.589144 + 0.810887i −0.0200663 + 0.0276189i
\(863\) −5.46528 + 7.52231i −0.186040 + 0.256062i −0.891842 0.452347i \(-0.850587\pi\)
0.705802 + 0.708409i \(0.250587\pi\)
\(864\) 44.9822 32.6815i 1.53033 1.11185i
\(865\) 0 0
\(866\) −2.86656 2.08268i −0.0974096 0.0707722i
\(867\) 11.3958 3.70272i 0.387021 0.125751i
\(868\) 0.250039i 0.00848686i
\(869\) 10.7225 + 33.0005i 0.363736 + 1.11946i
\(870\) 0 0
\(871\) −5.22013 + 16.0659i −0.176877 + 0.544373i
\(872\) −10.6482 3.45982i −0.360594 0.117164i
\(873\) 10.6725 + 14.6894i 0.361208 + 0.497160i
\(874\) 2.08903 0.0706626
\(875\) 0 0
\(876\) 21.3910 0.722734
\(877\) −17.1508 23.6060i −0.579140 0.797118i 0.414461 0.910067i \(-0.363970\pi\)
−0.993601 + 0.112949i \(0.963970\pi\)
\(878\) −6.17601 2.00671i −0.208430 0.0677230i
\(879\) −22.4573 + 69.1165i −0.757467 + 2.33124i
\(880\) 0 0
\(881\) −12.3835 38.1124i −0.417210 1.28404i −0.910260 0.414038i \(-0.864118\pi\)
0.493050 0.870001i \(-0.335882\pi\)
\(882\) 23.0325i 0.775543i
\(883\) 29.3248 9.52820i 0.986858 0.320650i 0.229256 0.973366i \(-0.426371\pi\)
0.757602 + 0.652717i \(0.226371\pi\)
\(884\) 19.3570 + 14.0637i 0.651047 + 0.473014i
\(885\) 0 0
\(886\) −8.86357 + 6.43976i −0.297777 + 0.216348i
\(887\) −22.6608 + 31.1899i −0.760875 + 1.04725i 0.236266 + 0.971688i \(0.424076\pi\)
−0.997141 + 0.0755658i \(0.975924\pi\)
\(888\) −1.26116 + 1.73583i −0.0423216 + 0.0582507i
\(889\) −0.329226 + 0.239197i −0.0110419 + 0.00802241i
\(890\) 0 0
\(891\) −41.8521 30.4073i −1.40210 1.01868i
\(892\) −18.8889 + 6.13739i −0.632449 + 0.205495i
\(893\) 18.9868i 0.635370i
\(894\) 2.69477 + 8.29366i 0.0901267 + 0.277382i
\(895\) 0 0
\(896\) −0.0835993 + 0.257292i −0.00279286 + 0.00859553i
\(897\) 19.0546 + 6.19122i 0.636215 + 0.206719i
\(898\) 0.117680 + 0.161972i 0.00392702 + 0.00540508i
\(899\) 23.1818 0.773156
\(900\) 0 0
\(901\) 32.5052 1.08291
\(902\) 8.23994 + 11.3413i 0.274360 + 0.377624i
\(903\) −0.0122168 0.00396949i −0.000406551 0.000132096i
\(904\) 1.40939 4.33765i 0.0468755 0.144268i
\(905\) 0 0
\(906\) −3.52916 10.8616i −0.117248 0.360853i
\(907\) 4.77670i 0.158608i −0.996850 0.0793038i \(-0.974730\pi\)
0.996850 0.0793038i \(-0.0252697\pi\)
\(908\) −18.6263 + 6.05205i −0.618136 + 0.200844i
\(909\) 55.0119 + 39.9685i 1.82463 + 1.32567i
\(910\) 0 0
\(911\) 9.33054 6.77904i 0.309135 0.224600i −0.422390 0.906414i \(-0.638809\pi\)
0.731525 + 0.681814i \(0.238809\pi\)
\(912\) −11.3014 + 15.5550i −0.374225 + 0.515077i
\(913\) 18.8656 25.9663i 0.624361 0.859359i
\(914\) −14.2769 + 10.3728i −0.472238 + 0.343101i
\(915\) 0 0
\(916\) 13.6541 + 9.92028i 0.451144 + 0.327775i
\(917\) −0.108357 + 0.0352073i −0.00357826 + 0.00116265i
\(918\) 20.0341i 0.661224i
\(919\) 12.7707 + 39.3041i 0.421266 + 1.29652i 0.906525 + 0.422153i \(0.138726\pi\)
−0.485258 + 0.874371i \(0.661274\pi\)
\(920\) 0 0
\(921\) 1.06343 3.27290i 0.0350411 0.107846i
\(922\) −7.60517 2.47107i −0.250463 0.0813803i
\(923\) −21.5162 29.6145i −0.708213 0.974772i
\(924\) 0.461153 0.0151708
\(925\) 0 0
\(926\) −15.2717 −0.501860
\(927\) −70.6176 97.1968i −2.31939 3.19236i
\(928\) −18.4802 6.00460i −0.606644 0.197111i
\(929\) 4.14621 12.7607i 0.136033 0.418666i −0.859716 0.510772i \(-0.829360\pi\)
0.995749 + 0.0921056i \(0.0293597\pi\)
\(930\) 0 0
\(931\) 5.25776 + 16.1817i 0.172316 + 0.530335i
\(932\) 27.1552i 0.889499i
\(933\) −43.4010 + 14.1018i −1.42089 + 0.461674i
\(934\) 2.69392 + 1.95724i 0.0881476 + 0.0640430i
\(935\) 0 0
\(936\) 37.6850 27.3798i 1.23177 0.894936i
\(937\) 24.6828 33.9729i 0.806351 1.10985i −0.185525 0.982640i \(-0.559398\pi\)
0.991876 0.127208i \(-0.0406015\pi\)
\(938\) 0.0313390 0.0431344i 0.00102325 0.00140839i
\(939\) 12.3832 8.99692i 0.404111 0.293603i
\(940\) 0 0
\(941\) −32.4064 23.5446i −1.05642 0.767532i −0.0829949 0.996550i \(-0.526449\pi\)
−0.973422 + 0.229018i \(0.926449\pi\)
\(942\) −12.7206 + 4.13317i −0.414460 + 0.134666i
\(943\) 13.3954i 0.436215i
\(944\) 3.52050 + 10.8350i 0.114583 + 0.352649i
\(945\) 0 0
\(946\) 0.0968441 0.298056i 0.00314867 0.00969062i
\(947\) 41.8228 + 13.5890i 1.35906 + 0.441585i 0.895728 0.444602i \(-0.146655\pi\)
0.463329 + 0.886186i \(0.346655\pi\)
\(948\) 30.7935 + 42.3836i 1.00013 + 1.37656i
\(949\) 14.9293 0.484625
\(950\) 0 0
\(951\) 70.1721 2.27549
\(952\) −0.0951461 0.130957i −0.00308370 0.00424435i
\(953\) −38.6292 12.5514i −1.25132 0.406579i −0.392928 0.919569i \(-0.628538\pi\)
−0.858395 + 0.512990i \(0.828538\pi\)
\(954\) 9.12308 28.0779i 0.295371 0.909057i
\(955\) 0 0
\(956\) −7.74726 23.8436i −0.250564 0.771158i
\(957\) 42.7548i 1.38207i
\(958\) 10.5970 3.44319i 0.342375 0.111244i
\(959\) 0.246533 + 0.179116i 0.00796095 + 0.00578397i
\(960\) 0 0
\(961\) −4.14019 + 3.00803i −0.133555 + 0.0970331i
\(962\) −0.410633 + 0.565188i −0.0132393 + 0.0182224i
\(963\) −61.3028 + 84.3760i −1.97545 + 2.71898i
\(964\) −35.8150 + 26.0212i −1.15352 + 0.838085i
\(965\) 0 0
\(966\) −0.0511586 0.0371689i −0.00164600 0.00119589i
\(967\) 15.2171 4.94432i 0.489348 0.158999i −0.0539419 0.998544i \(-0.517179\pi\)
0.543290 + 0.839545i \(0.317179\pi\)
\(968\) 3.45581i 0.111074i
\(969\) −8.41833 25.9090i −0.270436 0.832315i
\(970\) 0 0
\(971\) 17.1567 52.8028i 0.550583 1.69452i −0.156747 0.987639i \(-0.550101\pi\)
0.707331 0.706883i \(-0.249899\pi\)
\(972\) −19.2041 6.23978i −0.615971 0.200141i
\(973\) −0.111021 0.152808i −0.00355917 0.00489878i
\(974\) −5.10263 −0.163499
\(975\) 0 0
\(976\) 23.5608 0.754162
\(977\) −3.71797 5.11734i −0.118948 0.163718i 0.745391 0.666628i \(-0.232263\pi\)
−0.864339 + 0.502909i \(0.832263\pi\)
\(978\) −7.00021 2.27451i −0.223842 0.0727307i
\(979\) 18.8407 57.9858i 0.602152 1.85323i
\(980\) 0 0
\(981\) 12.0992 + 37.2375i 0.386298 + 1.18890i
\(982\) 3.32659i 0.106156i
\(983\) 46.2615 15.0313i 1.47551 0.479423i 0.542743 0.839899i \(-0.317386\pi\)
0.932768 + 0.360476i \(0.117386\pi\)
\(984\) 36.7041 + 26.6671i 1.17008 + 0.850115i
\(985\) 0 0
\(986\) 5.66429 4.11535i 0.180388 0.131059i
\(987\) 0.337821 0.464971i 0.0107530 0.0148002i
\(988\) −9.43591 + 12.9874i −0.300196 + 0.413185i
\(989\) 0.242270 0.176019i 0.00770373 0.00559709i
\(990\) 0 0
\(991\) 35.7394 + 25.9662i 1.13530 + 0.824842i 0.986457 0.164019i \(-0.0524458\pi\)
0.148841 + 0.988861i \(0.452446\pi\)
\(992\) 28.7925 9.35525i 0.914163 0.297029i
\(993\) 5.35931i 0.170073i
\(994\) 0.0357023 + 0.109880i 0.00113241 + 0.00348519i
\(995\) 0 0
\(996\) 14.9748 46.0877i 0.474495 1.46035i
\(997\) 38.2574 + 12.4306i 1.21162 + 0.393681i 0.844025 0.536304i \(-0.180180\pi\)
0.367599 + 0.929984i \(0.380180\pi\)
\(998\) 0.319202 + 0.439344i 0.0101042 + 0.0139072i
\(999\) 4.07623 0.128966
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.e.j.374.4 32
5.2 odd 4 625.2.d.q.251.2 16
5.3 odd 4 625.2.d.m.251.3 16
5.4 even 2 inner 625.2.e.j.374.5 32
25.2 odd 20 625.2.d.p.126.3 16
25.3 odd 20 625.2.a.g.1.4 yes 8
25.4 even 10 625.2.b.d.624.7 16
25.6 even 5 625.2.e.k.124.5 32
25.8 odd 20 625.2.d.n.501.2 16
25.9 even 10 inner 625.2.e.j.249.4 32
25.11 even 5 625.2.e.k.499.4 32
25.12 odd 20 625.2.d.q.376.2 16
25.13 odd 20 625.2.d.m.376.3 16
25.14 even 10 625.2.e.k.499.5 32
25.16 even 5 inner 625.2.e.j.249.5 32
25.17 odd 20 625.2.d.p.501.3 16
25.19 even 10 625.2.e.k.124.4 32
25.21 even 5 625.2.b.d.624.10 16
25.22 odd 20 625.2.a.e.1.5 8
25.23 odd 20 625.2.d.n.126.2 16
75.47 even 20 5625.2.a.be.1.4 8
75.53 even 20 5625.2.a.s.1.5 8
100.3 even 20 10000.2.a.be.1.1 8
100.47 even 20 10000.2.a.bn.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
625.2.a.e.1.5 8 25.22 odd 20
625.2.a.g.1.4 yes 8 25.3 odd 20
625.2.b.d.624.7 16 25.4 even 10
625.2.b.d.624.10 16 25.21 even 5
625.2.d.m.251.3 16 5.3 odd 4
625.2.d.m.376.3 16 25.13 odd 20
625.2.d.n.126.2 16 25.23 odd 20
625.2.d.n.501.2 16 25.8 odd 20
625.2.d.p.126.3 16 25.2 odd 20
625.2.d.p.501.3 16 25.17 odd 20
625.2.d.q.251.2 16 5.2 odd 4
625.2.d.q.376.2 16 25.12 odd 20
625.2.e.j.249.4 32 25.9 even 10 inner
625.2.e.j.249.5 32 25.16 even 5 inner
625.2.e.j.374.4 32 1.1 even 1 trivial
625.2.e.j.374.5 32 5.4 even 2 inner
625.2.e.k.124.4 32 25.19 even 10
625.2.e.k.124.5 32 25.6 even 5
625.2.e.k.499.4 32 25.11 even 5
625.2.e.k.499.5 32 25.14 even 10
5625.2.a.s.1.5 8 75.53 even 20
5625.2.a.be.1.4 8 75.47 even 20
10000.2.a.be.1.1 8 100.3 even 20
10000.2.a.bn.1.8 8 100.47 even 20