Properties

Label 3920.2.k.d.2351.3
Level $3920$
Weight $2$
Character 3920.2351
Analytic conductor $31.301$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3920,2,Mod(2351,3920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3920.2351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.3013575923\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 43 x^{10} - 160 x^{9} + 572 x^{8} - 1394 x^{7} + 3039 x^{6} - 4844 x^{5} + \cdots + 657 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 560)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2351.3
Root \(0.500000 + 1.58132i\) of defining polynomial
Character \(\chi\) \(=\) 3920.2351
Dual form 3920.2.k.d.2351.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.44735 q^{3} -1.00000i q^{5} +2.98952 q^{9} +6.47077i q^{11} +2.30812i q^{13} +2.44735i q^{15} +5.43548i q^{17} +0.989524 q^{19} +5.97765i q^{23} -1.00000 q^{25} +0.0256392 q^{27} +3.02424 q^{29} -5.25569 q^{31} -15.8362i q^{33} +0.423932 q^{37} -5.64878i q^{39} -9.84894i q^{41} +5.22517i q^{43} -2.98952i q^{45} -3.92999 q^{47} -13.3025i q^{51} +9.01155 q^{53} +6.47077 q^{55} -2.42171 q^{57} -8.22097 q^{59} -6.63385i q^{61} +2.30812 q^{65} +14.5901i q^{67} -14.6294i q^{69} -2.28875i q^{71} -12.0727i q^{73} +2.44735 q^{75} -8.11688i q^{79} -9.03132 q^{81} +2.94129 q^{83} +5.43548 q^{85} -7.40139 q^{87} +17.6222i q^{89} +12.8625 q^{93} -0.989524i q^{95} -4.96528i q^{97} +19.3445i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} + 20 q^{9} - 4 q^{19} - 12 q^{25} + 20 q^{27} + 16 q^{29} - 8 q^{31} + 8 q^{37} - 24 q^{47} + 24 q^{53} + 24 q^{55} + 16 q^{57} - 48 q^{59} + 4 q^{65} + 4 q^{75} + 12 q^{81} + 36 q^{83} - 16 q^{85}+ \cdots - 56 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3920\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1471\) \(3041\) \(3137\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.44735 −1.41298 −0.706489 0.707724i \(-0.749722\pi\)
−0.706489 + 0.707724i \(0.749722\pi\)
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.98952 0.996508
\(10\) 0 0
\(11\) 6.47077i 1.95101i 0.219977 + 0.975505i \(0.429402\pi\)
−0.219977 + 0.975505i \(0.570598\pi\)
\(12\) 0 0
\(13\) 2.30812i 0.640157i 0.947391 + 0.320079i \(0.103709\pi\)
−0.947391 + 0.320079i \(0.896291\pi\)
\(14\) 0 0
\(15\) 2.44735i 0.631903i
\(16\) 0 0
\(17\) 5.43548i 1.31830i 0.752013 + 0.659149i \(0.229083\pi\)
−0.752013 + 0.659149i \(0.770917\pi\)
\(18\) 0 0
\(19\) 0.989524 0.227012 0.113506 0.993537i \(-0.463792\pi\)
0.113506 + 0.993537i \(0.463792\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.97765i 1.24643i 0.782052 + 0.623213i \(0.214173\pi\)
−0.782052 + 0.623213i \(0.785827\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0.0256392 0.00493426
\(28\) 0 0
\(29\) 3.02424 0.561588 0.280794 0.959768i \(-0.409402\pi\)
0.280794 + 0.959768i \(0.409402\pi\)
\(30\) 0 0
\(31\) −5.25569 −0.943949 −0.471975 0.881612i \(-0.656459\pi\)
−0.471975 + 0.881612i \(0.656459\pi\)
\(32\) 0 0
\(33\) − 15.8362i − 2.75674i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.423932 0.0696940 0.0348470 0.999393i \(-0.488906\pi\)
0.0348470 + 0.999393i \(0.488906\pi\)
\(38\) 0 0
\(39\) − 5.64878i − 0.904528i
\(40\) 0 0
\(41\) − 9.84894i − 1.53815i −0.639161 0.769073i \(-0.720718\pi\)
0.639161 0.769073i \(-0.279282\pi\)
\(42\) 0 0
\(43\) 5.22517i 0.796830i 0.917205 + 0.398415i \(0.130440\pi\)
−0.917205 + 0.398415i \(0.869560\pi\)
\(44\) 0 0
\(45\) − 2.98952i − 0.445652i
\(46\) 0 0
\(47\) −3.92999 −0.573248 −0.286624 0.958043i \(-0.592533\pi\)
−0.286624 + 0.958043i \(0.592533\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) − 13.3025i − 1.86273i
\(52\) 0 0
\(53\) 9.01155 1.23783 0.618916 0.785457i \(-0.287572\pi\)
0.618916 + 0.785457i \(0.287572\pi\)
\(54\) 0 0
\(55\) 6.47077 0.872518
\(56\) 0 0
\(57\) −2.42171 −0.320763
\(58\) 0 0
\(59\) −8.22097 −1.07028 −0.535139 0.844764i \(-0.679741\pi\)
−0.535139 + 0.844764i \(0.679741\pi\)
\(60\) 0 0
\(61\) − 6.63385i − 0.849378i −0.905339 0.424689i \(-0.860383\pi\)
0.905339 0.424689i \(-0.139617\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.30812 0.286287
\(66\) 0 0
\(67\) 14.5901i 1.78246i 0.453551 + 0.891230i \(0.350157\pi\)
−0.453551 + 0.891230i \(0.649843\pi\)
\(68\) 0 0
\(69\) − 14.6294i − 1.76117i
\(70\) 0 0
\(71\) − 2.28875i − 0.271625i −0.990735 0.135813i \(-0.956635\pi\)
0.990735 0.135813i \(-0.0433645\pi\)
\(72\) 0 0
\(73\) − 12.0727i − 1.41300i −0.707713 0.706500i \(-0.750273\pi\)
0.707713 0.706500i \(-0.249727\pi\)
\(74\) 0 0
\(75\) 2.44735 0.282596
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 8.11688i − 0.913221i −0.889667 0.456610i \(-0.849063\pi\)
0.889667 0.456610i \(-0.150937\pi\)
\(80\) 0 0
\(81\) −9.03132 −1.00348
\(82\) 0 0
\(83\) 2.94129 0.322849 0.161424 0.986885i \(-0.448391\pi\)
0.161424 + 0.986885i \(0.448391\pi\)
\(84\) 0 0
\(85\) 5.43548 0.589561
\(86\) 0 0
\(87\) −7.40139 −0.793512
\(88\) 0 0
\(89\) 17.6222i 1.86795i 0.357335 + 0.933976i \(0.383685\pi\)
−0.357335 + 0.933976i \(0.616315\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 12.8625 1.33378
\(94\) 0 0
\(95\) − 0.989524i − 0.101523i
\(96\) 0 0
\(97\) − 4.96528i − 0.504148i −0.967708 0.252074i \(-0.918887\pi\)
0.967708 0.252074i \(-0.0811126\pi\)
\(98\) 0 0
\(99\) 19.3445i 1.94420i
\(100\) 0 0
\(101\) 6.39028i 0.635857i 0.948115 + 0.317928i \(0.102987\pi\)
−0.948115 + 0.317928i \(0.897013\pi\)
\(102\) 0 0
\(103\) 13.5289 1.33304 0.666521 0.745486i \(-0.267782\pi\)
0.666521 + 0.745486i \(0.267782\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.24382i 0.410265i 0.978734 + 0.205133i \(0.0657626\pi\)
−0.978734 + 0.205133i \(0.934237\pi\)
\(108\) 0 0
\(109\) −9.38079 −0.898517 −0.449258 0.893402i \(-0.648312\pi\)
−0.449258 + 0.893402i \(0.648312\pi\)
\(110\) 0 0
\(111\) −1.03751 −0.0984761
\(112\) 0 0
\(113\) −7.45643 −0.701442 −0.350721 0.936480i \(-0.614063\pi\)
−0.350721 + 0.936480i \(0.614063\pi\)
\(114\) 0 0
\(115\) 5.97765 0.557419
\(116\) 0 0
\(117\) 6.90018i 0.637922i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −30.8708 −2.80644
\(122\) 0 0
\(123\) 24.1038i 2.17337i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 13.8065i 1.22513i 0.790420 + 0.612565i \(0.209862\pi\)
−0.790420 + 0.612565i \(0.790138\pi\)
\(128\) 0 0
\(129\) − 12.7878i − 1.12590i
\(130\) 0 0
\(131\) 2.55796 0.223490 0.111745 0.993737i \(-0.464356\pi\)
0.111745 + 0.993737i \(0.464356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 0.0256392i − 0.00220667i
\(136\) 0 0
\(137\) 0.312750 0.0267200 0.0133600 0.999911i \(-0.495747\pi\)
0.0133600 + 0.999911i \(0.495747\pi\)
\(138\) 0 0
\(139\) 0.186858 0.0158491 0.00792453 0.999969i \(-0.497478\pi\)
0.00792453 + 0.999969i \(0.497478\pi\)
\(140\) 0 0
\(141\) 9.61806 0.809987
\(142\) 0 0
\(143\) −14.9353 −1.24895
\(144\) 0 0
\(145\) − 3.02424i − 0.251150i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.1592 1.15997 0.579984 0.814628i \(-0.303059\pi\)
0.579984 + 0.814628i \(0.303059\pi\)
\(150\) 0 0
\(151\) − 21.0004i − 1.70899i −0.519461 0.854494i \(-0.673867\pi\)
0.519461 0.854494i \(-0.326133\pi\)
\(152\) 0 0
\(153\) 16.2495i 1.31369i
\(154\) 0 0
\(155\) 5.25569i 0.422147i
\(156\) 0 0
\(157\) − 6.81540i − 0.543928i −0.962307 0.271964i \(-0.912327\pi\)
0.962307 0.271964i \(-0.0876731\pi\)
\(158\) 0 0
\(159\) −22.0544 −1.74903
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 7.62234i − 0.597028i −0.954405 0.298514i \(-0.903509\pi\)
0.954405 0.298514i \(-0.0964909\pi\)
\(164\) 0 0
\(165\) −15.8362 −1.23285
\(166\) 0 0
\(167\) −5.01130 −0.387786 −0.193893 0.981023i \(-0.562112\pi\)
−0.193893 + 0.981023i \(0.562112\pi\)
\(168\) 0 0
\(169\) 7.67259 0.590199
\(170\) 0 0
\(171\) 2.95820 0.226220
\(172\) 0 0
\(173\) 12.0765i 0.918161i 0.888395 + 0.459080i \(0.151821\pi\)
−0.888395 + 0.459080i \(0.848179\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 20.1196 1.51228
\(178\) 0 0
\(179\) 10.1820i 0.761039i 0.924773 + 0.380520i \(0.124255\pi\)
−0.924773 + 0.380520i \(0.875745\pi\)
\(180\) 0 0
\(181\) 6.35399i 0.472288i 0.971718 + 0.236144i \(0.0758838\pi\)
−0.971718 + 0.236144i \(0.924116\pi\)
\(182\) 0 0
\(183\) 16.2354i 1.20015i
\(184\) 0 0
\(185\) − 0.423932i − 0.0311681i
\(186\) 0 0
\(187\) −35.1717 −2.57201
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 5.88258i − 0.425649i −0.977090 0.212824i \(-0.931734\pi\)
0.977090 0.212824i \(-0.0682662\pi\)
\(192\) 0 0
\(193\) −8.41326 −0.605600 −0.302800 0.953054i \(-0.597921\pi\)
−0.302800 + 0.953054i \(0.597921\pi\)
\(194\) 0 0
\(195\) −5.64878 −0.404517
\(196\) 0 0
\(197\) −15.8091 −1.12635 −0.563174 0.826338i \(-0.690420\pi\)
−0.563174 + 0.826338i \(0.690420\pi\)
\(198\) 0 0
\(199\) −12.3714 −0.876982 −0.438491 0.898736i \(-0.644487\pi\)
−0.438491 + 0.898736i \(0.644487\pi\)
\(200\) 0 0
\(201\) − 35.7070i − 2.51858i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −9.84894 −0.687879
\(206\) 0 0
\(207\) 17.8703i 1.24207i
\(208\) 0 0
\(209\) 6.40298i 0.442903i
\(210\) 0 0
\(211\) 3.49347i 0.240500i 0.992744 + 0.120250i \(0.0383697\pi\)
−0.992744 + 0.120250i \(0.961630\pi\)
\(212\) 0 0
\(213\) 5.60138i 0.383801i
\(214\) 0 0
\(215\) 5.22517 0.356353
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 29.5461i 1.99654i
\(220\) 0 0
\(221\) −12.5457 −0.843917
\(222\) 0 0
\(223\) −22.6778 −1.51862 −0.759309 0.650731i \(-0.774463\pi\)
−0.759309 + 0.650731i \(0.774463\pi\)
\(224\) 0 0
\(225\) −2.98952 −0.199302
\(226\) 0 0
\(227\) 7.55455 0.501413 0.250706 0.968063i \(-0.419337\pi\)
0.250706 + 0.968063i \(0.419337\pi\)
\(228\) 0 0
\(229\) 12.2910i 0.812213i 0.913826 + 0.406106i \(0.133114\pi\)
−0.913826 + 0.406106i \(0.866886\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.16464 −0.207322 −0.103661 0.994613i \(-0.533056\pi\)
−0.103661 + 0.994613i \(0.533056\pi\)
\(234\) 0 0
\(235\) 3.92999i 0.256364i
\(236\) 0 0
\(237\) 19.8649i 1.29036i
\(238\) 0 0
\(239\) − 27.0004i − 1.74651i −0.487263 0.873255i \(-0.662005\pi\)
0.487263 0.873255i \(-0.337995\pi\)
\(240\) 0 0
\(241\) − 13.5551i − 0.873162i −0.899665 0.436581i \(-0.856189\pi\)
0.899665 0.436581i \(-0.143811\pi\)
\(242\) 0 0
\(243\) 22.0259 1.41296
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.28394i 0.145324i
\(248\) 0 0
\(249\) −7.19837 −0.456178
\(250\) 0 0
\(251\) −14.2304 −0.898215 −0.449108 0.893478i \(-0.648258\pi\)
−0.449108 + 0.893478i \(0.648258\pi\)
\(252\) 0 0
\(253\) −38.6800 −2.43179
\(254\) 0 0
\(255\) −13.3025 −0.833036
\(256\) 0 0
\(257\) 19.1249i 1.19298i 0.802621 + 0.596489i \(0.203438\pi\)
−0.802621 + 0.596489i \(0.796562\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 9.04105 0.559627
\(262\) 0 0
\(263\) 6.94670i 0.428352i 0.976795 + 0.214176i \(0.0687066\pi\)
−0.976795 + 0.214176i \(0.931293\pi\)
\(264\) 0 0
\(265\) − 9.01155i − 0.553575i
\(266\) 0 0
\(267\) − 43.1278i − 2.63938i
\(268\) 0 0
\(269\) − 7.73750i − 0.471764i −0.971782 0.235882i \(-0.924202\pi\)
0.971782 0.235882i \(-0.0757978\pi\)
\(270\) 0 0
\(271\) −2.52196 −0.153198 −0.0765990 0.997062i \(-0.524406\pi\)
−0.0765990 + 0.997062i \(0.524406\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 6.47077i − 0.390202i
\(276\) 0 0
\(277\) 29.6640 1.78234 0.891169 0.453671i \(-0.149886\pi\)
0.891169 + 0.453671i \(0.149886\pi\)
\(278\) 0 0
\(279\) −15.7120 −0.940653
\(280\) 0 0
\(281\) −15.3527 −0.915862 −0.457931 0.888988i \(-0.651409\pi\)
−0.457931 + 0.888988i \(0.651409\pi\)
\(282\) 0 0
\(283\) −9.02461 −0.536458 −0.268229 0.963355i \(-0.586438\pi\)
−0.268229 + 0.963355i \(0.586438\pi\)
\(284\) 0 0
\(285\) 2.42171i 0.143450i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −12.5444 −0.737908
\(290\) 0 0
\(291\) 12.1518i 0.712350i
\(292\) 0 0
\(293\) − 0.815396i − 0.0476359i −0.999716 0.0238180i \(-0.992418\pi\)
0.999716 0.0238180i \(-0.00758221\pi\)
\(294\) 0 0
\(295\) 8.22097i 0.478643i
\(296\) 0 0
\(297\) 0.165905i 0.00962679i
\(298\) 0 0
\(299\) −13.7971 −0.797909
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 15.6393i − 0.898452i
\(304\) 0 0
\(305\) −6.63385 −0.379853
\(306\) 0 0
\(307\) −8.42073 −0.480597 −0.240298 0.970699i \(-0.577245\pi\)
−0.240298 + 0.970699i \(0.577245\pi\)
\(308\) 0 0
\(309\) −33.1100 −1.88356
\(310\) 0 0
\(311\) −20.2441 −1.14794 −0.573968 0.818878i \(-0.694597\pi\)
−0.573968 + 0.818878i \(0.694597\pi\)
\(312\) 0 0
\(313\) 24.7225i 1.39740i 0.715415 + 0.698700i \(0.246238\pi\)
−0.715415 + 0.698700i \(0.753762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.6062 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(318\) 0 0
\(319\) 19.5692i 1.09566i
\(320\) 0 0
\(321\) − 10.3861i − 0.579696i
\(322\) 0 0
\(323\) 5.37854i 0.299270i
\(324\) 0 0
\(325\) − 2.30812i − 0.128031i
\(326\) 0 0
\(327\) 22.9581 1.26958
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 21.3900i − 1.17570i −0.808969 0.587851i \(-0.799974\pi\)
0.808969 0.587851i \(-0.200026\pi\)
\(332\) 0 0
\(333\) 1.26735 0.0694506
\(334\) 0 0
\(335\) 14.5901 0.797141
\(336\) 0 0
\(337\) −11.2762 −0.614252 −0.307126 0.951669i \(-0.599367\pi\)
−0.307126 + 0.951669i \(0.599367\pi\)
\(338\) 0 0
\(339\) 18.2485 0.991123
\(340\) 0 0
\(341\) − 34.0083i − 1.84165i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −14.6294 −0.787621
\(346\) 0 0
\(347\) − 25.9372i − 1.39238i −0.717855 0.696192i \(-0.754876\pi\)
0.717855 0.696192i \(-0.245124\pi\)
\(348\) 0 0
\(349\) 15.3031i 0.819159i 0.912274 + 0.409579i \(0.134325\pi\)
−0.912274 + 0.409579i \(0.865675\pi\)
\(350\) 0 0
\(351\) 0.0591782i 0.00315870i
\(352\) 0 0
\(353\) − 3.97059i − 0.211333i −0.994402 0.105667i \(-0.966302\pi\)
0.994402 0.105667i \(-0.0336977\pi\)
\(354\) 0 0
\(355\) −2.28875 −0.121474
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 28.8260i − 1.52138i −0.649116 0.760689i \(-0.724861\pi\)
0.649116 0.760689i \(-0.275139\pi\)
\(360\) 0 0
\(361\) −18.0208 −0.948465
\(362\) 0 0
\(363\) 75.5518 3.96544
\(364\) 0 0
\(365\) −12.0727 −0.631912
\(366\) 0 0
\(367\) −10.2693 −0.536053 −0.268026 0.963412i \(-0.586371\pi\)
−0.268026 + 0.963412i \(0.586371\pi\)
\(368\) 0 0
\(369\) − 29.4436i − 1.53277i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −34.4220 −1.78230 −0.891151 0.453706i \(-0.850102\pi\)
−0.891151 + 0.453706i \(0.850102\pi\)
\(374\) 0 0
\(375\) − 2.44735i − 0.126381i
\(376\) 0 0
\(377\) 6.98032i 0.359505i
\(378\) 0 0
\(379\) 10.7999i 0.554754i 0.960761 + 0.277377i \(0.0894651\pi\)
−0.960761 + 0.277377i \(0.910535\pi\)
\(380\) 0 0
\(381\) − 33.7894i − 1.73108i
\(382\) 0 0
\(383\) −24.9586 −1.27533 −0.637664 0.770315i \(-0.720099\pi\)
−0.637664 + 0.770315i \(0.720099\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 15.6208i 0.794048i
\(388\) 0 0
\(389\) 29.2842 1.48477 0.742384 0.669974i \(-0.233695\pi\)
0.742384 + 0.669974i \(0.233695\pi\)
\(390\) 0 0
\(391\) −32.4914 −1.64316
\(392\) 0 0
\(393\) −6.26022 −0.315787
\(394\) 0 0
\(395\) −8.11688 −0.408405
\(396\) 0 0
\(397\) 12.9125i 0.648059i 0.946047 + 0.324029i \(0.105038\pi\)
−0.946047 + 0.324029i \(0.894962\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.76191 −0.0879856 −0.0439928 0.999032i \(-0.514008\pi\)
−0.0439928 + 0.999032i \(0.514008\pi\)
\(402\) 0 0
\(403\) − 12.1307i − 0.604276i
\(404\) 0 0
\(405\) 9.03132i 0.448770i
\(406\) 0 0
\(407\) 2.74316i 0.135974i
\(408\) 0 0
\(409\) 40.1105i 1.98333i 0.128824 + 0.991667i \(0.458880\pi\)
−0.128824 + 0.991667i \(0.541120\pi\)
\(410\) 0 0
\(411\) −0.765408 −0.0377548
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 2.94129i − 0.144382i
\(416\) 0 0
\(417\) −0.457306 −0.0223944
\(418\) 0 0
\(419\) 12.0471 0.588539 0.294269 0.955723i \(-0.404924\pi\)
0.294269 + 0.955723i \(0.404924\pi\)
\(420\) 0 0
\(421\) 28.6654 1.39707 0.698533 0.715578i \(-0.253836\pi\)
0.698533 + 0.715578i \(0.253836\pi\)
\(422\) 0 0
\(423\) −11.7488 −0.571246
\(424\) 0 0
\(425\) − 5.43548i − 0.263660i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 36.5519 1.76474
\(430\) 0 0
\(431\) − 17.1305i − 0.825146i −0.910925 0.412573i \(-0.864630\pi\)
0.910925 0.412573i \(-0.135370\pi\)
\(432\) 0 0
\(433\) 12.4485i 0.598235i 0.954216 + 0.299117i \(0.0966923\pi\)
−0.954216 + 0.299117i \(0.903308\pi\)
\(434\) 0 0
\(435\) 7.40139i 0.354869i
\(436\) 0 0
\(437\) 5.91503i 0.282954i
\(438\) 0 0
\(439\) 10.8004 0.515474 0.257737 0.966215i \(-0.417023\pi\)
0.257737 + 0.966215i \(0.417023\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.0960518i 0.00456356i 0.999997 + 0.00228178i \(0.000726313\pi\)
−0.999997 + 0.00228178i \(0.999274\pi\)
\(444\) 0 0
\(445\) 17.6222 0.835374
\(446\) 0 0
\(447\) −34.6525 −1.63901
\(448\) 0 0
\(449\) 13.7048 0.646770 0.323385 0.946268i \(-0.395179\pi\)
0.323385 + 0.946268i \(0.395179\pi\)
\(450\) 0 0
\(451\) 63.7302 3.00094
\(452\) 0 0
\(453\) 51.3953i 2.41476i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 21.4880 1.00517 0.502583 0.864529i \(-0.332383\pi\)
0.502583 + 0.864529i \(0.332383\pi\)
\(458\) 0 0
\(459\) 0.139361i 0.00650482i
\(460\) 0 0
\(461\) − 27.2004i − 1.26685i −0.773804 0.633425i \(-0.781649\pi\)
0.773804 0.633425i \(-0.218351\pi\)
\(462\) 0 0
\(463\) 30.2578i 1.40620i 0.711092 + 0.703099i \(0.248201\pi\)
−0.711092 + 0.703099i \(0.751799\pi\)
\(464\) 0 0
\(465\) − 12.8625i − 0.596484i
\(466\) 0 0
\(467\) −16.7747 −0.776243 −0.388121 0.921608i \(-0.626876\pi\)
−0.388121 + 0.921608i \(0.626876\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 16.6797i 0.768558i
\(472\) 0 0
\(473\) −33.8108 −1.55462
\(474\) 0 0
\(475\) −0.989524 −0.0454025
\(476\) 0 0
\(477\) 26.9402 1.23351
\(478\) 0 0
\(479\) 17.1399 0.783142 0.391571 0.920148i \(-0.371932\pi\)
0.391571 + 0.920148i \(0.371932\pi\)
\(480\) 0 0
\(481\) 0.978485i 0.0446151i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.96528 −0.225462
\(486\) 0 0
\(487\) 11.2878i 0.511501i 0.966743 + 0.255750i \(0.0823225\pi\)
−0.966743 + 0.255750i \(0.917677\pi\)
\(488\) 0 0
\(489\) 18.6545i 0.843587i
\(490\) 0 0
\(491\) − 25.5317i − 1.15223i −0.817369 0.576115i \(-0.804568\pi\)
0.817369 0.576115i \(-0.195432\pi\)
\(492\) 0 0
\(493\) 16.4382i 0.740340i
\(494\) 0 0
\(495\) 19.3445 0.869471
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 17.0501i 0.763265i 0.924314 + 0.381633i \(0.124638\pi\)
−0.924314 + 0.381633i \(0.875362\pi\)
\(500\) 0 0
\(501\) 12.2644 0.547934
\(502\) 0 0
\(503\) 29.6588 1.32242 0.661211 0.750200i \(-0.270043\pi\)
0.661211 + 0.750200i \(0.270043\pi\)
\(504\) 0 0
\(505\) 6.39028 0.284364
\(506\) 0 0
\(507\) −18.7775 −0.833938
\(508\) 0 0
\(509\) 23.6328i 1.04751i 0.851870 + 0.523753i \(0.175469\pi\)
−0.851870 + 0.523753i \(0.824531\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.0253706 0.00112014
\(514\) 0 0
\(515\) − 13.5289i − 0.596155i
\(516\) 0 0
\(517\) − 25.4301i − 1.11841i
\(518\) 0 0
\(519\) − 29.5555i − 1.29734i
\(520\) 0 0
\(521\) 17.6387i 0.772766i 0.922338 + 0.386383i \(0.126276\pi\)
−0.922338 + 0.386383i \(0.873724\pi\)
\(522\) 0 0
\(523\) −21.9280 −0.958846 −0.479423 0.877584i \(-0.659154\pi\)
−0.479423 + 0.877584i \(0.659154\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 28.5672i − 1.24441i
\(528\) 0 0
\(529\) −12.7323 −0.553580
\(530\) 0 0
\(531\) −24.5768 −1.06654
\(532\) 0 0
\(533\) 22.7325 0.984655
\(534\) 0 0
\(535\) 4.24382 0.183476
\(536\) 0 0
\(537\) − 24.9190i − 1.07533i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.07940 0.0894005 0.0447002 0.999000i \(-0.485767\pi\)
0.0447002 + 0.999000i \(0.485767\pi\)
\(542\) 0 0
\(543\) − 15.5504i − 0.667333i
\(544\) 0 0
\(545\) 9.38079i 0.401829i
\(546\) 0 0
\(547\) 9.15708i 0.391528i 0.980651 + 0.195764i \(0.0627187\pi\)
−0.980651 + 0.195764i \(0.937281\pi\)
\(548\) 0 0
\(549\) − 19.8321i − 0.846412i
\(550\) 0 0
\(551\) 2.99256 0.127487
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.03751i 0.0440398i
\(556\) 0 0
\(557\) −15.7794 −0.668596 −0.334298 0.942467i \(-0.608499\pi\)
−0.334298 + 0.942467i \(0.608499\pi\)
\(558\) 0 0
\(559\) −12.0603 −0.510097
\(560\) 0 0
\(561\) 86.0776 3.63420
\(562\) 0 0
\(563\) −4.80198 −0.202379 −0.101190 0.994867i \(-0.532265\pi\)
−0.101190 + 0.994867i \(0.532265\pi\)
\(564\) 0 0
\(565\) 7.45643i 0.313694i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −25.7219 −1.07832 −0.539158 0.842204i \(-0.681258\pi\)
−0.539158 + 0.842204i \(0.681258\pi\)
\(570\) 0 0
\(571\) − 17.8290i − 0.746122i −0.927807 0.373061i \(-0.878308\pi\)
0.927807 0.373061i \(-0.121692\pi\)
\(572\) 0 0
\(573\) 14.3967i 0.601433i
\(574\) 0 0
\(575\) − 5.97765i − 0.249285i
\(576\) 0 0
\(577\) − 33.0316i − 1.37513i −0.726125 0.687563i \(-0.758681\pi\)
0.726125 0.687563i \(-0.241319\pi\)
\(578\) 0 0
\(579\) 20.5902 0.855699
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 58.3116i 2.41502i
\(584\) 0 0
\(585\) 6.90018 0.285287
\(586\) 0 0
\(587\) −14.6086 −0.602960 −0.301480 0.953472i \(-0.597481\pi\)
−0.301480 + 0.953472i \(0.597481\pi\)
\(588\) 0 0
\(589\) −5.20063 −0.214288
\(590\) 0 0
\(591\) 38.6903 1.59151
\(592\) 0 0
\(593\) − 10.6780i − 0.438493i −0.975669 0.219247i \(-0.929640\pi\)
0.975669 0.219247i \(-0.0703600\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 30.2770 1.23916
\(598\) 0 0
\(599\) 14.5038i 0.592610i 0.955093 + 0.296305i \(0.0957546\pi\)
−0.955093 + 0.296305i \(0.904245\pi\)
\(600\) 0 0
\(601\) − 38.6998i − 1.57860i −0.614008 0.789299i \(-0.710444\pi\)
0.614008 0.789299i \(-0.289556\pi\)
\(602\) 0 0
\(603\) 43.6174i 1.77624i
\(604\) 0 0
\(605\) 30.8708i 1.25508i
\(606\) 0 0
\(607\) −17.4589 −0.708635 −0.354317 0.935125i \(-0.615287\pi\)
−0.354317 + 0.935125i \(0.615287\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 9.07088i − 0.366969i
\(612\) 0 0
\(613\) −17.9479 −0.724909 −0.362455 0.932001i \(-0.618061\pi\)
−0.362455 + 0.932001i \(0.618061\pi\)
\(614\) 0 0
\(615\) 24.1038 0.971959
\(616\) 0 0
\(617\) 47.2698 1.90301 0.951506 0.307629i \(-0.0995357\pi\)
0.951506 + 0.307629i \(0.0995357\pi\)
\(618\) 0 0
\(619\) −46.9231 −1.88600 −0.942999 0.332795i \(-0.892008\pi\)
−0.942999 + 0.332795i \(0.892008\pi\)
\(620\) 0 0
\(621\) 0.153262i 0.00615019i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) − 15.6703i − 0.625813i
\(628\) 0 0
\(629\) 2.30427i 0.0918774i
\(630\) 0 0
\(631\) − 26.1192i − 1.03979i −0.854231 0.519894i \(-0.825972\pi\)
0.854231 0.519894i \(-0.174028\pi\)
\(632\) 0 0
\(633\) − 8.54975i − 0.339822i
\(634\) 0 0
\(635\) 13.8065 0.547895
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 6.84229i − 0.270677i
\(640\) 0 0
\(641\) −17.9508 −0.709013 −0.354506 0.935054i \(-0.615351\pi\)
−0.354506 + 0.935054i \(0.615351\pi\)
\(642\) 0 0
\(643\) 28.8535 1.13787 0.568936 0.822382i \(-0.307355\pi\)
0.568936 + 0.822382i \(0.307355\pi\)
\(644\) 0 0
\(645\) −12.7878 −0.503520
\(646\) 0 0
\(647\) 31.8722 1.25302 0.626512 0.779412i \(-0.284482\pi\)
0.626512 + 0.779412i \(0.284482\pi\)
\(648\) 0 0
\(649\) − 53.1960i − 2.08812i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.06801 0.0417943 0.0208972 0.999782i \(-0.493348\pi\)
0.0208972 + 0.999782i \(0.493348\pi\)
\(654\) 0 0
\(655\) − 2.55796i − 0.0999478i
\(656\) 0 0
\(657\) − 36.0915i − 1.40806i
\(658\) 0 0
\(659\) 27.6777i 1.07817i 0.842252 + 0.539085i \(0.181230\pi\)
−0.842252 + 0.539085i \(0.818770\pi\)
\(660\) 0 0
\(661\) 29.1653i 1.13440i 0.823580 + 0.567200i \(0.191973\pi\)
−0.823580 + 0.567200i \(0.808027\pi\)
\(662\) 0 0
\(663\) 30.7038 1.19244
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 18.0779i 0.699979i
\(668\) 0 0
\(669\) 55.5005 2.14577
\(670\) 0 0
\(671\) 42.9261 1.65714
\(672\) 0 0
\(673\) 5.57642 0.214955 0.107478 0.994208i \(-0.465723\pi\)
0.107478 + 0.994208i \(0.465723\pi\)
\(674\) 0 0
\(675\) −0.0256392 −0.000986852 0
\(676\) 0 0
\(677\) 11.8097i 0.453883i 0.973908 + 0.226942i \(0.0728726\pi\)
−0.973908 + 0.226942i \(0.927127\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −18.4886 −0.708486
\(682\) 0 0
\(683\) 19.7758i 0.756698i 0.925663 + 0.378349i \(0.123508\pi\)
−0.925663 + 0.378349i \(0.876492\pi\)
\(684\) 0 0
\(685\) − 0.312750i − 0.0119496i
\(686\) 0 0
\(687\) − 30.0804i − 1.14764i
\(688\) 0 0
\(689\) 20.7997i 0.792406i
\(690\) 0 0
\(691\) −10.1384 −0.385682 −0.192841 0.981230i \(-0.561770\pi\)
−0.192841 + 0.981230i \(0.561770\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 0.186858i − 0.00708791i
\(696\) 0 0
\(697\) 53.5337 2.02773
\(698\) 0 0
\(699\) 7.74497 0.292942
\(700\) 0 0
\(701\) −0.203655 −0.00769196 −0.00384598 0.999993i \(-0.501224\pi\)
−0.00384598 + 0.999993i \(0.501224\pi\)
\(702\) 0 0
\(703\) 0.419491 0.0158214
\(704\) 0 0
\(705\) − 9.61806i − 0.362237i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −14.5411 −0.546104 −0.273052 0.961999i \(-0.588033\pi\)
−0.273052 + 0.961999i \(0.588033\pi\)
\(710\) 0 0
\(711\) − 24.2656i − 0.910032i
\(712\) 0 0
\(713\) − 31.4167i − 1.17656i
\(714\) 0 0
\(715\) 14.9353i 0.558549i
\(716\) 0 0
\(717\) 66.0794i 2.46778i
\(718\) 0 0
\(719\) 40.5903 1.51376 0.756881 0.653553i \(-0.226722\pi\)
0.756881 + 0.653553i \(0.226722\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 33.1741i 1.23376i
\(724\) 0 0
\(725\) −3.02424 −0.112318
\(726\) 0 0
\(727\) 7.75162 0.287491 0.143746 0.989615i \(-0.454085\pi\)
0.143746 + 0.989615i \(0.454085\pi\)
\(728\) 0 0
\(729\) −26.8111 −0.993004
\(730\) 0 0
\(731\) −28.4013 −1.05046
\(732\) 0 0
\(733\) 6.66887i 0.246320i 0.992387 + 0.123160i \(0.0393029\pi\)
−0.992387 + 0.123160i \(0.960697\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −94.4090 −3.47760
\(738\) 0 0
\(739\) − 28.8170i − 1.06005i −0.847982 0.530026i \(-0.822182\pi\)
0.847982 0.530026i \(-0.177818\pi\)
\(740\) 0 0
\(741\) − 5.58960i − 0.205339i
\(742\) 0 0
\(743\) 17.9238i 0.657560i 0.944406 + 0.328780i \(0.106638\pi\)
−0.944406 + 0.328780i \(0.893362\pi\)
\(744\) 0 0
\(745\) − 14.1592i − 0.518753i
\(746\) 0 0
\(747\) 8.79306 0.321721
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 22.8565i 0.834045i 0.908896 + 0.417023i \(0.136926\pi\)
−0.908896 + 0.417023i \(0.863074\pi\)
\(752\) 0 0
\(753\) 34.8268 1.26916
\(754\) 0 0
\(755\) −21.0004 −0.764283
\(756\) 0 0
\(757\) −42.7423 −1.55349 −0.776747 0.629812i \(-0.783132\pi\)
−0.776747 + 0.629812i \(0.783132\pi\)
\(758\) 0 0
\(759\) 94.6635 3.43607
\(760\) 0 0
\(761\) − 33.5084i − 1.21468i −0.794443 0.607339i \(-0.792237\pi\)
0.794443 0.607339i \(-0.207763\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 16.2495 0.587502
\(766\) 0 0
\(767\) − 18.9750i − 0.685146i
\(768\) 0 0
\(769\) − 29.5287i − 1.06483i −0.846483 0.532415i \(-0.821284\pi\)
0.846483 0.532415i \(-0.178716\pi\)
\(770\) 0 0
\(771\) − 46.8053i − 1.68565i
\(772\) 0 0
\(773\) − 41.7845i − 1.50288i −0.659800 0.751442i \(-0.729359\pi\)
0.659800 0.751442i \(-0.270641\pi\)
\(774\) 0 0
\(775\) 5.25569 0.188790
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 9.74576i − 0.349178i
\(780\) 0 0
\(781\) 14.8100 0.529944
\(782\) 0 0
\(783\) 0.0775391 0.00277102
\(784\) 0 0
\(785\) −6.81540 −0.243252
\(786\) 0 0
\(787\) 11.0208 0.392851 0.196425 0.980519i \(-0.437067\pi\)
0.196425 + 0.980519i \(0.437067\pi\)
\(788\) 0 0
\(789\) − 17.0010i − 0.605252i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 15.3117 0.543735
\(794\) 0 0
\(795\) 22.0544i 0.782190i
\(796\) 0 0
\(797\) 12.9488i 0.458669i 0.973348 + 0.229334i \(0.0736549\pi\)
−0.973348 + 0.229334i \(0.926345\pi\)
\(798\) 0 0
\(799\) − 21.3614i − 0.755711i
\(800\) 0 0
\(801\) 52.6821i 1.86143i
\(802\) 0 0
\(803\) 78.1195 2.75678
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.9364i 0.666592i
\(808\) 0 0
\(809\) 25.5225 0.897323 0.448661 0.893702i \(-0.351901\pi\)
0.448661 + 0.893702i \(0.351901\pi\)
\(810\) 0 0
\(811\) −6.60292 −0.231860 −0.115930 0.993257i \(-0.536985\pi\)
−0.115930 + 0.993257i \(0.536985\pi\)
\(812\) 0 0
\(813\) 6.17212 0.216466
\(814\) 0 0
\(815\) −7.62234 −0.266999
\(816\) 0 0
\(817\) 5.17043i 0.180890i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.76517 0.201206 0.100603 0.994927i \(-0.467923\pi\)
0.100603 + 0.994927i \(0.467923\pi\)
\(822\) 0 0
\(823\) 3.13521i 0.109287i 0.998506 + 0.0546433i \(0.0174022\pi\)
−0.998506 + 0.0546433i \(0.982598\pi\)
\(824\) 0 0
\(825\) 15.8362i 0.551347i
\(826\) 0 0
\(827\) − 22.0174i − 0.765621i −0.923827 0.382811i \(-0.874956\pi\)
0.923827 0.382811i \(-0.125044\pi\)
\(828\) 0 0
\(829\) 46.7718i 1.62445i 0.583343 + 0.812226i \(0.301744\pi\)
−0.583343 + 0.812226i \(0.698256\pi\)
\(830\) 0 0
\(831\) −72.5983 −2.51841
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 5.01130i 0.173423i
\(836\) 0 0
\(837\) −0.134751 −0.00465769
\(838\) 0 0
\(839\) 36.3872 1.25622 0.628112 0.778123i \(-0.283828\pi\)
0.628112 + 0.778123i \(0.283828\pi\)
\(840\) 0 0
\(841\) −19.8539 −0.684619
\(842\) 0 0
\(843\) 37.5733 1.29409
\(844\) 0 0
\(845\) − 7.67259i − 0.263945i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 22.0864 0.758003
\(850\) 0 0
\(851\) 2.53412i 0.0868684i
\(852\) 0 0
\(853\) − 5.80981i − 0.198924i −0.995041 0.0994621i \(-0.968288\pi\)
0.995041 0.0994621i \(-0.0317122\pi\)
\(854\) 0 0
\(855\) − 2.95820i − 0.101168i
\(856\) 0 0
\(857\) 0.327118i 0.0111741i 0.999984 + 0.00558706i \(0.00177843\pi\)
−0.999984 + 0.00558706i \(0.998222\pi\)
\(858\) 0 0
\(859\) −9.62729 −0.328479 −0.164239 0.986420i \(-0.552517\pi\)
−0.164239 + 0.986420i \(0.552517\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 20.5081i − 0.698104i −0.937103 0.349052i \(-0.886504\pi\)
0.937103 0.349052i \(-0.113496\pi\)
\(864\) 0 0
\(865\) 12.0765 0.410614
\(866\) 0 0
\(867\) 30.7006 1.04265
\(868\) 0 0
\(869\) 52.5225 1.78170
\(870\) 0 0
\(871\) −33.6756 −1.14105
\(872\) 0 0
\(873\) − 14.8438i − 0.502387i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17.4104 0.587909 0.293954 0.955819i \(-0.405029\pi\)
0.293954 + 0.955819i \(0.405029\pi\)
\(878\) 0 0
\(879\) 1.99556i 0.0673085i
\(880\) 0 0
\(881\) 25.3913i 0.855455i 0.903908 + 0.427727i \(0.140686\pi\)
−0.903908 + 0.427727i \(0.859314\pi\)
\(882\) 0 0
\(883\) − 24.0260i − 0.808541i −0.914639 0.404270i \(-0.867525\pi\)
0.914639 0.404270i \(-0.132475\pi\)
\(884\) 0 0
\(885\) − 20.1196i − 0.676312i
\(886\) 0 0
\(887\) 4.56644 0.153326 0.0766631 0.997057i \(-0.475573\pi\)
0.0766631 + 0.997057i \(0.475573\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 58.4396i − 1.95780i
\(892\) 0 0
\(893\) −3.88882 −0.130134
\(894\) 0 0
\(895\) 10.1820 0.340347
\(896\) 0 0
\(897\) 33.7664 1.12743
\(898\) 0 0
\(899\) −15.8945 −0.530111
\(900\) 0 0
\(901\) 48.9821i 1.63183i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.35399 0.211214
\(906\) 0 0
\(907\) − 41.8509i − 1.38963i −0.719186 0.694817i \(-0.755485\pi\)
0.719186 0.694817i \(-0.244515\pi\)
\(908\) 0 0
\(909\) 19.1039i 0.633636i
\(910\) 0 0
\(911\) − 33.5744i − 1.11237i −0.831059 0.556184i \(-0.812265\pi\)
0.831059 0.556184i \(-0.187735\pi\)
\(912\) 0 0
\(913\) 19.0324i 0.629881i
\(914\) 0 0
\(915\) 16.2354 0.536725
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 36.0584i 1.18946i 0.803927 + 0.594728i \(0.202740\pi\)
−0.803927 + 0.594728i \(0.797260\pi\)
\(920\) 0 0
\(921\) 20.6085 0.679073
\(922\) 0 0
\(923\) 5.28272 0.173883
\(924\) 0 0
\(925\) −0.423932 −0.0139388
\(926\) 0 0
\(927\) 40.4450 1.32839
\(928\) 0 0
\(929\) 1.40370i 0.0460539i 0.999735 + 0.0230269i \(0.00733035\pi\)
−0.999735 + 0.0230269i \(0.992670\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 49.5443 1.62201
\(934\) 0 0
\(935\) 35.1717i 1.15024i
\(936\) 0 0
\(937\) − 58.7549i − 1.91944i −0.280960 0.959720i \(-0.590653\pi\)
0.280960 0.959720i \(-0.409347\pi\)
\(938\) 0 0
\(939\) − 60.5047i − 1.97450i
\(940\) 0 0
\(941\) 28.7596i 0.937537i 0.883321 + 0.468768i \(0.155302\pi\)
−0.883321 + 0.468768i \(0.844698\pi\)
\(942\) 0 0
\(943\) 58.8735 1.91719
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.5821i 0.538844i 0.963022 + 0.269422i \(0.0868327\pi\)
−0.963022 + 0.269422i \(0.913167\pi\)
\(948\) 0 0
\(949\) 27.8652 0.904541
\(950\) 0 0
\(951\) −45.5359 −1.47660
\(952\) 0 0
\(953\) −6.47062 −0.209604 −0.104802 0.994493i \(-0.533421\pi\)
−0.104802 + 0.994493i \(0.533421\pi\)
\(954\) 0 0
\(955\) −5.88258 −0.190356
\(956\) 0 0
\(957\) − 47.8927i − 1.54815i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −3.37776 −0.108960
\(962\) 0 0
\(963\) 12.6870i 0.408832i
\(964\) 0 0
\(965\) 8.41326i 0.270832i
\(966\) 0 0
\(967\) − 7.89312i − 0.253826i −0.991914 0.126913i \(-0.959493\pi\)
0.991914 0.126913i \(-0.0405069\pi\)
\(968\) 0 0
\(969\) − 13.1632i − 0.422862i
\(970\) 0 0
\(971\) −18.7936 −0.603114 −0.301557 0.953448i \(-0.597506\pi\)
−0.301557 + 0.953448i \(0.597506\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 5.64878i 0.180906i
\(976\) 0 0
\(977\) −9.67640 −0.309575 −0.154788 0.987948i \(-0.549469\pi\)
−0.154788 + 0.987948i \(0.549469\pi\)
\(978\) 0 0
\(979\) −114.029 −3.64439
\(980\) 0 0
\(981\) −28.0441 −0.895379
\(982\) 0 0
\(983\) 36.0310 1.14921 0.574606 0.818430i \(-0.305155\pi\)
0.574606 + 0.818430i \(0.305155\pi\)
\(984\) 0 0
\(985\) 15.8091i 0.503718i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −31.2342 −0.993191
\(990\) 0 0
\(991\) − 36.3805i − 1.15566i −0.816155 0.577832i \(-0.803899\pi\)
0.816155 0.577832i \(-0.196101\pi\)
\(992\) 0 0
\(993\) 52.3489i 1.66124i
\(994\) 0 0
\(995\) 12.3714i 0.392198i
\(996\) 0 0
\(997\) 23.9444i 0.758327i 0.925330 + 0.379164i \(0.123788\pi\)
−0.925330 + 0.379164i \(0.876212\pi\)
\(998\) 0 0
\(999\) 0.0108693 0.000343888 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3920.2.k.d.2351.3 12
4.3 odd 2 3920.2.k.e.2351.9 12
7.2 even 3 560.2.bs.c.31.5 yes 12
7.3 odd 6 560.2.bs.b.271.2 yes 12
7.6 odd 2 3920.2.k.e.2351.10 12
28.3 even 6 560.2.bs.c.271.5 yes 12
28.23 odd 6 560.2.bs.b.31.2 12
28.27 even 2 inner 3920.2.k.d.2351.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.2.bs.b.31.2 12 28.23 odd 6
560.2.bs.b.271.2 yes 12 7.3 odd 6
560.2.bs.c.31.5 yes 12 7.2 even 3
560.2.bs.c.271.5 yes 12 28.3 even 6
3920.2.k.d.2351.3 12 1.1 even 1 trivial
3920.2.k.d.2351.4 12 28.27 even 2 inner
3920.2.k.e.2351.9 12 4.3 odd 2
3920.2.k.e.2351.10 12 7.6 odd 2