Defining parameters
Level: | \( N \) | \(=\) | \( 5625 = 3^{2} \cdot 5^{4} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5625.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 32 \) | ||
Sturm bound: | \(1500\) | ||
Trace bound: | \(16\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5625))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 810 | 208 | 602 |
Cusp forms | 691 | 192 | 499 |
Eisenstein series | 119 | 16 | 103 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(36\) |
\(+\) | \(-\) | \(-\) | \(44\) |
\(-\) | \(+\) | \(-\) | \(58\) |
\(-\) | \(-\) | \(+\) | \(54\) |
Plus space | \(+\) | \(90\) | |
Minus space | \(-\) | \(102\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5625))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5625))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5625)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(125))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(375))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(625))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1125))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1875))\)\(^{\oplus 2}\)