Properties

Label 560.2.bs.c.271.5
Level $560$
Weight $2$
Character 560.271
Analytic conductor $4.472$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,2,Mod(31,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 43 x^{10} - 160 x^{9} + 572 x^{8} - 1394 x^{7} + 3039 x^{6} - 4844 x^{5} + \cdots + 657 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.5
Root \(0.500000 - 1.58132i\) of defining polynomial
Character \(\chi\) \(=\) 560.271
Dual form 560.2.bs.c.31.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22368 + 2.11947i) q^{3} +(-0.866025 - 0.500000i) q^{5} +(-2.49406 + 0.882973i) q^{7} +(-1.49476 + 2.58900i) q^{9} +(-5.60385 + 3.23538i) q^{11} -2.30812i q^{13} -2.44735i q^{15} +(-4.70726 + 2.71774i) q^{17} +(-0.494762 + 0.856953i) q^{19} +(-4.92336 - 4.20562i) q^{21} +(5.17680 + 2.98883i) q^{23} +(0.500000 + 0.866025i) q^{25} +0.0256392 q^{27} +3.02424 q^{29} +(2.62784 + 4.55156i) q^{31} +(-13.7146 - 7.91812i) q^{33} +(2.60141 + 0.482355i) q^{35} +(-0.211966 + 0.367136i) q^{37} +(4.89198 - 2.82439i) q^{39} +9.84894i q^{41} -5.22517i q^{43} +(2.58900 - 1.49476i) q^{45} +(1.96499 - 3.40347i) q^{47} +(5.44072 - 4.40438i) q^{49} +(-11.5203 - 6.65126i) q^{51} +(-4.50577 - 7.80423i) q^{53} +6.47077 q^{55} -2.42171 q^{57} +(4.11048 + 7.11956i) q^{59} +(-5.74509 - 3.31693i) q^{61} +(1.44201 - 7.77698i) q^{63} +(-1.15406 + 1.99889i) q^{65} +(-12.6354 + 7.29503i) q^{67} +14.6294i q^{69} +2.28875i q^{71} +(10.4552 - 6.03634i) q^{73} +(-1.22368 + 2.11947i) q^{75} +(11.1196 - 13.0173i) q^{77} +(-7.02943 - 4.05844i) q^{79} +(4.51566 + 7.82135i) q^{81} +2.94129 q^{83} +5.43548 q^{85} +(3.70069 + 6.40979i) q^{87} +(15.2613 + 8.81111i) q^{89} +(2.03801 + 5.75660i) q^{91} +(-6.43125 + 11.1393i) q^{93} +(0.856953 - 0.494762i) q^{95} +4.96528i q^{97} -19.3445i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{3} - 2 q^{7} - 10 q^{9} + 6 q^{11} + 2 q^{19} + 12 q^{21} - 18 q^{23} + 6 q^{25} + 20 q^{27} + 16 q^{29} + 4 q^{31} - 6 q^{35} - 4 q^{37} + 24 q^{39} - 12 q^{45} + 12 q^{47} - 8 q^{49} - 12 q^{51}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.22368 + 2.11947i 0.706489 + 1.22368i 0.966151 + 0.257976i \(0.0830554\pi\)
−0.259662 + 0.965700i \(0.583611\pi\)
\(4\) 0 0
\(5\) −0.866025 0.500000i −0.387298 0.223607i
\(6\) 0 0
\(7\) −2.49406 + 0.882973i −0.942668 + 0.333732i
\(8\) 0 0
\(9\) −1.49476 + 2.58900i −0.498254 + 0.863001i
\(10\) 0 0
\(11\) −5.60385 + 3.23538i −1.68962 + 0.975505i −0.734824 + 0.678258i \(0.762735\pi\)
−0.954801 + 0.297247i \(0.903931\pi\)
\(12\) 0 0
\(13\) 2.30812i 0.640157i −0.947391 0.320079i \(-0.896291\pi\)
0.947391 0.320079i \(-0.103709\pi\)
\(14\) 0 0
\(15\) 2.44735i 0.631903i
\(16\) 0 0
\(17\) −4.70726 + 2.71774i −1.14168 + 0.659149i −0.946846 0.321688i \(-0.895750\pi\)
−0.194833 + 0.980836i \(0.562417\pi\)
\(18\) 0 0
\(19\) −0.494762 + 0.856953i −0.113506 + 0.196598i −0.917182 0.398469i \(-0.869541\pi\)
0.803675 + 0.595068i \(0.202875\pi\)
\(20\) 0 0
\(21\) −4.92336 4.20562i −1.07436 0.917741i
\(22\) 0 0
\(23\) 5.17680 + 2.98883i 1.07944 + 0.623213i 0.930745 0.365670i \(-0.119160\pi\)
0.148693 + 0.988883i \(0.452493\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0.0256392 0.00493426
\(28\) 0 0
\(29\) 3.02424 0.561588 0.280794 0.959768i \(-0.409402\pi\)
0.280794 + 0.959768i \(0.409402\pi\)
\(30\) 0 0
\(31\) 2.62784 + 4.55156i 0.471975 + 0.817484i 0.999486 0.0320641i \(-0.0102081\pi\)
−0.527511 + 0.849548i \(0.676875\pi\)
\(32\) 0 0
\(33\) −13.7146 7.91812i −2.38740 1.37837i
\(34\) 0 0
\(35\) 2.60141 + 0.482355i 0.439719 + 0.0815330i
\(36\) 0 0
\(37\) −0.211966 + 0.367136i −0.0348470 + 0.0603567i −0.882923 0.469518i \(-0.844428\pi\)
0.848076 + 0.529875i \(0.177761\pi\)
\(38\) 0 0
\(39\) 4.89198 2.82439i 0.783344 0.452264i
\(40\) 0 0
\(41\) 9.84894i 1.53815i 0.639161 + 0.769073i \(0.279282\pi\)
−0.639161 + 0.769073i \(0.720718\pi\)
\(42\) 0 0
\(43\) 5.22517i 0.796830i −0.917205 0.398415i \(-0.869560\pi\)
0.917205 0.398415i \(-0.130440\pi\)
\(44\) 0 0
\(45\) 2.58900 1.49476i 0.385946 0.222826i
\(46\) 0 0
\(47\) 1.96499 3.40347i 0.286624 0.496447i −0.686378 0.727245i \(-0.740800\pi\)
0.973002 + 0.230798i \(0.0741336\pi\)
\(48\) 0 0
\(49\) 5.44072 4.40438i 0.777245 0.629198i
\(50\) 0 0
\(51\) −11.5203 6.65126i −1.61317 0.931363i
\(52\) 0 0
\(53\) −4.50577 7.80423i −0.618916 1.07199i −0.989684 0.143268i \(-0.954239\pi\)
0.370768 0.928725i \(-0.379094\pi\)
\(54\) 0 0
\(55\) 6.47077 0.872518
\(56\) 0 0
\(57\) −2.42171 −0.320763
\(58\) 0 0
\(59\) 4.11048 + 7.11956i 0.535139 + 0.926888i 0.999157 + 0.0410623i \(0.0130742\pi\)
−0.464017 + 0.885826i \(0.653592\pi\)
\(60\) 0 0
\(61\) −5.74509 3.31693i −0.735583 0.424689i 0.0848783 0.996391i \(-0.472950\pi\)
−0.820461 + 0.571702i \(0.806283\pi\)
\(62\) 0 0
\(63\) 1.44201 7.77698i 0.181677 0.979807i
\(64\) 0 0
\(65\) −1.15406 + 1.99889i −0.143143 + 0.247932i
\(66\) 0 0
\(67\) −12.6354 + 7.29503i −1.54366 + 0.891230i −0.545052 + 0.838402i \(0.683490\pi\)
−0.998604 + 0.0528283i \(0.983176\pi\)
\(68\) 0 0
\(69\) 14.6294i 1.76117i
\(70\) 0 0
\(71\) 2.28875i 0.271625i 0.990735 + 0.135813i \(0.0433645\pi\)
−0.990735 + 0.135813i \(0.956635\pi\)
\(72\) 0 0
\(73\) 10.4552 6.03634i 1.22369 0.706500i 0.257990 0.966148i \(-0.416940\pi\)
0.965703 + 0.259648i \(0.0836065\pi\)
\(74\) 0 0
\(75\) −1.22368 + 2.11947i −0.141298 + 0.244735i
\(76\) 0 0
\(77\) 11.1196 13.0173i 1.26720 1.48346i
\(78\) 0 0
\(79\) −7.02943 4.05844i −0.790872 0.456610i 0.0493971 0.998779i \(-0.484270\pi\)
−0.840270 + 0.542169i \(0.817603\pi\)
\(80\) 0 0
\(81\) 4.51566 + 7.82135i 0.501740 + 0.869039i
\(82\) 0 0
\(83\) 2.94129 0.322849 0.161424 0.986885i \(-0.448391\pi\)
0.161424 + 0.986885i \(0.448391\pi\)
\(84\) 0 0
\(85\) 5.43548 0.589561
\(86\) 0 0
\(87\) 3.70069 + 6.40979i 0.396756 + 0.687202i
\(88\) 0 0
\(89\) 15.2613 + 8.81111i 1.61769 + 0.933976i 0.987515 + 0.157527i \(0.0503520\pi\)
0.630180 + 0.776449i \(0.282981\pi\)
\(90\) 0 0
\(91\) 2.03801 + 5.75660i 0.213641 + 0.603455i
\(92\) 0 0
\(93\) −6.43125 + 11.1393i −0.666890 + 1.15509i
\(94\) 0 0
\(95\) 0.856953 0.494762i 0.0879215 0.0507615i
\(96\) 0 0
\(97\) 4.96528i 0.504148i 0.967708 + 0.252074i \(0.0811126\pi\)
−0.967708 + 0.252074i \(0.918887\pi\)
\(98\) 0 0
\(99\) 19.3445i 1.94420i
\(100\) 0 0
\(101\) −5.53415 + 3.19514i −0.550668 + 0.317928i −0.749391 0.662127i \(-0.769654\pi\)
0.198723 + 0.980056i \(0.436321\pi\)
\(102\) 0 0
\(103\) −6.76445 + 11.7164i −0.666521 + 1.15445i 0.312349 + 0.949967i \(0.398884\pi\)
−0.978870 + 0.204482i \(0.934449\pi\)
\(104\) 0 0
\(105\) 2.16094 + 6.10385i 0.210887 + 0.595675i
\(106\) 0 0
\(107\) 3.67525 + 2.12191i 0.355300 + 0.205133i 0.667017 0.745042i \(-0.267571\pi\)
−0.311717 + 0.950175i \(0.600904\pi\)
\(108\) 0 0
\(109\) 4.69039 + 8.12400i 0.449258 + 0.778138i 0.998338 0.0576318i \(-0.0183549\pi\)
−0.549080 + 0.835770i \(0.685022\pi\)
\(110\) 0 0
\(111\) −1.03751 −0.0984761
\(112\) 0 0
\(113\) −7.45643 −0.701442 −0.350721 0.936480i \(-0.614063\pi\)
−0.350721 + 0.936480i \(0.614063\pi\)
\(114\) 0 0
\(115\) −2.98883 5.17680i −0.278710 0.482739i
\(116\) 0 0
\(117\) 5.97573 + 3.45009i 0.552456 + 0.318961i
\(118\) 0 0
\(119\) 9.34053 10.9346i 0.856245 1.00237i
\(120\) 0 0
\(121\) 15.4354 26.7349i 1.40322 2.43045i
\(122\) 0 0
\(123\) −20.8745 + 12.0519i −1.88219 + 1.08668i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 13.8065i 1.22513i −0.790420 0.612565i \(-0.790138\pi\)
0.790420 0.612565i \(-0.209862\pi\)
\(128\) 0 0
\(129\) 11.0746 6.39391i 0.975062 0.562952i
\(130\) 0 0
\(131\) −1.27898 + 2.21526i −0.111745 + 0.193548i −0.916474 0.400094i \(-0.868977\pi\)
0.804729 + 0.593642i \(0.202311\pi\)
\(132\) 0 0
\(133\) 0.477302 2.57416i 0.0413873 0.223208i
\(134\) 0 0
\(135\) −0.0222042 0.0128196i −0.00191103 0.00110333i
\(136\) 0 0
\(137\) −0.156375 0.270849i −0.0133600 0.0231402i 0.859268 0.511525i \(-0.170919\pi\)
−0.872628 + 0.488385i \(0.837586\pi\)
\(138\) 0 0
\(139\) 0.186858 0.0158491 0.00792453 0.999969i \(-0.497478\pi\)
0.00792453 + 0.999969i \(0.497478\pi\)
\(140\) 0 0
\(141\) 9.61806 0.809987
\(142\) 0 0
\(143\) 7.46765 + 12.9344i 0.624476 + 1.08162i
\(144\) 0 0
\(145\) −2.61907 1.51212i −0.217502 0.125575i
\(146\) 0 0
\(147\) 15.9926 + 6.14189i 1.31905 + 0.506575i
\(148\) 0 0
\(149\) −7.07961 + 12.2622i −0.579984 + 1.00456i 0.415497 + 0.909595i \(0.363608\pi\)
−0.995480 + 0.0949668i \(0.969726\pi\)
\(150\) 0 0
\(151\) 18.1869 10.5002i 1.48003 0.854494i 0.480283 0.877114i \(-0.340534\pi\)
0.999744 + 0.0226198i \(0.00720072\pi\)
\(152\) 0 0
\(153\) 16.2495i 1.31369i
\(154\) 0 0
\(155\) 5.25569i 0.422147i
\(156\) 0 0
\(157\) 5.90231 3.40770i 0.471055 0.271964i −0.245626 0.969365i \(-0.578994\pi\)
0.716681 + 0.697401i \(0.245660\pi\)
\(158\) 0 0
\(159\) 11.0272 19.0997i 0.874514 1.51470i
\(160\) 0 0
\(161\) −15.5503 2.88335i −1.22554 0.227240i
\(162\) 0 0
\(163\) −6.60114 3.81117i −0.517041 0.298514i 0.218682 0.975796i \(-0.429824\pi\)
−0.735723 + 0.677282i \(0.763158\pi\)
\(164\) 0 0
\(165\) 7.91812 + 13.7146i 0.616425 + 1.06768i
\(166\) 0 0
\(167\) −5.01130 −0.387786 −0.193893 0.981023i \(-0.562112\pi\)
−0.193893 + 0.981023i \(0.562112\pi\)
\(168\) 0 0
\(169\) 7.67259 0.590199
\(170\) 0 0
\(171\) −1.47910 2.56188i −0.113110 0.195912i
\(172\) 0 0
\(173\) 10.4586 + 6.03826i 0.795150 + 0.459080i 0.841773 0.539832i \(-0.181512\pi\)
−0.0466222 + 0.998913i \(0.514846\pi\)
\(174\) 0 0
\(175\) −2.01171 1.71844i −0.152071 0.129902i
\(176\) 0 0
\(177\) −10.0598 + 17.4241i −0.756140 + 1.30967i
\(178\) 0 0
\(179\) −8.81788 + 5.09101i −0.659080 + 0.380520i −0.791926 0.610617i \(-0.790922\pi\)
0.132847 + 0.991137i \(0.457588\pi\)
\(180\) 0 0
\(181\) 6.35399i 0.472288i −0.971718 0.236144i \(-0.924116\pi\)
0.971718 0.236144i \(-0.0758838\pi\)
\(182\) 0 0
\(183\) 16.2354i 1.20015i
\(184\) 0 0
\(185\) 0.367136 0.211966i 0.0269924 0.0155840i
\(186\) 0 0
\(187\) 17.5859 30.4596i 1.28601 2.22743i
\(188\) 0 0
\(189\) −0.0639457 + 0.0226387i −0.00465137 + 0.00164672i
\(190\) 0 0
\(191\) −5.09447 2.94129i −0.368623 0.212824i 0.304234 0.952597i \(-0.401600\pi\)
−0.672857 + 0.739773i \(0.734933\pi\)
\(192\) 0 0
\(193\) 4.20663 + 7.28609i 0.302800 + 0.524465i 0.976769 0.214295i \(-0.0687453\pi\)
−0.673969 + 0.738759i \(0.735412\pi\)
\(194\) 0 0
\(195\) −5.64878 −0.404517
\(196\) 0 0
\(197\) −15.8091 −1.12635 −0.563174 0.826338i \(-0.690420\pi\)
−0.563174 + 0.826338i \(0.690420\pi\)
\(198\) 0 0
\(199\) 6.18568 + 10.7139i 0.438491 + 0.759489i 0.997573 0.0696235i \(-0.0221798\pi\)
−0.559082 + 0.829112i \(0.688846\pi\)
\(200\) 0 0
\(201\) −30.9232 17.8535i −2.18115 1.25929i
\(202\) 0 0
\(203\) −7.54266 + 2.67033i −0.529391 + 0.187420i
\(204\) 0 0
\(205\) 4.92447 8.52943i 0.343940 0.595721i
\(206\) 0 0
\(207\) −15.4762 + 8.93517i −1.07567 + 0.621037i
\(208\) 0 0
\(209\) 6.40298i 0.442903i
\(210\) 0 0
\(211\) 3.49347i 0.240500i −0.992744 0.120250i \(-0.961630\pi\)
0.992744 0.120250i \(-0.0383697\pi\)
\(212\) 0 0
\(213\) −4.85094 + 2.80069i −0.332381 + 0.191900i
\(214\) 0 0
\(215\) −2.61258 + 4.52513i −0.178177 + 0.308611i
\(216\) 0 0
\(217\) −10.5729 9.03157i −0.717736 0.613103i
\(218\) 0 0
\(219\) 25.5876 + 14.7730i 1.72905 + 0.998269i
\(220\) 0 0
\(221\) 6.27287 + 10.8649i 0.421959 + 0.730854i
\(222\) 0 0
\(223\) −22.6778 −1.51862 −0.759309 0.650731i \(-0.774463\pi\)
−0.759309 + 0.650731i \(0.774463\pi\)
\(224\) 0 0
\(225\) −2.98952 −0.199302
\(226\) 0 0
\(227\) −3.77727 6.54243i −0.250706 0.434236i 0.713014 0.701150i \(-0.247330\pi\)
−0.963721 + 0.266913i \(0.913996\pi\)
\(228\) 0 0
\(229\) 10.6443 + 6.14551i 0.703397 + 0.406106i 0.808611 0.588343i \(-0.200220\pi\)
−0.105214 + 0.994450i \(0.533553\pi\)
\(230\) 0 0
\(231\) 41.1965 + 7.63870i 2.71053 + 0.502589i
\(232\) 0 0
\(233\) 1.58232 2.74065i 0.103661 0.179546i −0.809529 0.587079i \(-0.800278\pi\)
0.913190 + 0.407533i \(0.133611\pi\)
\(234\) 0 0
\(235\) −3.40347 + 1.96499i −0.222018 + 0.128182i
\(236\) 0 0
\(237\) 19.8649i 1.29036i
\(238\) 0 0
\(239\) 27.0004i 1.74651i 0.487263 + 0.873255i \(0.337995\pi\)
−0.487263 + 0.873255i \(0.662005\pi\)
\(240\) 0 0
\(241\) 11.7391 6.77756i 0.756180 0.436581i −0.0717424 0.997423i \(-0.522856\pi\)
0.827923 + 0.560842i \(0.189523\pi\)
\(242\) 0 0
\(243\) −11.0129 + 19.0750i −0.706481 + 1.22366i
\(244\) 0 0
\(245\) −6.91399 + 1.09395i −0.441719 + 0.0698898i
\(246\) 0 0
\(247\) 1.97795 + 1.14197i 0.125854 + 0.0726618i
\(248\) 0 0
\(249\) 3.59919 + 6.23397i 0.228089 + 0.395062i
\(250\) 0 0
\(251\) −14.2304 −0.898215 −0.449108 0.893478i \(-0.648258\pi\)
−0.449108 + 0.893478i \(0.648258\pi\)
\(252\) 0 0
\(253\) −38.6800 −2.43179
\(254\) 0 0
\(255\) 6.65126 + 11.5203i 0.416518 + 0.721431i
\(256\) 0 0
\(257\) 16.5626 + 9.56245i 1.03315 + 0.596489i 0.917885 0.396846i \(-0.129895\pi\)
0.115264 + 0.993335i \(0.463229\pi\)
\(258\) 0 0
\(259\) 0.204486 1.10282i 0.0127061 0.0685259i
\(260\) 0 0
\(261\) −4.52053 + 7.82978i −0.279814 + 0.484651i
\(262\) 0 0
\(263\) −6.01602 + 3.47335i −0.370964 + 0.214176i −0.673879 0.738841i \(-0.735373\pi\)
0.302916 + 0.953017i \(0.402040\pi\)
\(264\) 0 0
\(265\) 9.01155i 0.553575i
\(266\) 0 0
\(267\) 43.1278i 2.63938i
\(268\) 0 0
\(269\) 6.70087 3.86875i 0.408559 0.235882i −0.281611 0.959529i \(-0.590869\pi\)
0.690171 + 0.723647i \(0.257536\pi\)
\(270\) 0 0
\(271\) 1.26098 2.18408i 0.0765990 0.132673i −0.825181 0.564868i \(-0.808927\pi\)
0.901781 + 0.432194i \(0.142261\pi\)
\(272\) 0 0
\(273\) −9.70707 + 11.3637i −0.587498 + 0.687762i
\(274\) 0 0
\(275\) −5.60385 3.23538i −0.337925 0.195101i
\(276\) 0 0
\(277\) −14.8320 25.6898i −0.891169 1.54355i −0.838475 0.544940i \(-0.816553\pi\)
−0.0526939 0.998611i \(-0.516781\pi\)
\(278\) 0 0
\(279\) −15.7120 −0.940653
\(280\) 0 0
\(281\) −15.3527 −0.915862 −0.457931 0.888988i \(-0.651409\pi\)
−0.457931 + 0.888988i \(0.651409\pi\)
\(282\) 0 0
\(283\) 4.51231 + 7.81555i 0.268229 + 0.464586i 0.968405 0.249385i \(-0.0802283\pi\)
−0.700176 + 0.713971i \(0.746895\pi\)
\(284\) 0 0
\(285\) 2.09726 + 1.21086i 0.124231 + 0.0717249i
\(286\) 0 0
\(287\) −8.69634 24.5639i −0.513329 1.44996i
\(288\) 0 0
\(289\) 6.27222 10.8638i 0.368954 0.639047i
\(290\) 0 0
\(291\) −10.5237 + 6.07589i −0.616913 + 0.356175i
\(292\) 0 0
\(293\) 0.815396i 0.0476359i 0.999716 + 0.0238180i \(0.00758221\pi\)
−0.999716 + 0.0238180i \(0.992418\pi\)
\(294\) 0 0
\(295\) 8.22097i 0.478643i
\(296\) 0 0
\(297\) −0.143678 + 0.0829525i −0.00833704 + 0.00481339i
\(298\) 0 0
\(299\) 6.89857 11.9487i 0.398954 0.691009i
\(300\) 0 0
\(301\) 4.61368 + 13.0319i 0.265928 + 0.751146i
\(302\) 0 0
\(303\) −13.5440 7.81963i −0.778082 0.449226i
\(304\) 0 0
\(305\) 3.31693 + 5.74509i 0.189927 + 0.328963i
\(306\) 0 0
\(307\) −8.42073 −0.480597 −0.240298 0.970699i \(-0.577245\pi\)
−0.240298 + 0.970699i \(0.577245\pi\)
\(308\) 0 0
\(309\) −33.1100 −1.88356
\(310\) 0 0
\(311\) 10.1220 + 17.5319i 0.573968 + 0.994141i 0.996153 + 0.0876316i \(0.0279298\pi\)
−0.422185 + 0.906510i \(0.638737\pi\)
\(312\) 0 0
\(313\) 21.4103 + 12.3613i 1.21018 + 0.698700i 0.962799 0.270217i \(-0.0870955\pi\)
0.247385 + 0.968917i \(0.420429\pi\)
\(314\) 0 0
\(315\) −5.13731 + 6.01405i −0.289455 + 0.338853i
\(316\) 0 0
\(317\) −9.30310 + 16.1134i −0.522514 + 0.905021i 0.477143 + 0.878826i \(0.341673\pi\)
−0.999657 + 0.0261954i \(0.991661\pi\)
\(318\) 0 0
\(319\) −16.9474 + 9.78460i −0.948873 + 0.547832i
\(320\) 0 0
\(321\) 10.3861i 0.579696i
\(322\) 0 0
\(323\) 5.37854i 0.299270i
\(324\) 0 0
\(325\) 1.99889 1.15406i 0.110878 0.0640157i
\(326\) 0 0
\(327\) −11.4790 + 19.8823i −0.634792 + 1.09949i
\(328\) 0 0
\(329\) −1.89565 + 10.2235i −0.104511 + 0.563641i
\(330\) 0 0
\(331\) −18.5243 10.6950i −1.01819 0.587851i −0.104610 0.994513i \(-0.533359\pi\)
−0.913579 + 0.406662i \(0.866693\pi\)
\(332\) 0 0
\(333\) −0.633677 1.09756i −0.0347253 0.0601460i
\(334\) 0 0
\(335\) 14.5901 0.797141
\(336\) 0 0
\(337\) −11.2762 −0.614252 −0.307126 0.951669i \(-0.599367\pi\)
−0.307126 + 0.951669i \(0.599367\pi\)
\(338\) 0 0
\(339\) −9.12425 15.8037i −0.495561 0.858337i
\(340\) 0 0
\(341\) −29.4521 17.0042i −1.59492 0.920827i
\(342\) 0 0
\(343\) −9.68055 + 15.7888i −0.522701 + 0.852516i
\(344\) 0 0
\(345\) 7.31471 12.6694i 0.393811 0.682100i
\(346\) 0 0
\(347\) 22.4623 12.9686i 1.20584 0.696192i 0.243992 0.969777i \(-0.421543\pi\)
0.961848 + 0.273585i \(0.0882095\pi\)
\(348\) 0 0
\(349\) 15.3031i 0.819159i −0.912274 0.409579i \(-0.865675\pi\)
0.912274 0.409579i \(-0.134325\pi\)
\(350\) 0 0
\(351\) 0.0591782i 0.00315870i
\(352\) 0 0
\(353\) 3.43863 1.98530i 0.183020 0.105667i −0.405691 0.914010i \(-0.632969\pi\)
0.588711 + 0.808344i \(0.299636\pi\)
\(354\) 0 0
\(355\) 1.14438 1.98212i 0.0607372 0.105200i
\(356\) 0 0
\(357\) 34.6053 + 6.41655i 1.83151 + 0.339600i
\(358\) 0 0
\(359\) −24.9641 14.4130i −1.31755 0.760689i −0.334218 0.942496i \(-0.608472\pi\)
−0.983334 + 0.181806i \(0.941806\pi\)
\(360\) 0 0
\(361\) 9.01042 + 15.6065i 0.474233 + 0.821395i
\(362\) 0 0
\(363\) 75.5518 3.96544
\(364\) 0 0
\(365\) −12.0727 −0.631912
\(366\) 0 0
\(367\) 5.13465 + 8.89347i 0.268026 + 0.464236i 0.968352 0.249588i \(-0.0802952\pi\)
−0.700326 + 0.713824i \(0.746962\pi\)
\(368\) 0 0
\(369\) −25.4989 14.7218i −1.32742 0.766387i
\(370\) 0 0
\(371\) 18.1286 + 15.4858i 0.941191 + 0.803982i
\(372\) 0 0
\(373\) 17.2110 29.8103i 0.891151 1.54352i 0.0526548 0.998613i \(-0.483232\pi\)
0.838497 0.544907i \(-0.183435\pi\)
\(374\) 0 0
\(375\) 2.11947 1.22368i 0.109449 0.0631903i
\(376\) 0 0
\(377\) 6.98032i 0.359505i
\(378\) 0 0
\(379\) 10.7999i 0.554754i −0.960761 0.277377i \(-0.910535\pi\)
0.960761 0.277377i \(-0.0894651\pi\)
\(380\) 0 0
\(381\) 29.2624 16.8947i 1.49916 0.865541i
\(382\) 0 0
\(383\) 12.4793 21.6148i 0.637664 1.10447i −0.348280 0.937390i \(-0.613234\pi\)
0.985944 0.167075i \(-0.0534323\pi\)
\(384\) 0 0
\(385\) −16.1385 + 5.71351i −0.822495 + 0.291188i
\(386\) 0 0
\(387\) 13.5280 + 7.81038i 0.687666 + 0.397024i
\(388\) 0 0
\(389\) −14.6421 25.3609i −0.742384 1.28585i −0.951407 0.307937i \(-0.900362\pi\)
0.209022 0.977911i \(-0.432972\pi\)
\(390\) 0 0
\(391\) −32.4914 −1.64316
\(392\) 0 0
\(393\) −6.26022 −0.315787
\(394\) 0 0
\(395\) 4.05844 + 7.02943i 0.204202 + 0.353689i
\(396\) 0 0
\(397\) 11.1825 + 6.45624i 0.561235 + 0.324029i 0.753641 0.657286i \(-0.228296\pi\)
−0.192406 + 0.981315i \(0.561629\pi\)
\(398\) 0 0
\(399\) 6.03990 2.13831i 0.302373 0.107049i
\(400\) 0 0
\(401\) 0.880955 1.52586i 0.0439928 0.0761977i −0.843191 0.537615i \(-0.819325\pi\)
0.887183 + 0.461417i \(0.152659\pi\)
\(402\) 0 0
\(403\) 10.5055 6.06537i 0.523318 0.302138i
\(404\) 0 0
\(405\) 9.03132i 0.448770i
\(406\) 0 0
\(407\) 2.74316i 0.135974i
\(408\) 0 0
\(409\) −34.7367 + 20.0552i −1.71762 + 0.991667i −0.794397 + 0.607399i \(0.792213\pi\)
−0.923221 + 0.384268i \(0.874454\pi\)
\(410\) 0 0
\(411\) 0.382704 0.662863i 0.0188774 0.0326966i
\(412\) 0 0
\(413\) −16.5382 14.1272i −0.813791 0.695155i
\(414\) 0 0
\(415\) −2.54723 1.47065i −0.125039 0.0721912i
\(416\) 0 0
\(417\) 0.228653 + 0.396039i 0.0111972 + 0.0193941i
\(418\) 0 0
\(419\) 12.0471 0.588539 0.294269 0.955723i \(-0.404924\pi\)
0.294269 + 0.955723i \(0.404924\pi\)
\(420\) 0 0
\(421\) 28.6654 1.39707 0.698533 0.715578i \(-0.253836\pi\)
0.698533 + 0.715578i \(0.253836\pi\)
\(422\) 0 0
\(423\) 5.87440 + 10.1748i 0.285623 + 0.494714i
\(424\) 0 0
\(425\) −4.70726 2.71774i −0.228336 0.131830i
\(426\) 0 0
\(427\) 17.2574 + 3.19988i 0.835143 + 0.154853i
\(428\) 0 0
\(429\) −18.2760 + 31.6549i −0.882372 + 1.52831i
\(430\) 0 0
\(431\) 14.8354 8.56524i 0.714597 0.412573i −0.0981636 0.995170i \(-0.531297\pi\)
0.812761 + 0.582597i \(0.197964\pi\)
\(432\) 0 0
\(433\) 12.4485i 0.598235i −0.954216 0.299117i \(-0.903308\pi\)
0.954216 0.299117i \(-0.0966923\pi\)
\(434\) 0 0
\(435\) 7.40139i 0.354869i
\(436\) 0 0
\(437\) −5.12257 + 2.95751i −0.245046 + 0.141477i
\(438\) 0 0
\(439\) −5.40019 + 9.35340i −0.257737 + 0.446414i −0.965635 0.259901i \(-0.916310\pi\)
0.707898 + 0.706314i \(0.249643\pi\)
\(440\) 0 0
\(441\) 3.27038 + 20.6695i 0.155733 + 0.984264i
\(442\) 0 0
\(443\) 0.0831833 + 0.0480259i 0.00395216 + 0.00228178i 0.501975 0.864882i \(-0.332607\pi\)
−0.498023 + 0.867164i \(0.665940\pi\)
\(444\) 0 0
\(445\) −8.81111 15.2613i −0.417687 0.723455i
\(446\) 0 0
\(447\) −34.6525 −1.63901
\(448\) 0 0
\(449\) 13.7048 0.646770 0.323385 0.946268i \(-0.395179\pi\)
0.323385 + 0.946268i \(0.395179\pi\)
\(450\) 0 0
\(451\) −31.8651 55.1920i −1.50047 2.59889i
\(452\) 0 0
\(453\) 44.5097 + 25.6977i 2.09125 + 1.20738i
\(454\) 0 0
\(455\) 1.11333 6.00436i 0.0521939 0.281489i
\(456\) 0 0
\(457\) −10.7440 + 18.6091i −0.502583 + 0.870499i 0.497413 + 0.867514i \(0.334283\pi\)
−0.999996 + 0.00298483i \(0.999050\pi\)
\(458\) 0 0
\(459\) −0.120690 + 0.0696806i −0.00563334 + 0.00325241i
\(460\) 0 0
\(461\) 27.2004i 1.26685i 0.773804 + 0.633425i \(0.218351\pi\)
−0.773804 + 0.633425i \(0.781649\pi\)
\(462\) 0 0
\(463\) 30.2578i 1.40620i −0.711092 0.703099i \(-0.751799\pi\)
0.711092 0.703099i \(-0.248201\pi\)
\(464\) 0 0
\(465\) 11.1393 6.43125i 0.516571 0.298242i
\(466\) 0 0
\(467\) 8.38737 14.5274i 0.388121 0.672246i −0.604076 0.796927i \(-0.706458\pi\)
0.992197 + 0.124681i \(0.0397908\pi\)
\(468\) 0 0
\(469\) 25.0721 29.3510i 1.15772 1.35530i
\(470\) 0 0
\(471\) 14.4450 + 8.33983i 0.665591 + 0.384279i
\(472\) 0 0
\(473\) 16.9054 + 29.2811i 0.777312 + 1.34634i
\(474\) 0 0
\(475\) −0.989524 −0.0454025
\(476\) 0 0
\(477\) 26.9402 1.23351
\(478\) 0 0
\(479\) −8.56995 14.8436i −0.391571 0.678221i 0.601086 0.799184i \(-0.294735\pi\)
−0.992657 + 0.120964i \(0.961402\pi\)
\(480\) 0 0
\(481\) 0.847393 + 0.489243i 0.0386378 + 0.0223075i
\(482\) 0 0
\(483\) −12.9174 36.4867i −0.587761 1.66020i
\(484\) 0 0
\(485\) 2.48264 4.30006i 0.112731 0.195256i
\(486\) 0 0
\(487\) −9.77556 + 5.64392i −0.442973 + 0.255750i −0.704858 0.709349i \(-0.748989\pi\)
0.261885 + 0.965099i \(0.415656\pi\)
\(488\) 0 0
\(489\) 18.6545i 0.843587i
\(490\) 0 0
\(491\) 25.5317i 1.15223i 0.817369 + 0.576115i \(0.195432\pi\)
−0.817369 + 0.576115i \(0.804568\pi\)
\(492\) 0 0
\(493\) −14.2359 + 8.21911i −0.641154 + 0.370170i
\(494\) 0 0
\(495\) −9.67226 + 16.7528i −0.434736 + 0.752984i
\(496\) 0 0
\(497\) −2.02091 5.70830i −0.0906501 0.256052i
\(498\) 0 0
\(499\) 14.7658 + 8.52503i 0.661007 + 0.381633i 0.792661 0.609663i \(-0.208695\pi\)
−0.131653 + 0.991296i \(0.542029\pi\)
\(500\) 0 0
\(501\) −6.13221 10.6213i −0.273967 0.474524i
\(502\) 0 0
\(503\) 29.6588 1.32242 0.661211 0.750200i \(-0.270043\pi\)
0.661211 + 0.750200i \(0.270043\pi\)
\(504\) 0 0
\(505\) 6.39028 0.284364
\(506\) 0 0
\(507\) 9.38875 + 16.2618i 0.416969 + 0.722212i
\(508\) 0 0
\(509\) 20.4666 + 11.8164i 0.907167 + 0.523753i 0.879519 0.475865i \(-0.157865\pi\)
0.0276483 + 0.999618i \(0.491198\pi\)
\(510\) 0 0
\(511\) −20.7461 + 24.2867i −0.917754 + 1.07438i
\(512\) 0 0
\(513\) −0.0126853 + 0.0219715i −0.000560069 + 0.000970067i
\(514\) 0 0
\(515\) 11.7164 6.76445i 0.516285 0.298077i
\(516\) 0 0
\(517\) 25.4301i 1.11841i
\(518\) 0 0
\(519\) 29.5555i 1.29734i
\(520\) 0 0
\(521\) −15.2756 + 8.81935i −0.669235 + 0.386383i −0.795787 0.605577i \(-0.792942\pi\)
0.126552 + 0.991960i \(0.459609\pi\)
\(522\) 0 0
\(523\) 10.9640 18.9902i 0.479423 0.830385i −0.520298 0.853985i \(-0.674179\pi\)
0.999721 + 0.0235992i \(0.00751257\pi\)
\(524\) 0 0
\(525\) 1.18049 6.36656i 0.0515209 0.277860i
\(526\) 0 0
\(527\) −24.7399 14.2836i −1.07769 0.622203i
\(528\) 0 0
\(529\) 6.36617 + 11.0265i 0.276790 + 0.479414i
\(530\) 0 0
\(531\) −24.5768 −1.06654
\(532\) 0 0
\(533\) 22.7325 0.984655
\(534\) 0 0
\(535\) −2.12191 3.67525i −0.0917381 0.158895i
\(536\) 0 0
\(537\) −21.5804 12.4595i −0.931265 0.537666i
\(538\) 0 0
\(539\) −16.2391 + 42.2843i −0.699467 + 1.82131i
\(540\) 0 0
\(541\) −1.03970 + 1.80081i −0.0447002 + 0.0774231i −0.887510 0.460789i \(-0.847567\pi\)
0.842810 + 0.538212i \(0.180900\pi\)
\(542\) 0 0
\(543\) 13.4671 7.77522i 0.577928 0.333667i
\(544\) 0 0
\(545\) 9.38079i 0.401829i
\(546\) 0 0
\(547\) 9.15708i 0.391528i −0.980651 0.195764i \(-0.937281\pi\)
0.980651 0.195764i \(-0.0627187\pi\)
\(548\) 0 0
\(549\) 17.1751 9.91603i 0.733014 0.423206i
\(550\) 0 0
\(551\) −1.49628 + 2.59163i −0.0637437 + 0.110407i
\(552\) 0 0
\(553\) 21.1153 + 3.91522i 0.897916 + 0.166492i
\(554\) 0 0
\(555\) 0.898510 + 0.518755i 0.0381396 + 0.0220199i
\(556\) 0 0
\(557\) 7.88972 + 13.6654i 0.334298 + 0.579021i 0.983350 0.181723i \(-0.0581674\pi\)
−0.649052 + 0.760744i \(0.724834\pi\)
\(558\) 0 0
\(559\) −12.0603 −0.510097
\(560\) 0 0
\(561\) 86.0776 3.63420
\(562\) 0 0
\(563\) 2.40099 + 4.15864i 0.101190 + 0.175266i 0.912175 0.409801i \(-0.134402\pi\)
−0.810985 + 0.585066i \(0.801068\pi\)
\(564\) 0 0
\(565\) 6.45746 + 3.72822i 0.271667 + 0.156847i
\(566\) 0 0
\(567\) −18.1684 15.5198i −0.763001 0.651768i
\(568\) 0 0
\(569\) 12.8609 22.2758i 0.539158 0.933850i −0.459791 0.888027i \(-0.652076\pi\)
0.998950 0.0458225i \(-0.0145909\pi\)
\(570\) 0 0
\(571\) 15.4404 8.91452i 0.646161 0.373061i −0.140823 0.990035i \(-0.544975\pi\)
0.786984 + 0.616974i \(0.211641\pi\)
\(572\) 0 0
\(573\) 14.3967i 0.601433i
\(574\) 0 0
\(575\) 5.97765i 0.249285i
\(576\) 0 0
\(577\) 28.6062 16.5158i 1.19089 0.687563i 0.232384 0.972624i \(-0.425347\pi\)
0.958509 + 0.285062i \(0.0920140\pi\)
\(578\) 0 0
\(579\) −10.2951 + 17.8316i −0.427850 + 0.741057i
\(580\) 0 0
\(581\) −7.33577 + 2.59708i −0.304339 + 0.107745i
\(582\) 0 0
\(583\) 50.4994 + 29.1558i 2.09147 + 1.20751i
\(584\) 0 0
\(585\) −3.45009 5.97573i −0.142644 0.247066i
\(586\) 0 0
\(587\) −14.6086 −0.602960 −0.301480 0.953472i \(-0.597481\pi\)
−0.301480 + 0.953472i \(0.597481\pi\)
\(588\) 0 0
\(589\) −5.20063 −0.214288
\(590\) 0 0
\(591\) −19.3451 33.5068i −0.795753 1.37828i
\(592\) 0 0
\(593\) −9.24743 5.33901i −0.379746 0.219247i 0.297962 0.954578i \(-0.403693\pi\)
−0.677708 + 0.735331i \(0.737027\pi\)
\(594\) 0 0
\(595\) −13.5564 + 4.79938i −0.555760 + 0.196755i
\(596\) 0 0
\(597\) −15.1385 + 26.2207i −0.619578 + 1.07314i
\(598\) 0 0
\(599\) −12.5607 + 7.25191i −0.513216 + 0.296305i −0.734154 0.678982i \(-0.762421\pi\)
0.220939 + 0.975288i \(0.429088\pi\)
\(600\) 0 0
\(601\) 38.6998i 1.57860i 0.614008 + 0.789299i \(0.289556\pi\)
−0.614008 + 0.789299i \(0.710444\pi\)
\(602\) 0 0
\(603\) 43.6174i 1.77624i
\(604\) 0 0
\(605\) −26.7349 + 15.4354i −1.08693 + 0.627539i
\(606\) 0 0
\(607\) 8.72945 15.1198i 0.354317 0.613696i −0.632683 0.774410i \(-0.718047\pi\)
0.987001 + 0.160715i \(0.0513799\pi\)
\(608\) 0 0
\(609\) −14.8894 12.7188i −0.603351 0.515392i
\(610\) 0 0
\(611\) −7.85562 4.53544i −0.317804 0.183484i
\(612\) 0 0
\(613\) 8.97395 + 15.5433i 0.362455 + 0.627790i 0.988364 0.152106i \(-0.0486055\pi\)
−0.625910 + 0.779896i \(0.715272\pi\)
\(614\) 0 0
\(615\) 24.1038 0.971959
\(616\) 0 0
\(617\) 47.2698 1.90301 0.951506 0.307629i \(-0.0995357\pi\)
0.951506 + 0.307629i \(0.0995357\pi\)
\(618\) 0 0
\(619\) 23.4615 + 40.6366i 0.942999 + 1.63332i 0.759709 + 0.650264i \(0.225342\pi\)
0.183290 + 0.983059i \(0.441325\pi\)
\(620\) 0 0
\(621\) 0.132729 + 0.0766310i 0.00532622 + 0.00307510i
\(622\) 0 0
\(623\) −45.8426 8.50018i −1.83665 0.340552i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 13.5709 7.83517i 0.541970 0.312906i
\(628\) 0 0
\(629\) 2.30427i 0.0918774i
\(630\) 0 0
\(631\) 26.1192i 1.03979i 0.854231 + 0.519894i \(0.174028\pi\)
−0.854231 + 0.519894i \(0.825972\pi\)
\(632\) 0 0
\(633\) 7.40430 4.27487i 0.294294 0.169911i
\(634\) 0 0
\(635\) −6.90325 + 11.9568i −0.273947 + 0.474491i
\(636\) 0 0
\(637\) −10.1658 12.5578i −0.402785 0.497559i
\(638\) 0 0
\(639\) −5.92559 3.42114i −0.234413 0.135338i
\(640\) 0 0
\(641\) 8.97538 + 15.5458i 0.354506 + 0.614023i 0.987033 0.160515i \(-0.0513156\pi\)
−0.632527 + 0.774538i \(0.717982\pi\)
\(642\) 0 0
\(643\) 28.8535 1.13787 0.568936 0.822382i \(-0.307355\pi\)
0.568936 + 0.822382i \(0.307355\pi\)
\(644\) 0 0
\(645\) −12.7878 −0.503520
\(646\) 0 0
\(647\) −15.9361 27.6021i −0.626512 1.08515i −0.988246 0.152869i \(-0.951149\pi\)
0.361735 0.932281i \(-0.382185\pi\)
\(648\) 0 0
\(649\) −46.0691 26.5980i −1.80837 1.04406i
\(650\) 0 0
\(651\) 6.20430 33.4606i 0.243166 1.31143i
\(652\) 0 0
\(653\) −0.534003 + 0.924921i −0.0208972 + 0.0361950i −0.876285 0.481793i \(-0.839986\pi\)
0.855388 + 0.517988i \(0.173319\pi\)
\(654\) 0 0
\(655\) 2.21526 1.27898i 0.0865573 0.0499739i
\(656\) 0 0
\(657\) 36.0915i 1.40806i
\(658\) 0 0
\(659\) 27.6777i 1.07817i −0.842252 0.539085i \(-0.818770\pi\)
0.842252 0.539085i \(-0.181230\pi\)
\(660\) 0 0
\(661\) −25.2579 + 14.5827i −0.982418 + 0.567200i −0.902999 0.429642i \(-0.858640\pi\)
−0.0794190 + 0.996841i \(0.525307\pi\)
\(662\) 0 0
\(663\) −15.3519 + 26.5903i −0.596219 + 1.03268i
\(664\) 0 0
\(665\) −1.70043 + 1.99063i −0.0659400 + 0.0771935i
\(666\) 0 0
\(667\) 15.6559 + 9.03894i 0.606199 + 0.349989i
\(668\) 0 0
\(669\) −27.7503 48.0648i −1.07289 1.85829i
\(670\) 0 0
\(671\) 42.9261 1.65714
\(672\) 0 0
\(673\) 5.57642 0.214955 0.107478 0.994208i \(-0.465723\pi\)
0.107478 + 0.994208i \(0.465723\pi\)
\(674\) 0 0
\(675\) 0.0128196 + 0.0222042i 0.000493426 + 0.000854639i
\(676\) 0 0
\(677\) 10.2275 + 5.90484i 0.393074 + 0.226942i 0.683491 0.729959i \(-0.260461\pi\)
−0.290417 + 0.956900i \(0.593794\pi\)
\(678\) 0 0
\(679\) −4.38421 12.3837i −0.168250 0.475244i
\(680\) 0 0
\(681\) 9.24431 16.0116i 0.354243 0.613567i
\(682\) 0 0
\(683\) −17.1263 + 9.88788i −0.655320 + 0.378349i −0.790491 0.612473i \(-0.790175\pi\)
0.135171 + 0.990822i \(0.456841\pi\)
\(684\) 0 0
\(685\) 0.312750i 0.0119496i
\(686\) 0 0
\(687\) 30.0804i 1.14764i
\(688\) 0 0
\(689\) −18.0131 + 10.3999i −0.686244 + 0.396203i
\(690\) 0 0
\(691\) 5.06918 8.78008i 0.192841 0.334010i −0.753350 0.657620i \(-0.771563\pi\)
0.946191 + 0.323610i \(0.104897\pi\)
\(692\) 0 0
\(693\) 17.0807 + 48.2465i 0.648841 + 1.83273i
\(694\) 0 0
\(695\) −0.161823 0.0934288i −0.00613831 0.00354396i
\(696\) 0 0
\(697\) −26.7668 46.3615i −1.01387 1.75607i
\(698\) 0 0
\(699\) 7.74497 0.292942
\(700\) 0 0
\(701\) −0.203655 −0.00769196 −0.00384598 0.999993i \(-0.501224\pi\)
−0.00384598 + 0.999993i \(0.501224\pi\)
\(702\) 0 0
\(703\) −0.209745 0.363289i −0.00791069 0.0137017i
\(704\) 0 0
\(705\) −8.32949 4.80903i −0.313707 0.181119i
\(706\) 0 0
\(707\) 10.9813 12.8554i 0.412994 0.483477i
\(708\) 0 0
\(709\) 7.27057 12.5930i 0.273052 0.472940i −0.696590 0.717470i \(-0.745300\pi\)
0.969642 + 0.244530i \(0.0786335\pi\)
\(710\) 0 0
\(711\) 21.0146 12.1328i 0.788111 0.455016i
\(712\) 0 0
\(713\) 31.4167i 1.17656i
\(714\) 0 0
\(715\) 14.9353i 0.558549i
\(716\) 0 0
\(717\) −57.2265 + 33.0397i −2.13716 + 1.23389i
\(718\) 0 0
\(719\) −20.2951 + 35.1522i −0.756881 + 1.31096i 0.187553 + 0.982254i \(0.439944\pi\)
−0.944434 + 0.328702i \(0.893389\pi\)
\(720\) 0 0
\(721\) 6.52574 35.1942i 0.243031 1.31070i
\(722\) 0 0
\(723\) 28.7296 + 16.5871i 1.06847 + 0.616879i
\(724\) 0 0
\(725\) 1.51212 + 2.61907i 0.0561588 + 0.0972699i
\(726\) 0 0
\(727\) 7.75162 0.287491 0.143746 0.989615i \(-0.454085\pi\)
0.143746 + 0.989615i \(0.454085\pi\)
\(728\) 0 0
\(729\) −26.8111 −0.993004
\(730\) 0 0
\(731\) 14.2006 + 24.5962i 0.525230 + 0.909725i
\(732\) 0 0
\(733\) 5.77541 + 3.33444i 0.213320 + 0.123160i 0.602853 0.797852i \(-0.294030\pi\)
−0.389534 + 0.921012i \(0.627364\pi\)
\(734\) 0 0
\(735\) −10.7791 13.3153i −0.397592 0.491144i
\(736\) 0 0
\(737\) 47.2045 81.7606i 1.73880 3.01169i
\(738\) 0 0
\(739\) 24.9563 14.4085i 0.918031 0.530026i 0.0350249 0.999386i \(-0.488849\pi\)
0.883006 + 0.469361i \(0.155516\pi\)
\(740\) 0 0
\(741\) 5.58960i 0.205339i
\(742\) 0 0
\(743\) 17.9238i 0.657560i −0.944406 0.328780i \(-0.893362\pi\)
0.944406 0.328780i \(-0.106638\pi\)
\(744\) 0 0
\(745\) 12.2622 7.07961i 0.449254 0.259377i
\(746\) 0 0
\(747\) −4.39653 + 7.61502i −0.160861 + 0.278619i
\(748\) 0 0
\(749\) −11.0399 2.04703i −0.403389 0.0747968i
\(750\) 0 0
\(751\) 19.7943 + 11.4282i 0.722304 + 0.417023i 0.815600 0.578616i \(-0.196407\pi\)
−0.0932959 + 0.995638i \(0.529740\pi\)
\(752\) 0 0
\(753\) −17.4134 30.1609i −0.634579 1.09912i
\(754\) 0 0
\(755\) −21.0004 −0.764283
\(756\) 0 0
\(757\) −42.7423 −1.55349 −0.776747 0.629812i \(-0.783132\pi\)
−0.776747 + 0.629812i \(0.783132\pi\)
\(758\) 0 0
\(759\) −47.3318 81.9810i −1.71803 2.97572i
\(760\) 0 0
\(761\) −29.0191 16.7542i −1.05194 0.607339i −0.128749 0.991677i \(-0.541096\pi\)
−0.923192 + 0.384338i \(0.874430\pi\)
\(762\) 0 0
\(763\) −18.8714 16.1203i −0.683191 0.583594i
\(764\) 0 0
\(765\) −8.12475 + 14.0725i −0.293751 + 0.508791i
\(766\) 0 0
\(767\) 16.4328 9.48748i 0.593354 0.342573i
\(768\) 0 0
\(769\) 29.5287i 1.06483i 0.846483 + 0.532415i \(0.178716\pi\)
−0.846483 + 0.532415i \(0.821284\pi\)
\(770\) 0 0
\(771\) 46.8053i 1.68565i
\(772\) 0 0
\(773\) 36.1864 20.8922i 1.30154 0.751442i 0.320868 0.947124i \(-0.396026\pi\)
0.980667 + 0.195682i \(0.0626922\pi\)
\(774\) 0 0
\(775\) −2.62784 + 4.55156i −0.0943949 + 0.163497i
\(776\) 0 0
\(777\) 2.58762 0.916093i 0.0928302 0.0328646i
\(778\) 0 0
\(779\) −8.44007 4.87288i −0.302397 0.174589i
\(780\) 0 0
\(781\) −7.40500 12.8258i −0.264972 0.458945i
\(782\) 0 0
\(783\) 0.0775391 0.00277102
\(784\) 0 0
\(785\) −6.81540 −0.243252
\(786\) 0 0
\(787\) −5.51042 9.54433i −0.196425 0.340219i 0.750941 0.660369i \(-0.229600\pi\)
−0.947367 + 0.320150i \(0.896267\pi\)
\(788\) 0 0
\(789\) −14.7233 8.50051i −0.524164 0.302626i
\(790\) 0 0
\(791\) 18.5968 6.58383i 0.661227 0.234094i
\(792\) 0 0
\(793\) −7.65586 + 13.2603i −0.271868 + 0.470888i
\(794\) 0 0
\(795\) −19.0997 + 11.0272i −0.677396 + 0.391095i
\(796\) 0 0
\(797\) 12.9488i 0.458669i −0.973348 0.229334i \(-0.926345\pi\)
0.973348 0.229334i \(-0.0736549\pi\)
\(798\) 0 0
\(799\) 21.3614i 0.755711i
\(800\) 0 0
\(801\) −45.6240 + 26.3410i −1.61205 + 0.930715i
\(802\) 0 0
\(803\) −39.0597 + 67.6534i −1.37839 + 2.38744i
\(804\) 0 0
\(805\) 12.0253 + 10.2722i 0.423836 + 0.362048i
\(806\) 0 0
\(807\) 16.3994 + 9.46819i 0.577285 + 0.333296i
\(808\) 0 0
\(809\) −12.7612 22.1031i −0.448661 0.777104i 0.549638 0.835403i \(-0.314766\pi\)
−0.998299 + 0.0582988i \(0.981432\pi\)
\(810\) 0 0
\(811\) −6.60292 −0.231860 −0.115930 0.993257i \(-0.536985\pi\)
−0.115930 + 0.993257i \(0.536985\pi\)
\(812\) 0 0
\(813\) 6.17212 0.216466
\(814\) 0 0
\(815\) 3.81117 + 6.60114i 0.133499 + 0.231228i
\(816\) 0 0
\(817\) 4.47772 + 2.58521i 0.156656 + 0.0904452i
\(818\) 0 0
\(819\) −17.9502 3.32834i −0.627230 0.116302i
\(820\) 0 0
\(821\) −2.88258 + 4.99278i −0.100603 + 0.174249i −0.911933 0.410339i \(-0.865410\pi\)
0.811330 + 0.584588i \(0.198744\pi\)
\(822\) 0 0
\(823\) −2.71517 + 1.56761i −0.0946450 + 0.0546433i −0.546575 0.837410i \(-0.684069\pi\)
0.451930 + 0.892053i \(0.350736\pi\)
\(824\) 0 0
\(825\) 15.8362i 0.551347i
\(826\) 0 0
\(827\) 22.0174i 0.765621i 0.923827 + 0.382811i \(0.125044\pi\)
−0.923827 + 0.382811i \(0.874956\pi\)
\(828\) 0 0
\(829\) −40.5056 + 23.3859i −1.40682 + 0.812226i −0.995080 0.0990766i \(-0.968411\pi\)
−0.411737 + 0.911303i \(0.635078\pi\)
\(830\) 0 0
\(831\) 36.2991 62.8719i 1.25920 2.18100i
\(832\) 0 0
\(833\) −13.6409 + 35.5190i −0.472630 + 1.23066i
\(834\) 0 0
\(835\) 4.33992 + 2.50565i 0.150189 + 0.0867116i
\(836\) 0 0
\(837\) 0.0673757 + 0.116698i 0.00232884 + 0.00403368i
\(838\) 0 0
\(839\) 36.3872 1.25622 0.628112 0.778123i \(-0.283828\pi\)
0.628112 + 0.778123i \(0.283828\pi\)
\(840\) 0 0
\(841\) −19.8539 −0.684619
\(842\) 0 0
\(843\) −18.7867 32.5395i −0.647047 1.12072i
\(844\) 0 0
\(845\) −6.64465 3.83629i −0.228583 0.131973i
\(846\) 0 0
\(847\) −14.8907 + 80.3077i −0.511651 + 2.75941i
\(848\) 0 0
\(849\) −11.0432 + 19.1274i −0.379002 + 0.656450i
\(850\) 0 0
\(851\) −2.19461 + 1.26706i −0.0752303 + 0.0434342i
\(852\) 0 0
\(853\) 5.80981i 0.198924i 0.995041 + 0.0994621i \(0.0317122\pi\)
−0.995041 + 0.0994621i \(0.968288\pi\)
\(854\) 0 0
\(855\) 2.95820i 0.101168i
\(856\) 0 0
\(857\) −0.283292 + 0.163559i −0.00967708 + 0.00558706i −0.504831 0.863218i \(-0.668445\pi\)
0.495154 + 0.868805i \(0.335112\pi\)
\(858\) 0 0
\(859\) 4.81365 8.33748i 0.164239 0.284471i −0.772145 0.635446i \(-0.780816\pi\)
0.936385 + 0.350975i \(0.114150\pi\)
\(860\) 0 0
\(861\) 41.4209 48.4898i 1.41162 1.65253i
\(862\) 0 0
\(863\) −17.7605 10.2541i −0.604576 0.349052i 0.166264 0.986081i \(-0.446830\pi\)
−0.770840 + 0.637029i \(0.780163\pi\)
\(864\) 0 0
\(865\) −6.03826 10.4586i −0.205307 0.355602i
\(866\) 0 0
\(867\) 30.7006 1.04265
\(868\) 0 0
\(869\) 52.5225 1.78170
\(870\) 0 0
\(871\) 16.8378 + 29.1639i 0.570527 + 0.988182i
\(872\) 0 0
\(873\) −12.8551 7.42191i −0.435080 0.251194i
\(874\) 0 0
\(875\) 0.882973 + 2.49406i 0.0298499 + 0.0843148i
\(876\) 0 0
\(877\) −8.70522 + 15.0779i −0.293954 + 0.509144i −0.974741 0.223338i \(-0.928305\pi\)
0.680787 + 0.732482i \(0.261638\pi\)
\(878\) 0 0
\(879\) −1.72820 + 0.997779i −0.0582909 + 0.0336543i
\(880\) 0 0
\(881\) 25.3913i 0.855455i −0.903908 0.427727i \(-0.859314\pi\)
0.903908 0.427727i \(-0.140686\pi\)
\(882\) 0 0
\(883\) 24.0260i 0.808541i 0.914639 + 0.404270i \(0.132475\pi\)
−0.914639 + 0.404270i \(0.867525\pi\)
\(884\) 0 0
\(885\) 17.4241 10.0598i 0.585704 0.338156i
\(886\) 0 0
\(887\) −2.28322 + 3.95465i −0.0766631 + 0.132784i −0.901808 0.432136i \(-0.857760\pi\)
0.825145 + 0.564921i \(0.191093\pi\)
\(888\) 0 0
\(889\) 12.1908 + 34.4343i 0.408865 + 1.15489i
\(890\) 0 0
\(891\) −50.6102 29.2198i −1.69550 0.978900i
\(892\) 0 0
\(893\) 1.94441 + 3.36782i 0.0650672 + 0.112700i
\(894\) 0 0
\(895\) 10.1820 0.340347
\(896\) 0 0
\(897\) 33.7664 1.12743
\(898\) 0 0
\(899\) 7.94724 + 13.7650i 0.265055 + 0.459089i
\(900\) 0 0
\(901\) 42.4197 + 24.4910i 1.41321 + 0.815915i
\(902\) 0 0
\(903\) −21.9751 + 25.7254i −0.731284 + 0.856086i
\(904\) 0 0
\(905\) −3.17700 + 5.50272i −0.105607 + 0.182917i
\(906\) 0 0
\(907\) 36.2439 20.9254i 1.20346 0.694817i 0.242136 0.970242i \(-0.422152\pi\)
0.961323 + 0.275425i \(0.0888185\pi\)
\(908\) 0 0
\(909\) 19.1039i 0.633636i
\(910\) 0 0
\(911\) 33.5744i 1.11237i 0.831059 + 0.556184i \(0.187735\pi\)
−0.831059 + 0.556184i \(0.812265\pi\)
\(912\) 0 0
\(913\) −16.4826 + 9.51621i −0.545493 + 0.314941i
\(914\) 0 0
\(915\) −8.11768 + 14.0602i −0.268362 + 0.464817i
\(916\) 0 0
\(917\) 1.23385 6.65430i 0.0407452 0.219744i
\(918\) 0 0
\(919\) 31.2275 + 18.0292i 1.03010 + 0.594728i 0.917013 0.398857i \(-0.130593\pi\)
0.113086 + 0.993585i \(0.463926\pi\)
\(920\) 0 0
\(921\) −10.3042 17.8475i −0.339536 0.588094i
\(922\) 0 0
\(923\) 5.28272 0.173883
\(924\) 0 0
\(925\) −0.423932 −0.0139388
\(926\) 0 0
\(927\) −20.2225 35.0264i −0.664194 1.15042i
\(928\) 0 0
\(929\) 1.21564 + 0.701850i 0.0398838 + 0.0230269i 0.519809 0.854282i \(-0.326003\pi\)
−0.479926 + 0.877309i \(0.659336\pi\)
\(930\) 0 0
\(931\) 1.08249 + 6.84156i 0.0354771 + 0.224223i
\(932\) 0 0
\(933\) −24.7722 + 42.9066i −0.811004 + 1.40470i
\(934\) 0 0
\(935\) −30.4596 + 17.5859i −0.996136 + 0.575119i
\(936\) 0 0
\(937\) 58.7549i 1.91944i 0.280960 + 0.959720i \(0.409347\pi\)
−0.280960 + 0.959720i \(0.590653\pi\)
\(938\) 0 0
\(939\) 60.5047i 1.97450i
\(940\) 0 0
\(941\) −24.9066 + 14.3798i −0.811930 + 0.468768i −0.847626 0.530594i \(-0.821969\pi\)
0.0356954 + 0.999363i \(0.488635\pi\)
\(942\) 0 0
\(943\) −29.4368 + 50.9860i −0.958593 + 1.66033i
\(944\) 0 0
\(945\) 0.0666980 + 0.0123672i 0.00216968 + 0.000402305i
\(946\) 0 0
\(947\) 14.3605 + 8.29103i 0.466653 + 0.269422i 0.714838 0.699291i \(-0.246501\pi\)
−0.248185 + 0.968713i \(0.579834\pi\)
\(948\) 0 0
\(949\) −13.9326 24.1319i −0.452271 0.783356i
\(950\) 0 0
\(951\) −45.5359 −1.47660
\(952\) 0 0
\(953\) −6.47062 −0.209604 −0.104802 0.994493i \(-0.533421\pi\)
−0.104802 + 0.994493i \(0.533421\pi\)
\(954\) 0 0
\(955\) 2.94129 + 5.09447i 0.0951780 + 0.164853i
\(956\) 0 0
\(957\) −41.4763 23.9463i −1.34074 0.774075i
\(958\) 0 0
\(959\) 0.629162 + 0.537441i 0.0203167 + 0.0173549i
\(960\) 0 0
\(961\) 1.68888 2.92523i 0.0544800 0.0943621i
\(962\) 0 0
\(963\) −10.9873 + 6.34349i −0.354059 + 0.204416i
\(964\) 0 0
\(965\) 8.41326i 0.270832i
\(966\) 0 0
\(967\) 7.89312i 0.253826i 0.991914 + 0.126913i \(0.0405069\pi\)
−0.991914 + 0.126913i \(0.959493\pi\)
\(968\) 0 0
\(969\) 11.3996 6.58158i 0.366209 0.211431i
\(970\) 0 0
\(971\) 9.39678 16.2757i 0.301557 0.522312i −0.674932 0.737880i \(-0.735827\pi\)
0.976489 + 0.215568i \(0.0691603\pi\)
\(972\) 0 0
\(973\) −0.466035 + 0.164990i −0.0149404 + 0.00528934i
\(974\) 0 0
\(975\) 4.89198 + 2.82439i 0.156669 + 0.0904528i
\(976\) 0 0
\(977\) 4.83820 + 8.38001i 0.154788 + 0.268100i 0.932982 0.359924i \(-0.117197\pi\)
−0.778194 + 0.628024i \(0.783864\pi\)
\(978\) 0 0
\(979\) −114.029 −3.64439
\(980\) 0 0
\(981\) −28.0441 −0.895379
\(982\) 0 0
\(983\) −18.0155 31.2038i −0.574606 0.995247i −0.996084 0.0884081i \(-0.971822\pi\)
0.421478 0.906838i \(-0.361511\pi\)
\(984\) 0 0
\(985\) 13.6910 + 7.90453i 0.436233 + 0.251859i
\(986\) 0 0
\(987\) −23.9881 + 8.49249i −0.763549 + 0.270319i
\(988\) 0 0
\(989\) 15.6171 27.0496i 0.496595 0.860128i
\(990\) 0 0
\(991\) 31.5064 18.1903i 1.00084 0.577832i 0.0923399 0.995728i \(-0.470565\pi\)
0.908495 + 0.417895i \(0.137232\pi\)
\(992\) 0 0
\(993\) 52.3489i 1.66124i
\(994\) 0 0
\(995\) 12.3714i 0.392198i
\(996\) 0 0
\(997\) −20.7365 + 11.9722i −0.656731 + 0.379164i −0.791030 0.611777i \(-0.790455\pi\)
0.134299 + 0.990941i \(0.457122\pi\)
\(998\) 0 0
\(999\) −0.00543463 + 0.00941305i −0.000171944 + 0.000297816i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.bs.c.271.5 yes 12
4.3 odd 2 560.2.bs.b.271.2 yes 12
7.2 even 3 3920.2.k.d.2351.4 12
7.3 odd 6 560.2.bs.b.31.2 12
7.5 odd 6 3920.2.k.e.2351.9 12
28.3 even 6 inner 560.2.bs.c.31.5 yes 12
28.19 even 6 3920.2.k.d.2351.3 12
28.23 odd 6 3920.2.k.e.2351.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.2.bs.b.31.2 12 7.3 odd 6
560.2.bs.b.271.2 yes 12 4.3 odd 2
560.2.bs.c.31.5 yes 12 28.3 even 6 inner
560.2.bs.c.271.5 yes 12 1.1 even 1 trivial
3920.2.k.d.2351.3 12 28.19 even 6
3920.2.k.d.2351.4 12 7.2 even 3
3920.2.k.e.2351.9 12 7.5 odd 6
3920.2.k.e.2351.10 12 28.23 odd 6