Properties

Label 558.2.q.a.371.31
Level $558$
Weight $2$
Character 558.371
Analytic conductor $4.456$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(185,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.185"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 371.31
Character \(\chi\) \(=\) 558.371
Dual form 558.2.q.a.185.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(1.58459 - 0.699349i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.254546 - 0.146962i) q^{5} +(1.72197 + 0.186639i) q^{6} +(1.66841 - 2.88977i) q^{7} +1.00000i q^{8} +(2.02182 - 2.21636i) q^{9} +0.293925 q^{10} +(0.689101 - 1.19356i) q^{11} +(1.39795 + 1.02262i) q^{12} +(-5.42761 + 3.13363i) q^{13} +(2.88977 - 1.66841i) q^{14} +(0.300572 - 0.410891i) q^{15} +(-0.500000 + 0.866025i) q^{16} +1.42910 q^{17} +(2.85913 - 0.908510i) q^{18} +2.23335 q^{19} +(0.254546 + 0.146962i) q^{20} +(0.622780 - 5.74589i) q^{21} +(1.19356 - 0.689101i) q^{22} +(-2.37297 - 4.11011i) q^{23} +(0.699349 + 1.58459i) q^{24} +(-2.45680 + 4.25531i) q^{25} -6.26727 q^{26} +(1.65374 - 4.92597i) q^{27} +3.33682 q^{28} +(-1.98252 + 3.43382i) q^{29} +(0.465749 - 0.205556i) q^{30} +(1.27538 + 5.41972i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(0.257226 - 2.37322i) q^{33} +(1.23764 + 0.714549i) q^{34} -0.980774i q^{35} +(2.93033 + 0.642771i) q^{36} +5.87646i q^{37} +(1.93414 + 1.11668i) q^{38} +(-6.40901 + 8.76131i) q^{39} +(0.146962 + 0.254546i) q^{40} +(4.05457 - 2.34091i) q^{41} +(3.41229 - 4.66470i) q^{42} +(4.22359 + 2.43849i) q^{43} +1.37820 q^{44} +(0.188926 - 0.861297i) q^{45} -4.74595i q^{46} +(2.19470 + 1.26711i) q^{47} +(-0.186639 + 1.72197i) q^{48} +(-2.06718 - 3.58047i) q^{49} +(-4.25531 + 2.45680i) q^{50} +(2.26453 - 0.999439i) q^{51} +(-5.42761 - 3.13363i) q^{52} -4.42747 q^{53} +(3.89517 - 3.43914i) q^{54} -0.405088i q^{55} +(2.88977 + 1.66841i) q^{56} +(3.53894 - 1.56189i) q^{57} +(-3.43382 + 1.98252i) q^{58} +(-10.5590 + 6.09626i) q^{59} +(0.506128 + 0.0548577i) q^{60} +(-2.74322 - 1.58380i) q^{61} +(-1.60535 + 5.33131i) q^{62} +(-3.03153 - 9.54039i) q^{63} -1.00000 q^{64} +(-0.921052 + 1.59531i) q^{65} +(1.40937 - 1.92665i) q^{66} +(-4.11484 - 7.12712i) q^{67} +(0.714549 + 1.23764i) q^{68} +(-6.63458 - 4.85329i) q^{69} +(0.490387 - 0.849375i) q^{70} -3.53523i q^{71} +(2.21636 + 2.02182i) q^{72} +6.93097i q^{73} +(-2.93823 + 5.08916i) q^{74} +(-0.917070 + 8.46107i) q^{75} +(1.11668 + 1.93414i) q^{76} +(-2.29941 - 3.98269i) q^{77} +(-9.93102 + 4.38301i) q^{78} +(0.110368 + 0.0637209i) q^{79} +0.293925i q^{80} +(-0.824472 - 8.96216i) q^{81} +4.68181 q^{82} +(5.84303 - 10.1204i) q^{83} +(5.28748 - 2.33360i) q^{84} +(0.363772 - 0.210024i) q^{85} +(2.43849 + 4.22359i) q^{86} +(-0.740028 + 6.82765i) q^{87} +(1.19356 + 0.689101i) q^{88} -0.318924 q^{89} +(0.594263 - 0.651442i) q^{90} +20.9127i q^{91} +(2.37297 - 4.11011i) q^{92} +(5.81123 + 7.69607i) q^{93} +(1.26711 + 2.19470i) q^{94} +(0.568491 - 0.328219i) q^{95} +(-1.02262 + 1.39795i) q^{96} +(4.33481 - 7.50811i) q^{97} -4.13437i q^{98} +(-1.25211 - 3.94046i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} + 12 q^{5} - 4 q^{7} - 4 q^{9} - 32 q^{16} + 8 q^{18} - 8 q^{19} + 12 q^{20} + 44 q^{25} - 8 q^{28} + 8 q^{31} - 36 q^{33} - 8 q^{36} + 36 q^{38} - 8 q^{39} + 24 q^{41} - 8 q^{45} - 48 q^{47}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/558\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(497\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 1.58459 0.699349i 0.914861 0.403769i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.254546 0.146962i 0.113837 0.0657235i −0.442001 0.897015i \(-0.645731\pi\)
0.555837 + 0.831291i \(0.312398\pi\)
\(6\) 1.72197 + 0.186639i 0.702990 + 0.0761949i
\(7\) 1.66841 2.88977i 0.630600 1.09223i −0.356830 0.934169i \(-0.616142\pi\)
0.987429 0.158061i \(-0.0505243\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.02182 2.21636i 0.673941 0.738785i
\(10\) 0.293925 0.0929471
\(11\) 0.689101 1.19356i 0.207772 0.359871i −0.743240 0.669024i \(-0.766712\pi\)
0.951012 + 0.309153i \(0.100046\pi\)
\(12\) 1.39795 + 1.02262i 0.403552 + 0.295204i
\(13\) −5.42761 + 3.13363i −1.50535 + 0.869114i −0.505368 + 0.862904i \(0.668643\pi\)
−0.999981 + 0.00620975i \(0.998023\pi\)
\(14\) 2.88977 1.66841i 0.772324 0.445901i
\(15\) 0.300572 0.410891i 0.0776074 0.106092i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.42910 0.346607 0.173304 0.984868i \(-0.444556\pi\)
0.173304 + 0.984868i \(0.444556\pi\)
\(18\) 2.85913 0.908510i 0.673903 0.214138i
\(19\) 2.23335 0.512366 0.256183 0.966628i \(-0.417535\pi\)
0.256183 + 0.966628i \(0.417535\pi\)
\(20\) 0.254546 + 0.146962i 0.0569183 + 0.0328618i
\(21\) 0.622780 5.74589i 0.135902 1.25386i
\(22\) 1.19356 0.689101i 0.254468 0.146917i
\(23\) −2.37297 4.11011i −0.494799 0.857018i 0.505183 0.863012i \(-0.331425\pi\)
−0.999982 + 0.00599485i \(0.998092\pi\)
\(24\) 0.699349 + 1.58459i 0.142754 + 0.323452i
\(25\) −2.45680 + 4.25531i −0.491361 + 0.851062i
\(26\) −6.26727 −1.22911
\(27\) 1.65374 4.92597i 0.318263 0.948002i
\(28\) 3.33682 0.630600
\(29\) −1.98252 + 3.43382i −0.368144 + 0.637644i −0.989275 0.146062i \(-0.953340\pi\)
0.621131 + 0.783706i \(0.286673\pi\)
\(30\) 0.465749 0.205556i 0.0850337 0.0375292i
\(31\) 1.27538 + 5.41972i 0.229066 + 0.973411i
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0.257226 2.37322i 0.0447773 0.413124i
\(34\) 1.23764 + 0.714549i 0.212253 + 0.122544i
\(35\) 0.980774i 0.165781i
\(36\) 2.93033 + 0.642771i 0.488389 + 0.107129i
\(37\) 5.87646i 0.966083i 0.875597 + 0.483042i \(0.160468\pi\)
−0.875597 + 0.483042i \(0.839532\pi\)
\(38\) 1.93414 + 1.11668i 0.313759 + 0.181149i
\(39\) −6.40901 + 8.76131i −1.02626 + 1.40293i
\(40\) 0.146962 + 0.254546i 0.0232368 + 0.0402473i
\(41\) 4.05457 2.34091i 0.633217 0.365588i −0.148780 0.988870i \(-0.547535\pi\)
0.781997 + 0.623282i \(0.214201\pi\)
\(42\) 3.41229 4.66470i 0.526527 0.719778i
\(43\) 4.22359 + 2.43849i 0.644091 + 0.371866i 0.786189 0.617987i \(-0.212051\pi\)
−0.142098 + 0.989853i \(0.545385\pi\)
\(44\) 1.37820 0.207772
\(45\) 0.188926 0.861297i 0.0281635 0.128395i
\(46\) 4.74595i 0.699752i
\(47\) 2.19470 + 1.26711i 0.320130 + 0.184827i 0.651451 0.758691i \(-0.274161\pi\)
−0.331320 + 0.943518i \(0.607494\pi\)
\(48\) −0.186639 + 1.72197i −0.0269390 + 0.248544i
\(49\) −2.06718 3.58047i −0.295312 0.511495i
\(50\) −4.25531 + 2.45680i −0.601792 + 0.347445i
\(51\) 2.26453 0.999439i 0.317098 0.139949i
\(52\) −5.42761 3.13363i −0.752674 0.434557i
\(53\) −4.42747 −0.608159 −0.304080 0.952647i \(-0.598349\pi\)
−0.304080 + 0.952647i \(0.598349\pi\)
\(54\) 3.89517 3.43914i 0.530065 0.468008i
\(55\) 0.405088i 0.0546220i
\(56\) 2.88977 + 1.66841i 0.386162 + 0.222951i
\(57\) 3.53894 1.56189i 0.468744 0.206878i
\(58\) −3.43382 + 1.98252i −0.450882 + 0.260317i
\(59\) −10.5590 + 6.09626i −1.37467 + 0.793666i −0.991512 0.130017i \(-0.958497\pi\)
−0.383158 + 0.923683i \(0.625164\pi\)
\(60\) 0.506128 + 0.0548577i 0.0653409 + 0.00708210i
\(61\) −2.74322 1.58380i −0.351233 0.202784i 0.313995 0.949425i \(-0.398332\pi\)
−0.665228 + 0.746640i \(0.731666\pi\)
\(62\) −1.60535 + 5.33131i −0.203879 + 0.677077i
\(63\) −3.03153 9.54039i −0.381937 1.20198i
\(64\) −1.00000 −0.125000
\(65\) −0.921052 + 1.59531i −0.114242 + 0.197874i
\(66\) 1.40937 1.92665i 0.173482 0.237155i
\(67\) −4.11484 7.12712i −0.502708 0.870716i −0.999995 0.00312998i \(-0.999004\pi\)
0.497287 0.867586i \(-0.334330\pi\)
\(68\) 0.714549 + 1.23764i 0.0866518 + 0.150085i
\(69\) −6.63458 4.85329i −0.798710 0.584267i
\(70\) 0.490387 0.849375i 0.0586124 0.101520i
\(71\) 3.53523i 0.419555i −0.977749 0.209777i \(-0.932726\pi\)
0.977749 0.209777i \(-0.0672739\pi\)
\(72\) 2.21636 + 2.02182i 0.261200 + 0.238274i
\(73\) 6.93097i 0.811208i 0.914049 + 0.405604i \(0.132939\pi\)
−0.914049 + 0.405604i \(0.867061\pi\)
\(74\) −2.93823 + 5.08916i −0.341562 + 0.591603i
\(75\) −0.917070 + 8.46107i −0.105894 + 0.977000i
\(76\) 1.11668 + 1.93414i 0.128092 + 0.221861i
\(77\) −2.29941 3.98269i −0.262042 0.453870i
\(78\) −9.93102 + 4.38301i −1.12447 + 0.496278i
\(79\) 0.110368 + 0.0637209i 0.0124174 + 0.00716917i 0.506196 0.862419i \(-0.331051\pi\)
−0.493778 + 0.869588i \(0.664385\pi\)
\(80\) 0.293925i 0.0328618i
\(81\) −0.824472 8.96216i −0.0916080 0.995795i
\(82\) 4.68181 0.517020
\(83\) 5.84303 10.1204i 0.641356 1.11086i −0.343775 0.939052i \(-0.611706\pi\)
0.985130 0.171808i \(-0.0549610\pi\)
\(84\) 5.28748 2.33360i 0.576911 0.254617i
\(85\) 0.363772 0.210024i 0.0394566 0.0227803i
\(86\) 2.43849 + 4.22359i 0.262949 + 0.455441i
\(87\) −0.740028 + 6.82765i −0.0793394 + 0.732001i
\(88\) 1.19356 + 0.689101i 0.127234 + 0.0734584i
\(89\) −0.318924 −0.0338059 −0.0169029 0.999857i \(-0.505381\pi\)
−0.0169029 + 0.999857i \(0.505381\pi\)
\(90\) 0.594263 0.651442i 0.0626409 0.0686680i
\(91\) 20.9127i 2.19225i
\(92\) 2.37297 4.11011i 0.247400 0.428509i
\(93\) 5.81123 + 7.69607i 0.602597 + 0.798046i
\(94\) 1.26711 + 2.19470i 0.130693 + 0.226366i
\(95\) 0.568491 0.328219i 0.0583260 0.0336745i
\(96\) −1.02262 + 1.39795i −0.104370 + 0.142677i
\(97\) 4.33481 7.50811i 0.440133 0.762333i −0.557566 0.830133i \(-0.688264\pi\)
0.997699 + 0.0677995i \(0.0215978\pi\)
\(98\) 4.13437i 0.417634i
\(99\) −1.25211 3.94046i −0.125842 0.396031i
\(100\) −4.91361 −0.491361
\(101\) −8.71647 5.03246i −0.867321 0.500748i −0.000864119 1.00000i \(-0.500275\pi\)
−0.866457 + 0.499251i \(0.833608\pi\)
\(102\) 2.46086 + 0.266725i 0.243661 + 0.0264097i
\(103\) 5.74869 + 9.95702i 0.566435 + 0.981095i 0.996915 + 0.0784943i \(0.0250112\pi\)
−0.430479 + 0.902600i \(0.641655\pi\)
\(104\) −3.13363 5.42761i −0.307278 0.532221i
\(105\) −0.685903 1.55412i −0.0669373 0.151667i
\(106\) −3.83430 2.21373i −0.372420 0.215017i
\(107\) 14.6419i 1.41549i −0.706468 0.707745i \(-0.749713\pi\)
0.706468 0.707745i \(-0.250287\pi\)
\(108\) 5.09288 1.03080i 0.490063 0.0991887i
\(109\) −12.1199 −1.16087 −0.580436 0.814306i \(-0.697118\pi\)
−0.580436 + 0.814306i \(0.697118\pi\)
\(110\) 0.202544 0.350816i 0.0193118 0.0334490i
\(111\) 4.10969 + 9.31175i 0.390075 + 0.883832i
\(112\) 1.66841 + 2.88977i 0.157650 + 0.273058i
\(113\) −7.03255 + 4.06024i −0.661566 + 0.381956i −0.792874 0.609386i \(-0.791416\pi\)
0.131307 + 0.991342i \(0.458083\pi\)
\(114\) 3.84576 + 0.416830i 0.360188 + 0.0390397i
\(115\) −1.20806 0.697476i −0.112652 0.0650399i
\(116\) −3.96503 −0.368144
\(117\) −4.02842 + 18.3652i −0.372427 + 1.69786i
\(118\) −12.1925 −1.12241
\(119\) 2.38432 4.12977i 0.218571 0.378575i
\(120\) 0.410891 + 0.300572i 0.0375090 + 0.0274384i
\(121\) 4.55028 + 7.88131i 0.413662 + 0.716483i
\(122\) −1.58380 2.74322i −0.143390 0.248359i
\(123\) 4.78770 6.54492i 0.431692 0.590136i
\(124\) −4.05593 + 3.81438i −0.364233 + 0.342541i
\(125\) 2.91385i 0.260623i
\(126\) 2.14481 9.77799i 0.191075 0.871093i
\(127\) 10.4455i 0.926886i 0.886127 + 0.463443i \(0.153386\pi\)
−0.886127 + 0.463443i \(0.846614\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 8.39799 + 0.910233i 0.739402 + 0.0801416i
\(130\) −1.59531 + 0.921052i −0.139918 + 0.0807816i
\(131\) −18.2202 + 10.5194i −1.59191 + 0.919087i −0.598925 + 0.800805i \(0.704405\pi\)
−0.992980 + 0.118282i \(0.962261\pi\)
\(132\) 2.18388 0.963845i 0.190082 0.0838919i
\(133\) 3.72615 6.45388i 0.323098 0.559622i
\(134\) 8.22969i 0.710937i
\(135\) −0.302977 1.49692i −0.0260761 0.128835i
\(136\) 1.42910i 0.122544i
\(137\) 10.4848 18.1601i 0.895774 1.55153i 0.0629292 0.998018i \(-0.479956\pi\)
0.832844 0.553507i \(-0.186711\pi\)
\(138\) −3.31907 7.52036i −0.282538 0.640176i
\(139\) −0.487248 + 0.281313i −0.0413278 + 0.0238606i −0.520522 0.853849i \(-0.674262\pi\)
0.479194 + 0.877709i \(0.340929\pi\)
\(140\) 0.849375 0.490387i 0.0717853 0.0414452i
\(141\) 4.36385 + 0.472984i 0.367502 + 0.0398325i
\(142\) 1.76761 3.06160i 0.148335 0.256924i
\(143\) 8.63756i 0.722309i
\(144\) 0.908510 + 2.85913i 0.0757092 + 0.238261i
\(145\) 1.16542i 0.0967829i
\(146\) −3.46548 + 6.00239i −0.286805 + 0.496762i
\(147\) −5.77962 4.22787i −0.476695 0.348709i
\(148\) −5.08916 + 2.93823i −0.418326 + 0.241521i
\(149\) 9.64250 5.56710i 0.789945 0.456075i −0.0499984 0.998749i \(-0.515922\pi\)
0.839943 + 0.542675i \(0.182588\pi\)
\(150\) −5.02474 + 6.86896i −0.410268 + 0.560848i
\(151\) 7.87062 + 4.54411i 0.640502 + 0.369794i 0.784808 0.619739i \(-0.212762\pi\)
−0.144306 + 0.989533i \(0.546095\pi\)
\(152\) 2.23335i 0.181149i
\(153\) 2.88938 3.16739i 0.233593 0.256069i
\(154\) 4.59881i 0.370583i
\(155\) 1.12114 + 1.19214i 0.0900521 + 0.0957547i
\(156\) −10.7920 1.16971i −0.864053 0.0936521i
\(157\) −1.96305 3.40011i −0.156669 0.271358i 0.776997 0.629505i \(-0.216742\pi\)
−0.933665 + 0.358147i \(0.883409\pi\)
\(158\) 0.0637209 + 0.110368i 0.00506937 + 0.00878040i
\(159\) −7.01570 + 3.09635i −0.556381 + 0.245556i
\(160\) −0.146962 + 0.254546i −0.0116184 + 0.0201236i
\(161\) −15.8364 −1.24808
\(162\) 3.76706 8.17369i 0.295969 0.642186i
\(163\) −22.8716 −1.79144 −0.895722 0.444615i \(-0.853341\pi\)
−0.895722 + 0.444615i \(0.853341\pi\)
\(164\) 4.05457 + 2.34091i 0.316609 + 0.182794i
\(165\) −0.283298 0.641896i −0.0220547 0.0499715i
\(166\) 10.1204 5.84303i 0.785497 0.453507i
\(167\) −10.9960 19.0457i −0.850899 1.47380i −0.880398 0.474235i \(-0.842725\pi\)
0.0294998 0.999565i \(-0.490609\pi\)
\(168\) 5.74589 + 0.622780i 0.443305 + 0.0480485i
\(169\) 13.1393 22.7580i 1.01072 1.75061i
\(170\) 0.420047 0.0322162
\(171\) 4.51544 4.94990i 0.345304 0.378529i
\(172\) 4.87698i 0.371866i
\(173\) 0.928358 + 0.535988i 0.0705818 + 0.0407504i 0.534876 0.844931i \(-0.320358\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(174\) −4.05471 + 5.54290i −0.307387 + 0.420206i
\(175\) 8.19791 + 14.1992i 0.619704 + 1.07336i
\(176\) 0.689101 + 1.19356i 0.0519430 + 0.0899678i
\(177\) −12.4683 + 17.0445i −0.937174 + 1.28114i
\(178\) −0.276196 0.159462i −0.0207018 0.0119522i
\(179\) 13.4794 1.00750 0.503748 0.863851i \(-0.331954\pi\)
0.503748 + 0.863851i \(0.331954\pi\)
\(180\) 0.840368 0.267033i 0.0626373 0.0199035i
\(181\) 8.17517i 0.607656i −0.952727 0.303828i \(-0.901735\pi\)
0.952727 0.303828i \(-0.0982647\pi\)
\(182\) −10.4564 + 18.1110i −0.775078 + 1.34247i
\(183\) −5.45449 0.591195i −0.403207 0.0437024i
\(184\) 4.11011 2.37297i 0.303001 0.174938i
\(185\) 0.863617 + 1.49583i 0.0634944 + 0.109976i
\(186\) 1.18464 + 9.57061i 0.0868619 + 0.701751i
\(187\) 0.984794 1.70571i 0.0720153 0.124734i
\(188\) 2.53422i 0.184827i
\(189\) −11.4758 12.9975i −0.834741 0.945427i
\(190\) 0.656437 0.0476230
\(191\) 7.48738 + 4.32284i 0.541767 + 0.312790i 0.745795 0.666176i \(-0.232070\pi\)
−0.204027 + 0.978965i \(0.565403\pi\)
\(192\) −1.58459 + 0.699349i −0.114358 + 0.0504712i
\(193\) 5.37331 + 9.30684i 0.386779 + 0.669921i 0.992014 0.126126i \(-0.0402542\pi\)
−0.605235 + 0.796047i \(0.706921\pi\)
\(194\) 7.50811 4.33481i 0.539051 0.311221i
\(195\) −0.343808 + 3.17204i −0.0246206 + 0.227155i
\(196\) 2.06718 3.58047i 0.147656 0.255748i
\(197\) −23.8943 −1.70240 −0.851200 0.524841i \(-0.824125\pi\)
−0.851200 + 0.524841i \(0.824125\pi\)
\(198\) 0.885869 4.03859i 0.0629559 0.287010i
\(199\) 22.6790i 1.60767i −0.594849 0.803837i \(-0.702788\pi\)
0.594849 0.803837i \(-0.297212\pi\)
\(200\) −4.25531 2.45680i −0.300896 0.173722i
\(201\) −11.5047 8.41582i −0.811477 0.593606i
\(202\) −5.03246 8.71647i −0.354082 0.613289i
\(203\) 6.61530 + 11.4580i 0.464303 + 0.804196i
\(204\) 1.99780 + 1.46142i 0.139874 + 0.102320i
\(205\) 0.688050 1.19174i 0.0480555 0.0832346i
\(206\) 11.4974i 0.801061i
\(207\) −13.9072 3.05056i −0.966618 0.212028i
\(208\) 6.26727i 0.434557i
\(209\) 1.53901 2.66564i 0.106455 0.184386i
\(210\) 0.183050 1.68886i 0.0126317 0.116542i
\(211\) 1.52607 + 2.64323i 0.105059 + 0.181967i 0.913762 0.406249i \(-0.133164\pi\)
−0.808703 + 0.588217i \(0.799830\pi\)
\(212\) −2.21373 3.83430i −0.152040 0.263341i
\(213\) −2.47236 5.60187i −0.169403 0.383834i
\(214\) 7.32097 12.6803i 0.500451 0.866807i
\(215\) 1.43346 0.0977614
\(216\) 4.92597 + 1.65374i 0.335169 + 0.112523i
\(217\) 17.7896 + 5.35675i 1.20764 + 0.363640i
\(218\) −10.4961 6.05993i −0.710886 0.410430i
\(219\) 4.84716 + 10.9827i 0.327541 + 0.742143i
\(220\) 0.350816 0.202544i 0.0236520 0.0136555i
\(221\) −7.75660 + 4.47827i −0.521765 + 0.301241i
\(222\) −1.09677 + 10.1191i −0.0736107 + 0.679146i
\(223\) 6.74823 + 3.89609i 0.451895 + 0.260901i 0.708630 0.705580i \(-0.249314\pi\)
−0.256735 + 0.966482i \(0.582647\pi\)
\(224\) 3.33682i 0.222951i
\(225\) 4.46406 + 14.0486i 0.297604 + 0.936575i
\(226\) −8.12049 −0.540167
\(227\) 22.1452 + 12.7856i 1.46983 + 0.848607i 0.999427 0.0338446i \(-0.0107751\pi\)
0.470403 + 0.882452i \(0.344108\pi\)
\(228\) 3.12211 + 2.28386i 0.206767 + 0.151253i
\(229\) 21.7948 12.5832i 1.44024 0.831522i 0.442373 0.896831i \(-0.354137\pi\)
0.997865 + 0.0653094i \(0.0208034\pi\)
\(230\) −0.697476 1.20806i −0.0459902 0.0796573i
\(231\) −6.42890 4.70282i −0.422990 0.309423i
\(232\) −3.43382 1.98252i −0.225441 0.130159i
\(233\) 21.6863i 1.42072i −0.703841 0.710358i \(-0.748533\pi\)
0.703841 0.710358i \(-0.251467\pi\)
\(234\) −12.6713 + 13.8905i −0.828349 + 0.908050i
\(235\) 0.744871 0.0485900
\(236\) −10.5590 6.09626i −0.687335 0.396833i
\(237\) 0.219451 + 0.0237856i 0.0142548 + 0.00154504i
\(238\) 4.12977 2.38432i 0.267693 0.154553i
\(239\) 5.72924 + 9.92334i 0.370594 + 0.641888i 0.989657 0.143454i \(-0.0458208\pi\)
−0.619063 + 0.785341i \(0.712487\pi\)
\(240\) 0.205556 + 0.465749i 0.0132686 + 0.0300639i
\(241\) 10.5193 + 6.07329i 0.677605 + 0.391215i 0.798952 0.601395i \(-0.205388\pi\)
−0.121347 + 0.992610i \(0.538721\pi\)
\(242\) 9.10056i 0.585006i
\(243\) −7.57412 13.6247i −0.485880 0.874025i
\(244\) 3.16759i 0.202784i
\(245\) −1.05239 0.607596i −0.0672346 0.0388179i
\(246\) 7.41873 3.27422i 0.473001 0.208757i
\(247\) −12.1218 + 6.99851i −0.771290 + 0.445304i
\(248\) −5.41972 + 1.27538i −0.344153 + 0.0809870i
\(249\) 2.18107 20.1230i 0.138220 1.27524i
\(250\) −1.45693 + 2.52347i −0.0921441 + 0.159598i
\(251\) 25.4400 1.60576 0.802879 0.596142i \(-0.203301\pi\)
0.802879 + 0.596142i \(0.203301\pi\)
\(252\) 6.74646 7.39558i 0.424987 0.465878i
\(253\) −6.54088 −0.411221
\(254\) −5.22274 + 9.04605i −0.327704 + 0.567600i
\(255\) 0.429547 0.587204i 0.0268993 0.0367721i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 6.10477 3.52459i 0.380805 0.219858i −0.297363 0.954764i \(-0.596107\pi\)
0.678169 + 0.734906i \(0.262774\pi\)
\(258\) 6.81776 + 4.98728i 0.424455 + 0.310494i
\(259\) 16.9816 + 9.80434i 1.05519 + 0.609212i
\(260\) −1.84210 −0.114242
\(261\) 3.60227 + 11.3365i 0.222975 + 0.701714i
\(262\) −21.0389 −1.29979
\(263\) 1.56915 2.71785i 0.0967579 0.167590i −0.813583 0.581449i \(-0.802486\pi\)
0.910341 + 0.413859i \(0.135819\pi\)
\(264\) 2.37322 + 0.257226i 0.146061 + 0.0158312i
\(265\) −1.12700 + 0.650671i −0.0692308 + 0.0399704i
\(266\) 6.45388 3.72615i 0.395712 0.228465i
\(267\) −0.505363 + 0.223039i −0.0309277 + 0.0136498i
\(268\) 4.11484 7.12712i 0.251354 0.435358i
\(269\) 26.2493 1.60045 0.800226 0.599699i \(-0.204713\pi\)
0.800226 + 0.599699i \(0.204713\pi\)
\(270\) 0.486076 1.44786i 0.0295816 0.0881141i
\(271\) 26.4625i 1.60748i 0.594979 + 0.803741i \(0.297160\pi\)
−0.594979 + 0.803741i \(0.702840\pi\)
\(272\) −0.714549 + 1.23764i −0.0433259 + 0.0750427i
\(273\) 14.6253 + 33.1380i 0.885164 + 2.00560i
\(274\) 18.1601 10.4848i 1.09709 0.633408i
\(275\) 3.38597 + 5.86468i 0.204182 + 0.353653i
\(276\) 0.885778 8.17236i 0.0533176 0.491918i
\(277\) −3.62066 2.09039i −0.217544 0.125599i 0.387268 0.921967i \(-0.373419\pi\)
−0.604813 + 0.796368i \(0.706752\pi\)
\(278\) −0.562626 −0.0337440
\(279\) 14.5906 + 8.13101i 0.873519 + 0.486791i
\(280\) 0.980774 0.0586124
\(281\) 3.26448 + 1.88475i 0.194743 + 0.112435i 0.594201 0.804317i \(-0.297468\pi\)
−0.399458 + 0.916751i \(0.630802\pi\)
\(282\) 3.54271 + 2.59154i 0.210965 + 0.154324i
\(283\) 12.0387 + 20.8516i 0.715625 + 1.23950i 0.962718 + 0.270507i \(0.0871912\pi\)
−0.247093 + 0.968992i \(0.579475\pi\)
\(284\) 3.06160 1.76761i 0.181672 0.104889i
\(285\) 0.671284 0.917664i 0.0397634 0.0543577i
\(286\) −4.31878 + 7.48035i −0.255375 + 0.442322i
\(287\) 15.6224i 0.922159i
\(288\) −0.642771 + 2.93033i −0.0378756 + 0.172671i
\(289\) −14.9577 −0.879863
\(290\) −0.582710 + 1.00928i −0.0342179 + 0.0592672i
\(291\) 1.61809 14.9288i 0.0948540 0.875141i
\(292\) −6.00239 + 3.46548i −0.351263 + 0.202802i
\(293\) −1.74859 + 1.00955i −0.102154 + 0.0589786i −0.550207 0.835029i \(-0.685451\pi\)
0.448053 + 0.894007i \(0.352118\pi\)
\(294\) −2.89137 6.55126i −0.168628 0.382077i
\(295\) −1.79184 + 3.10356i −0.104325 + 0.180696i
\(296\) −5.87646 −0.341562
\(297\) −4.73983 5.36833i −0.275033 0.311502i
\(298\) 11.1342 0.644987
\(299\) 25.7592 + 14.8721i 1.48969 + 0.860074i
\(300\) −7.78603 + 3.43633i −0.449527 + 0.198396i
\(301\) 14.0933 8.13680i 0.812327 0.468997i
\(302\) 4.54411 + 7.87062i 0.261484 + 0.452903i
\(303\) −17.3314 1.87850i −0.995665 0.107917i
\(304\) −1.11668 + 1.93414i −0.0640458 + 0.110931i
\(305\) −0.931033 −0.0533108
\(306\) 4.08598 1.29835i 0.233580 0.0742218i
\(307\) 3.40720 0.194459 0.0972295 0.995262i \(-0.469002\pi\)
0.0972295 + 0.995262i \(0.469002\pi\)
\(308\) 2.29941 3.98269i 0.131021 0.226935i
\(309\) 16.0727 + 11.7574i 0.914345 + 0.668856i
\(310\) 0.374867 + 1.59299i 0.0212910 + 0.0904758i
\(311\) −0.381978 + 0.220535i −0.0216600 + 0.0125054i −0.510791 0.859705i \(-0.670647\pi\)
0.489131 + 0.872210i \(0.337314\pi\)
\(312\) −8.76131 6.40901i −0.496011 0.362839i
\(313\) −11.5561 6.67194i −0.653192 0.377121i 0.136486 0.990642i \(-0.456419\pi\)
−0.789678 + 0.613521i \(0.789752\pi\)
\(314\) 3.92610i 0.221563i
\(315\) −2.17374 1.98295i −0.122477 0.111727i
\(316\) 0.127442i 0.00716917i
\(317\) −2.12441 1.22653i −0.119319 0.0688887i 0.439153 0.898412i \(-0.355279\pi\)
−0.558472 + 0.829524i \(0.688612\pi\)
\(318\) −7.62395 0.826337i −0.427530 0.0463387i
\(319\) 2.73231 + 4.73250i 0.152980 + 0.264969i
\(320\) −0.254546 + 0.146962i −0.0142296 + 0.00821544i
\(321\) −10.2398 23.2014i −0.571531 1.29498i
\(322\) −13.7147 7.91819i −0.764291 0.441263i
\(323\) 3.19168 0.177590
\(324\) 7.34922 5.19509i 0.408290 0.288616i
\(325\) 30.7949i 1.70819i
\(326\) −19.8074 11.4358i −1.09703 0.633371i
\(327\) −19.2050 + 8.47601i −1.06204 + 0.468725i
\(328\) 2.34091 + 4.05457i 0.129255 + 0.223876i
\(329\) 7.32333 4.22813i 0.403748 0.233104i
\(330\) 0.0756051 0.697547i 0.00416192 0.0383987i
\(331\) −27.7580 16.0261i −1.52572 0.880874i −0.999535 0.0305023i \(-0.990289\pi\)
−0.526183 0.850371i \(-0.676377\pi\)
\(332\) 11.6861 0.641356
\(333\) 13.0243 + 11.8811i 0.713728 + 0.651083i
\(334\) 21.9921i 1.20335i
\(335\) −2.09484 1.20945i −0.114453 0.0660795i
\(336\) 4.66470 + 3.41229i 0.254480 + 0.186156i
\(337\) 7.39401 4.26893i 0.402777 0.232544i −0.284904 0.958556i \(-0.591962\pi\)
0.687682 + 0.726012i \(0.258628\pi\)
\(338\) 22.7580 13.1393i 1.23787 0.714685i
\(339\) −8.30415 + 11.3520i −0.451019 + 0.616556i
\(340\) 0.363772 + 0.210024i 0.0197283 + 0.0113901i
\(341\) 7.34762 + 2.21249i 0.397896 + 0.119813i
\(342\) 6.38544 2.02902i 0.345285 0.109717i
\(343\) 9.56210 0.516305
\(344\) −2.43849 + 4.22359i −0.131475 + 0.227721i
\(345\) −2.40206 0.260352i −0.129322 0.0140169i
\(346\) 0.535988 + 0.928358i 0.0288149 + 0.0499089i
\(347\) 14.3256 + 24.8126i 0.769038 + 1.33201i 0.938085 + 0.346404i \(0.112597\pi\)
−0.169048 + 0.985608i \(0.554069\pi\)
\(348\) −6.28293 + 2.77294i −0.336800 + 0.148645i
\(349\) 7.25810 12.5714i 0.388517 0.672932i −0.603733 0.797187i \(-0.706321\pi\)
0.992250 + 0.124255i \(0.0396540\pi\)
\(350\) 16.3958i 0.876394i
\(351\) 6.46029 + 31.9185i 0.344825 + 1.70368i
\(352\) 1.37820i 0.0734584i
\(353\) 7.04069 12.1948i 0.374738 0.649066i −0.615550 0.788098i \(-0.711066\pi\)
0.990288 + 0.139032i \(0.0443992\pi\)
\(354\) −19.3201 + 8.52683i −1.02685 + 0.453196i
\(355\) −0.519545 0.899879i −0.0275746 0.0477606i
\(356\) −0.159462 0.276196i −0.00845147 0.0146384i
\(357\) 0.890014 8.21144i 0.0471045 0.434596i
\(358\) 11.6735 + 6.73969i 0.616963 + 0.356204i
\(359\) 6.25093i 0.329912i 0.986301 + 0.164956i \(0.0527482\pi\)
−0.986301 + 0.164956i \(0.947252\pi\)
\(360\) 0.861297 + 0.188926i 0.0453943 + 0.00995729i
\(361\) −14.0121 −0.737481
\(362\) 4.08758 7.07990i 0.214839 0.372111i
\(363\) 12.7221 + 9.30638i 0.667737 + 0.488458i
\(364\) −18.1110 + 10.4564i −0.949273 + 0.548063i
\(365\) 1.01859 + 1.76425i 0.0533155 + 0.0923451i
\(366\) −4.42812 3.23923i −0.231462 0.169317i
\(367\) −22.2113 12.8237i −1.15942 0.669391i −0.208255 0.978075i \(-0.566778\pi\)
−0.951165 + 0.308683i \(0.900112\pi\)
\(368\) 4.74595 0.247400
\(369\) 3.00933 13.7193i 0.156660 0.714196i
\(370\) 1.72723i 0.0897947i
\(371\) −7.38683 + 12.7944i −0.383505 + 0.664250i
\(372\) −3.75938 + 8.88071i −0.194915 + 0.460444i
\(373\) −9.26487 16.0472i −0.479717 0.830893i 0.520013 0.854158i \(-0.325927\pi\)
−0.999729 + 0.0232650i \(0.992594\pi\)
\(374\) 1.70571 0.984794i 0.0882003 0.0509225i
\(375\) 2.03780 + 4.61725i 0.105232 + 0.238434i
\(376\) −1.26711 + 2.19470i −0.0653463 + 0.113183i
\(377\) 24.8499i 1.27984i
\(378\) −3.43959 16.9940i −0.176913 0.874079i
\(379\) 0.535526 0.0275081 0.0137541 0.999905i \(-0.495622\pi\)
0.0137541 + 0.999905i \(0.495622\pi\)
\(380\) 0.568491 + 0.328219i 0.0291630 + 0.0168373i
\(381\) 7.30503 + 16.5518i 0.374248 + 0.847972i
\(382\) 4.32284 + 7.48738i 0.221176 + 0.383087i
\(383\) 11.8298 + 20.4897i 0.604472 + 1.04698i 0.992135 + 0.125175i \(0.0399493\pi\)
−0.387662 + 0.921801i \(0.626717\pi\)
\(384\) −1.72197 0.186639i −0.0878737 0.00952437i
\(385\) −1.17061 0.675852i −0.0596598 0.0344446i
\(386\) 10.7466i 0.546988i
\(387\) 13.9439 4.43078i 0.708808 0.225229i
\(388\) 8.66962 0.440133
\(389\) −5.19506 + 8.99811i −0.263400 + 0.456222i −0.967143 0.254232i \(-0.918177\pi\)
0.703743 + 0.710455i \(0.251511\pi\)
\(390\) −1.88377 + 2.57516i −0.0953882 + 0.130398i
\(391\) −3.39121 5.87376i −0.171501 0.297049i
\(392\) 3.58047 2.06718i 0.180841 0.104409i
\(393\) −21.5147 + 29.4112i −1.08527 + 1.48360i
\(394\) −20.6931 11.9472i −1.04250 0.601890i
\(395\) 0.0374583 0.00188473
\(396\) 2.78648 3.05459i 0.140026 0.153499i
\(397\) 26.0302 1.30642 0.653208 0.757179i \(-0.273423\pi\)
0.653208 + 0.757179i \(0.273423\pi\)
\(398\) 11.3395 19.6406i 0.568399 0.984496i
\(399\) 1.39089 12.8326i 0.0696314 0.642433i
\(400\) −2.45680 4.25531i −0.122840 0.212765i
\(401\) −9.53749 16.5194i −0.476279 0.824940i 0.523351 0.852117i \(-0.324682\pi\)
−0.999631 + 0.0271769i \(0.991348\pi\)
\(402\) −5.75542 13.0406i −0.287054 0.650408i
\(403\) −23.9057 25.4196i −1.19083 1.26624i
\(404\) 10.0649i 0.500748i
\(405\) −1.52697 2.16012i −0.0758755 0.107337i
\(406\) 13.2306i 0.656623i
\(407\) 7.01389 + 4.04947i 0.347666 + 0.200725i
\(408\) 0.999439 + 2.26453i 0.0494796 + 0.112111i
\(409\) 19.6873 11.3665i 0.973475 0.562036i 0.0731812 0.997319i \(-0.476685\pi\)
0.900294 + 0.435283i \(0.143352\pi\)
\(410\) 1.19174 0.688050i 0.0588557 0.0339804i
\(411\) 3.91372 36.1088i 0.193050 1.78112i
\(412\) −5.74869 + 9.95702i −0.283218 + 0.490547i
\(413\) 40.6843i 2.00194i
\(414\) −10.5187 9.59546i −0.516967 0.471591i
\(415\) 3.43482i 0.168609i
\(416\) 3.13363 5.42761i 0.153639 0.266111i
\(417\) −0.575350 + 0.786521i −0.0281750 + 0.0385161i
\(418\) 2.66564 1.53901i 0.130381 0.0752752i
\(419\) −7.14939 + 4.12770i −0.349271 + 0.201651i −0.664364 0.747409i \(-0.731297\pi\)
0.315093 + 0.949061i \(0.397964\pi\)
\(420\) 1.00296 1.37107i 0.0489392 0.0669013i
\(421\) −15.4287 + 26.7232i −0.751947 + 1.30241i 0.194931 + 0.980817i \(0.437552\pi\)
−0.946878 + 0.321593i \(0.895782\pi\)
\(422\) 3.05214i 0.148576i
\(423\) 7.24567 2.30237i 0.352297 0.111945i
\(424\) 4.42747i 0.215017i
\(425\) −3.51102 + 6.08126i −0.170309 + 0.294984i
\(426\) 0.659811 6.08754i 0.0319679 0.294942i
\(427\) −9.15362 + 5.28484i −0.442974 + 0.255751i
\(428\) 12.6803 7.32097i 0.612925 0.353872i
\(429\) 6.04067 + 13.6870i 0.291646 + 0.660813i
\(430\) 1.24142 + 0.716732i 0.0598664 + 0.0345639i
\(431\) 5.66394i 0.272822i −0.990652 0.136411i \(-0.956443\pi\)
0.990652 0.136411i \(-0.0435568\pi\)
\(432\) 3.43914 + 3.89517i 0.165466 + 0.187406i
\(433\) 29.3320i 1.40961i −0.709402 0.704804i \(-0.751035\pi\)
0.709402 0.704804i \(-0.248965\pi\)
\(434\) 12.7279 + 13.5339i 0.610958 + 0.649648i
\(435\) 0.815036 + 1.84671i 0.0390780 + 0.0885429i
\(436\) −6.05993 10.4961i −0.290218 0.502672i
\(437\) −5.29969 9.17933i −0.253518 0.439107i
\(438\) −1.29359 + 11.9349i −0.0618100 + 0.570271i
\(439\) 2.68122 4.64400i 0.127967 0.221646i −0.794922 0.606712i \(-0.792488\pi\)
0.922889 + 0.385066i \(0.125821\pi\)
\(440\) 0.405088 0.0193118
\(441\) −12.1151 2.65745i −0.576908 0.126545i
\(442\) −8.95654 −0.426019
\(443\) −4.39838 2.53941i −0.208973 0.120651i 0.391861 0.920025i \(-0.371831\pi\)
−0.600834 + 0.799374i \(0.705165\pi\)
\(444\) −6.00936 + 8.21497i −0.285192 + 0.389865i
\(445\) −0.0811809 + 0.0468698i −0.00384835 + 0.00222184i
\(446\) 3.89609 + 6.74823i 0.184485 + 0.319538i
\(447\) 11.3860 15.5650i 0.538540 0.736200i
\(448\) −1.66841 + 2.88977i −0.0788250 + 0.136529i
\(449\) −3.68408 −0.173862 −0.0869312 0.996214i \(-0.527706\pi\)
−0.0869312 + 0.996214i \(0.527706\pi\)
\(450\) −3.15832 + 14.3985i −0.148885 + 0.678752i
\(451\) 6.45249i 0.303836i
\(452\) −7.03255 4.06024i −0.330783 0.190978i
\(453\) 15.6496 + 1.69621i 0.735282 + 0.0796950i
\(454\) 12.7856 + 22.1452i 0.600056 + 1.03933i
\(455\) 3.07339 + 5.32326i 0.144083 + 0.249558i
\(456\) 1.56189 + 3.53894i 0.0731423 + 0.165726i
\(457\) 14.4300 + 8.33114i 0.675005 + 0.389714i 0.797971 0.602696i \(-0.205907\pi\)
−0.122965 + 0.992411i \(0.539240\pi\)
\(458\) 25.1664 1.17595
\(459\) 2.36336 7.03969i 0.110312 0.328585i
\(460\) 1.39495i 0.0650399i
\(461\) −13.2402 + 22.9327i −0.616657 + 1.06808i 0.373434 + 0.927657i \(0.378180\pi\)
−0.990091 + 0.140425i \(0.955153\pi\)
\(462\) −3.21618 7.28721i −0.149630 0.339032i
\(463\) −18.8968 + 10.9100i −0.878207 + 0.507033i −0.870067 0.492934i \(-0.835924\pi\)
−0.00813989 + 0.999967i \(0.502591\pi\)
\(464\) −1.98252 3.43382i −0.0920360 0.159411i
\(465\) 2.61026 + 1.10497i 0.121048 + 0.0512419i
\(466\) 10.8431 18.7809i 0.502299 0.870007i
\(467\) 30.5580i 1.41405i −0.707186 0.707027i \(-0.750036\pi\)
0.707186 0.707027i \(-0.249964\pi\)
\(468\) −17.9189 + 5.69387i −0.828302 + 0.263199i
\(469\) −27.4610 −1.26803
\(470\) 0.645077 + 0.372436i 0.0297552 + 0.0171792i
\(471\) −5.48848 4.01490i −0.252896 0.184997i
\(472\) −6.09626 10.5590i −0.280603 0.486019i
\(473\) 5.82096 3.36073i 0.267648 0.154527i
\(474\) 0.178157 + 0.130324i 0.00818302 + 0.00598599i
\(475\) −5.48691 + 9.50360i −0.251757 + 0.436055i
\(476\) 4.76865 0.218571
\(477\) −8.95155 + 9.81285i −0.409863 + 0.449299i
\(478\) 11.4585i 0.524099i
\(479\) −35.9776 20.7717i −1.64386 0.949082i −0.979444 0.201718i \(-0.935347\pi\)
−0.664415 0.747364i \(-0.731319\pi\)
\(480\) −0.0548577 + 0.506128i −0.00250390 + 0.0231015i
\(481\) −18.4147 31.8951i −0.839636 1.45429i
\(482\) 6.07329 + 10.5193i 0.276631 + 0.479139i
\(483\) −25.0941 + 11.0752i −1.14182 + 0.503937i
\(484\) −4.55028 + 7.88131i −0.206831 + 0.358242i
\(485\) 2.54822i 0.115709i
\(486\) 0.252974 15.5864i 0.0114751 0.707014i
\(487\) 3.72421i 0.168760i −0.996434 0.0843799i \(-0.973109\pi\)
0.996434 0.0843799i \(-0.0268909\pi\)
\(488\) 1.58380 2.74322i 0.0716951 0.124180i
\(489\) −36.2420 + 15.9952i −1.63892 + 0.723330i
\(490\) −0.607596 1.05239i −0.0274484 0.0475420i
\(491\) 18.8663 + 32.6774i 0.851425 + 1.47471i 0.879922 + 0.475118i \(0.157595\pi\)
−0.0284970 + 0.999594i \(0.509072\pi\)
\(492\) 8.06192 + 0.873808i 0.363459 + 0.0393943i
\(493\) −2.83321 + 4.90727i −0.127601 + 0.221012i
\(494\) −13.9970 −0.629755
\(495\) −0.897819 0.819015i −0.0403539 0.0368120i
\(496\) −5.33131 1.60535i −0.239383 0.0720821i
\(497\) −10.2160 5.89821i −0.458250 0.264571i
\(498\) 11.9504 16.3365i 0.535508 0.732055i
\(499\) 33.2707 19.2088i 1.48940 0.859906i 0.489474 0.872018i \(-0.337189\pi\)
0.999927 + 0.0121118i \(0.00385541\pi\)
\(500\) −2.52347 + 1.45693i −0.112853 + 0.0651558i
\(501\) −30.7437 22.4895i −1.37353 1.00475i
\(502\) 22.0317 + 12.7200i 0.983322 + 0.567721i
\(503\) 15.6481i 0.697715i −0.937176 0.348857i \(-0.886570\pi\)
0.937176 0.348857i \(-0.113430\pi\)
\(504\) 9.54039 3.03153i 0.424963 0.135035i
\(505\) −2.95833 −0.131644
\(506\) −5.66457 3.27044i −0.251821 0.145389i
\(507\) 4.90461 45.2509i 0.217821 2.00966i
\(508\) −9.04605 + 5.22274i −0.401354 + 0.231722i
\(509\) 0.896398 + 1.55261i 0.0397321 + 0.0688181i 0.885208 0.465196i \(-0.154016\pi\)
−0.845475 + 0.534014i \(0.820683\pi\)
\(510\) 0.665601 0.293760i 0.0294733 0.0130079i
\(511\) 20.0289 + 11.5637i 0.886027 + 0.511548i
\(512\) 1.00000i 0.0441942i
\(513\) 3.69339 11.0014i 0.163067 0.485724i
\(514\) 7.04918 0.310926
\(515\) 2.92661 + 1.68968i 0.128962 + 0.0744563i
\(516\) 3.41071 + 7.72799i 0.150148 + 0.340206i
\(517\) 3.02475 1.74634i 0.133028 0.0768038i
\(518\) 9.80434 + 16.9816i 0.430778 + 0.746129i
\(519\) 1.84591 + 0.200072i 0.0810263 + 0.00878220i
\(520\) −1.59531 0.921052i −0.0699589 0.0403908i
\(521\) 22.3109i 0.977460i 0.872435 + 0.488730i \(0.162540\pi\)
−0.872435 + 0.488730i \(0.837460\pi\)
\(522\) −2.54861 + 11.6189i −0.111550 + 0.508544i
\(523\) 18.7594i 0.820291i −0.912020 0.410146i \(-0.865478\pi\)
0.912020 0.410146i \(-0.134522\pi\)
\(524\) −18.2202 10.5194i −0.795953 0.459543i
\(525\) 22.9205 + 16.7666i 1.00033 + 0.731756i
\(526\) 2.71785 1.56915i 0.118504 0.0684182i
\(527\) 1.82265 + 7.74532i 0.0793959 + 0.337391i
\(528\) 1.92665 + 1.40937i 0.0838468 + 0.0613351i
\(529\) 0.237987 0.412206i 0.0103473 0.0179220i
\(530\) −1.30134 −0.0565267
\(531\) −7.83700 + 35.7282i −0.340097 + 1.55047i
\(532\) 7.45229 0.323098
\(533\) −14.6711 + 25.4111i −0.635475 + 1.10068i
\(534\) −0.549177 0.0595236i −0.0237652 0.00257584i
\(535\) −2.15181 3.72705i −0.0930310 0.161134i
\(536\) 7.12712 4.11484i 0.307845 0.177734i
\(537\) 21.3592 9.42679i 0.921719 0.406796i
\(538\) 22.7326 + 13.1247i 0.980072 + 0.565845i
\(539\) −5.69800 −0.245430
\(540\) 1.14489 1.01085i 0.0492680 0.0435000i
\(541\) −35.2659 −1.51620 −0.758099 0.652140i \(-0.773872\pi\)
−0.758099 + 0.652140i \(0.773872\pi\)
\(542\) −13.2312 + 22.9172i −0.568331 + 0.984378i
\(543\) −5.71730 12.9543i −0.245353 0.555920i
\(544\) −1.23764 + 0.714549i −0.0530632 + 0.0306361i
\(545\) −3.08506 + 1.78116i −0.132150 + 0.0762966i
\(546\) −3.90313 + 36.0110i −0.167038 + 1.54113i
\(547\) −4.55764 + 7.89406i −0.194870 + 0.337526i −0.946858 0.321652i \(-0.895762\pi\)
0.751988 + 0.659177i \(0.229095\pi\)
\(548\) 20.9695 0.895774
\(549\) −9.05655 + 2.87779i −0.386524 + 0.122821i
\(550\) 6.77195i 0.288757i
\(551\) −4.42765 + 7.66892i −0.188624 + 0.326707i
\(552\) 4.85329 6.63458i 0.206570 0.282387i
\(553\) 0.368278 0.212625i 0.0156608 0.00904175i
\(554\) −2.09039 3.62066i −0.0888121 0.153827i
\(555\) 2.41458 + 1.76630i 0.102493 + 0.0749752i
\(556\) −0.487248 0.281313i −0.0206639 0.0119303i
\(557\) −24.5606 −1.04067 −0.520333 0.853963i \(-0.674192\pi\)
−0.520333 + 0.853963i \(0.674192\pi\)
\(558\) 8.57036 + 14.3370i 0.362812 + 0.606933i
\(559\) −30.5653 −1.29278
\(560\) 0.849375 + 0.490387i 0.0358926 + 0.0207226i
\(561\) 0.367601 3.39156i 0.0155201 0.143192i
\(562\) 1.88475 + 3.26448i 0.0795033 + 0.137704i
\(563\) 16.2161 9.36237i 0.683427 0.394577i −0.117718 0.993047i \(-0.537558\pi\)
0.801145 + 0.598470i \(0.204225\pi\)
\(564\) 1.77231 + 4.01570i 0.0746276 + 0.169091i
\(565\) −1.19341 + 2.06704i −0.0502070 + 0.0869610i
\(566\) 24.0773i 1.01205i
\(567\) −27.2741 12.5700i −1.14541 0.527891i
\(568\) 3.53523 0.148335
\(569\) −7.54534 + 13.0689i −0.316317 + 0.547877i −0.979717 0.200388i \(-0.935780\pi\)
0.663399 + 0.748265i \(0.269113\pi\)
\(570\) 1.04018 0.459079i 0.0435684 0.0192287i
\(571\) −27.7815 + 16.0396i −1.16262 + 0.671238i −0.951930 0.306315i \(-0.900904\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(572\) −7.48035 + 4.31878i −0.312769 + 0.180577i
\(573\) 14.8876 + 1.61362i 0.621937 + 0.0674099i
\(574\) 7.81118 13.5294i 0.326032 0.564705i
\(575\) 23.3197 0.972500
\(576\) −2.02182 + 2.21636i −0.0842426 + 0.0923482i
\(577\) 10.2648 0.427330 0.213665 0.976907i \(-0.431460\pi\)
0.213665 + 0.976907i \(0.431460\pi\)
\(578\) −12.9537 7.47884i −0.538804 0.311079i
\(579\) 15.0232 + 10.9897i 0.624343 + 0.456715i
\(580\) −1.00928 + 0.582710i −0.0419082 + 0.0241957i
\(581\) −19.4971 33.7700i −0.808877 1.40102i
\(582\) 8.86570 12.1197i 0.367495 0.502376i
\(583\) −3.05097 + 5.28444i −0.126358 + 0.218859i
\(584\) −6.93097 −0.286805
\(585\) 1.67357 + 5.26681i 0.0691936 + 0.217756i
\(586\) −2.01910 −0.0834084
\(587\) 5.28104 9.14703i 0.217972 0.377539i −0.736216 0.676747i \(-0.763389\pi\)
0.954188 + 0.299208i \(0.0967225\pi\)
\(588\) 0.771633 7.11924i 0.0318216 0.293592i
\(589\) 2.84838 + 12.1041i 0.117366 + 0.498743i
\(590\) −3.10356 + 1.79184i −0.127772 + 0.0737690i
\(591\) −37.8626 + 16.7105i −1.55746 + 0.687377i
\(592\) −5.08916 2.93823i −0.209163 0.120760i
\(593\) 34.3728i 1.41152i 0.708449 + 0.705762i \(0.249395\pi\)
−0.708449 + 0.705762i \(0.750605\pi\)
\(594\) −1.42065 7.01902i −0.0582900 0.287994i
\(595\) 1.40162i 0.0574609i
\(596\) 9.64250 + 5.56710i 0.394972 + 0.228037i
\(597\) −15.8606 35.9369i −0.649130 1.47080i
\(598\) 14.8721 + 25.7592i 0.608164 + 1.05337i
\(599\) −15.2292 + 8.79256i −0.622247 + 0.359254i −0.777743 0.628582i \(-0.783636\pi\)
0.155496 + 0.987836i \(0.450302\pi\)
\(600\) −8.46107 0.917070i −0.345422 0.0374392i
\(601\) 10.3669 + 5.98532i 0.422874 + 0.244146i 0.696306 0.717745i \(-0.254826\pi\)
−0.273432 + 0.961891i \(0.588159\pi\)
\(602\) 16.2736 0.663262
\(603\) −24.1157 5.28980i −0.982068 0.215418i
\(604\) 9.08821i 0.369794i
\(605\) 2.31651 + 1.33744i 0.0941796 + 0.0543746i
\(606\) −14.0702 10.2925i −0.571563 0.418106i
\(607\) 4.78565 + 8.28899i 0.194244 + 0.336440i 0.946652 0.322257i \(-0.104441\pi\)
−0.752409 + 0.658696i \(0.771108\pi\)
\(608\) −1.93414 + 1.11668i −0.0784397 + 0.0452872i
\(609\) 18.4957 + 13.5298i 0.749482 + 0.548256i
\(610\) −0.806299 0.465517i −0.0326461 0.0188482i
\(611\) −15.8827 −0.642544
\(612\) 4.18773 + 0.918583i 0.169279 + 0.0371315i
\(613\) 5.64188i 0.227873i −0.993488 0.113937i \(-0.963654\pi\)
0.993488 0.113937i \(-0.0363461\pi\)
\(614\) 2.95072 + 1.70360i 0.119081 + 0.0687517i
\(615\) 0.256834 2.36960i 0.0103565 0.0955514i
\(616\) 3.98269 2.29941i 0.160467 0.0926457i
\(617\) 14.4337 8.33328i 0.581077 0.335485i −0.180484 0.983578i \(-0.557766\pi\)
0.761561 + 0.648093i \(0.224433\pi\)
\(618\) 8.04068 + 18.2186i 0.323444 + 0.732859i
\(619\) −16.8361 9.72035i −0.676702 0.390694i 0.121909 0.992541i \(-0.461098\pi\)
−0.798611 + 0.601847i \(0.794432\pi\)
\(620\) −0.471851 + 1.56700i −0.0189500 + 0.0629324i
\(621\) −24.1706 + 4.89212i −0.969931 + 0.196314i
\(622\) −0.441070 −0.0176853
\(623\) −0.532096 + 0.921618i −0.0213180 + 0.0369238i
\(624\) −4.38301 9.93102i −0.175461 0.397559i
\(625\) −11.8558 20.5348i −0.474232 0.821394i
\(626\) −6.67194 11.5561i −0.266664 0.461876i
\(627\) 0.574476 5.30023i 0.0229424 0.211671i
\(628\) 1.96305 3.40011i 0.0783343 0.135679i
\(629\) 8.39804i 0.334852i
\(630\) −0.891043 2.80416i −0.0355000 0.111720i
\(631\) 13.2263i 0.526531i 0.964723 + 0.263266i \(0.0847995\pi\)
−0.964723 + 0.263266i \(0.915200\pi\)
\(632\) −0.0637209 + 0.110368i −0.00253468 + 0.00439020i
\(633\) 4.26673 + 3.12117i 0.169587 + 0.124055i
\(634\) −1.22653 2.12441i −0.0487117 0.0843711i
\(635\) 1.53509 + 2.65886i 0.0609183 + 0.105514i
\(636\) −6.18936 4.52760i −0.245424 0.179531i
\(637\) 22.4397 + 12.9556i 0.889095 + 0.513319i
\(638\) 5.46462i 0.216346i
\(639\) −7.83533 7.14760i −0.309961 0.282755i
\(640\) −0.293925 −0.0116184
\(641\) 12.0787 20.9210i 0.477081 0.826328i −0.522574 0.852594i \(-0.675028\pi\)
0.999655 + 0.0262654i \(0.00836151\pi\)
\(642\) 2.73275 25.2129i 0.107853 0.995074i
\(643\) −25.9743 + 14.9962i −1.02432 + 0.591394i −0.915354 0.402651i \(-0.868089\pi\)
−0.108971 + 0.994045i \(0.534756\pi\)
\(644\) −7.91819 13.7147i −0.312020 0.540435i
\(645\) 2.27145 1.00249i 0.0894381 0.0394731i
\(646\) 2.76408 + 1.59584i 0.108751 + 0.0627875i
\(647\) −4.16433 −0.163717 −0.0818584 0.996644i \(-0.526086\pi\)
−0.0818584 + 0.996644i \(0.526086\pi\)
\(648\) 8.96216 0.824472i 0.352067 0.0323883i
\(649\) 16.8038i 0.659606i
\(650\) 15.3974 26.6692i 0.603938 1.04605i
\(651\) 31.9354 3.95293i 1.25165 0.154927i
\(652\) −11.4358 19.8074i −0.447861 0.775718i
\(653\) −33.7669 + 19.4953i −1.32140 + 0.762911i −0.983952 0.178432i \(-0.942897\pi\)
−0.337449 + 0.941344i \(0.609564\pi\)
\(654\) −20.8700 2.26204i −0.816081 0.0884526i
\(655\) −3.09192 + 5.35536i −0.120811 + 0.209251i
\(656\) 4.68181i 0.182794i
\(657\) 15.3615 + 14.0132i 0.599309 + 0.546706i
\(658\) 8.45625 0.329659
\(659\) 2.97069 + 1.71513i 0.115722 + 0.0668120i 0.556744 0.830684i \(-0.312051\pi\)
−0.441022 + 0.897496i \(0.645384\pi\)
\(660\) 0.414249 0.566291i 0.0161246 0.0220428i
\(661\) 19.0019 + 32.9122i 0.739086 + 1.28014i 0.952907 + 0.303262i \(0.0980758\pi\)
−0.213821 + 0.976873i \(0.568591\pi\)
\(662\) −16.0261 27.7580i −0.622872 1.07885i
\(663\) −9.15911 + 12.5208i −0.355710 + 0.486266i
\(664\) 10.1204 + 5.84303i 0.392748 + 0.226753i
\(665\) 2.19041i 0.0849406i
\(666\) 5.33882 + 16.8015i 0.206875 + 0.651046i
\(667\) 18.8178 0.728629
\(668\) 10.9960 19.0457i 0.425449 0.736900i
\(669\) 13.4179 + 1.45432i 0.518765 + 0.0562274i
\(670\) −1.20945 2.09484i −0.0467253 0.0809306i
\(671\) −3.78071 + 2.18279i −0.145953 + 0.0842657i
\(672\) 2.33360 + 5.28748i 0.0900206 + 0.203969i
\(673\) −13.6337 7.87140i −0.525539 0.303420i 0.213659 0.976908i \(-0.431462\pi\)
−0.739198 + 0.673488i \(0.764795\pi\)
\(674\) 8.53787 0.328866
\(675\) 16.8986 + 19.1393i 0.650427 + 0.736673i
\(676\) 26.2786 1.01072
\(677\) −15.8422 + 27.4395i −0.608866 + 1.05459i 0.382562 + 0.923930i \(0.375042\pi\)
−0.991428 + 0.130656i \(0.958292\pi\)
\(678\) −12.8676 + 5.67905i −0.494177 + 0.218103i
\(679\) −14.4645 25.0532i −0.555096 0.961454i
\(680\) 0.210024 + 0.363772i 0.00805404 + 0.0139500i
\(681\) 44.0326 + 4.77256i 1.68733 + 0.182885i
\(682\) 5.25698 + 5.58989i 0.201300 + 0.214048i
\(683\) 37.7952i 1.44619i −0.690748 0.723096i \(-0.742718\pi\)
0.690748 0.723096i \(-0.257282\pi\)
\(684\) 6.54446 + 1.43553i 0.250234 + 0.0548890i
\(685\) 6.16346i 0.235494i
\(686\) 8.28102 + 4.78105i 0.316171 + 0.182541i
\(687\) 25.7356 35.1813i 0.981874 1.34225i
\(688\) −4.22359 + 2.43849i −0.161023 + 0.0929665i
\(689\) 24.0306 13.8741i 0.915492 0.528560i
\(690\) −1.95007 1.42650i −0.0742378 0.0543059i
\(691\) 10.1505 17.5812i 0.386143 0.668820i −0.605784 0.795629i \(-0.707140\pi\)
0.991927 + 0.126809i \(0.0404737\pi\)
\(692\) 1.07198i 0.0407504i
\(693\) −13.4761 2.95598i −0.511913 0.112289i
\(694\) 28.6512i 1.08758i
\(695\) −0.0826848 + 0.143214i −0.00313641 + 0.00543242i
\(696\) −6.82765 0.740028i −0.258801 0.0280507i
\(697\) 5.79438 3.34539i 0.219478 0.126716i
\(698\) 12.5714 7.25810i 0.475835 0.274723i
\(699\) −15.1663 34.3638i −0.573641 1.29976i
\(700\) −8.19791 + 14.1992i −0.309852 + 0.536679i
\(701\) 2.14125i 0.0808740i 0.999182 + 0.0404370i \(0.0128750\pi\)
−0.999182 + 0.0404370i \(0.987125\pi\)
\(702\) −10.3644 + 30.8723i −0.391181 + 1.16520i
\(703\) 13.1242i 0.494988i
\(704\) −0.689101 + 1.19356i −0.0259715 + 0.0449839i
\(705\) 1.18031 0.520925i 0.0444531 0.0196192i
\(706\) 12.1948 7.04069i 0.458959 0.264980i
\(707\) −29.0853 + 16.7924i −1.09387 + 0.631543i
\(708\) −20.9951 2.27560i −0.789045 0.0855222i
\(709\) −17.5298 10.1208i −0.658346 0.380096i 0.133301 0.991076i \(-0.457442\pi\)
−0.791646 + 0.610980i \(0.790776\pi\)
\(710\) 1.03909i 0.0389964i
\(711\) 0.364373 0.115782i 0.0136650 0.00434217i
\(712\) 0.318924i 0.0119522i
\(713\) 19.2492 18.1028i 0.720889 0.677957i
\(714\) 4.87650 6.66631i 0.182498 0.249480i
\(715\) 1.26940 + 2.19866i 0.0474727 + 0.0822252i
\(716\) 6.73969 + 11.6735i 0.251874 + 0.436259i
\(717\) 16.0184 + 11.7176i 0.598216 + 0.437603i
\(718\) −3.12547 + 5.41347i −0.116641 + 0.202029i
\(719\) −44.8856 −1.67395 −0.836975 0.547241i \(-0.815678\pi\)
−0.836975 + 0.547241i \(0.815678\pi\)
\(720\) 0.651442 + 0.594263i 0.0242778 + 0.0221469i
\(721\) 38.3647 1.42878
\(722\) −12.1349 7.00607i −0.451613 0.260739i
\(723\) 20.9160 + 2.26702i 0.777874 + 0.0843115i
\(724\) 7.07990 4.08758i 0.263123 0.151914i
\(725\) −9.74131 16.8724i −0.361783 0.626627i
\(726\) 6.36447 + 14.4206i 0.236207 + 0.535199i
\(727\) 15.3725 26.6259i 0.570134 0.987501i −0.426418 0.904526i \(-0.640225\pi\)
0.996552 0.0829745i \(-0.0264420\pi\)
\(728\) −20.9127 −0.775078
\(729\) −21.5303 16.2926i −0.797417 0.603428i
\(730\) 2.03718i 0.0753995i
\(731\) 6.03592 + 3.48484i 0.223247 + 0.128892i
\(732\) −2.21525 5.01932i −0.0818781 0.185519i
\(733\) −10.5832 18.3306i −0.390899 0.677057i 0.601669 0.798745i \(-0.294503\pi\)
−0.992568 + 0.121688i \(0.961169\pi\)
\(734\) −12.8237 22.2113i −0.473331 0.819833i
\(735\) −2.09252 0.226802i −0.0771838 0.00836572i
\(736\) 4.11011 + 2.37297i 0.151501 + 0.0874690i
\(737\) −11.3422 −0.417794
\(738\) 9.46579 10.3766i 0.348441 0.381967i
\(739\) 35.9785i 1.32349i 0.749728 + 0.661746i \(0.230184\pi\)
−0.749728 + 0.661746i \(0.769816\pi\)
\(740\) −0.863617 + 1.49583i −0.0317472 + 0.0549878i
\(741\) −14.3136 + 19.5671i −0.525823 + 0.718815i
\(742\) −12.7944 + 7.38683i −0.469696 + 0.271179i
\(743\) −15.0852 26.1284i −0.553424 0.958558i −0.998024 0.0628294i \(-0.979988\pi\)
0.444600 0.895729i \(-0.353346\pi\)
\(744\) −7.69607 + 5.81123i −0.282152 + 0.213050i
\(745\) 1.63631 2.83417i 0.0599497 0.103836i
\(746\) 18.5297i 0.678422i
\(747\) −10.6169 33.4119i −0.388452 1.22248i
\(748\) 1.96959 0.0720153
\(749\) −42.3118 24.4288i −1.54604 0.892607i
\(750\) −0.543838 + 5.01756i −0.0198582 + 0.183215i
\(751\) −18.7657 32.5031i −0.684770 1.18606i −0.973509 0.228648i \(-0.926570\pi\)
0.288740 0.957408i \(-0.406764\pi\)
\(752\) −2.19470 + 1.26711i −0.0800326 + 0.0462068i
\(753\) 40.3118 17.7914i 1.46904 0.648356i
\(754\) 12.4250 21.5207i 0.452490 0.783736i
\(755\) 2.67125 0.0972167
\(756\) 5.51824 16.4371i 0.200697 0.597810i
\(757\) 10.9984i 0.399742i −0.979822 0.199871i \(-0.935948\pi\)
0.979822 0.199871i \(-0.0640524\pi\)
\(758\) 0.463779 + 0.267763i 0.0168452 + 0.00972559i
\(759\) −10.3646 + 4.57436i −0.376210 + 0.166039i
\(760\) 0.328219 + 0.568491i 0.0119057 + 0.0206213i
\(761\) −2.04875 3.54853i −0.0742670 0.128634i 0.826500 0.562936i \(-0.190328\pi\)
−0.900767 + 0.434302i \(0.856995\pi\)
\(762\) −1.94953 + 17.9868i −0.0706240 + 0.651591i
\(763\) −20.2209 + 35.0236i −0.732046 + 1.26794i
\(764\) 8.64568i 0.312790i
\(765\) 0.269994 1.23088i 0.00976166 0.0445025i
\(766\) 23.6595i 0.854853i
\(767\) 38.2069 66.1763i 1.37957 2.38949i
\(768\) −1.39795 1.02262i −0.0504441 0.0369005i
\(769\) 21.8654 + 37.8720i 0.788487 + 1.36570i 0.926893 + 0.375325i \(0.122469\pi\)
−0.138406 + 0.990376i \(0.544198\pi\)
\(770\) −0.675852 1.17061i −0.0243560 0.0421859i
\(771\) 7.20861 9.85438i 0.259612 0.354897i
\(772\) −5.37331 + 9.30684i −0.193390 + 0.334961i
\(773\) 9.88211 0.355435 0.177717 0.984082i \(-0.443129\pi\)
0.177717 + 0.984082i \(0.443129\pi\)
\(774\) 14.2912 + 3.13478i 0.513685 + 0.112677i
\(775\) −26.1960 7.88804i −0.940987 0.283347i
\(776\) 7.50811 + 4.33481i 0.269526 + 0.155611i
\(777\) 33.7655 + 3.65974i 1.21133 + 0.131292i
\(778\) −8.99811 + 5.19506i −0.322598 + 0.186252i
\(779\) 9.05528 5.22807i 0.324439 0.187315i
\(780\) −2.91897 + 1.28827i −0.104516 + 0.0461276i
\(781\) −4.21950 2.43613i −0.150986 0.0871716i
\(782\) 6.78243i 0.242539i
\(783\) 13.6363 + 15.4445i 0.487321 + 0.551940i
\(784\) 4.13437 0.147656
\(785\) −0.999375 0.576989i −0.0356692 0.0205936i
\(786\) −33.3379 + 14.7135i −1.18912 + 0.524813i
\(787\) −32.4294 + 18.7231i −1.15598 + 0.667407i −0.950338 0.311220i \(-0.899262\pi\)
−0.205645 + 0.978627i \(0.565929\pi\)
\(788\) −11.9472 20.6931i −0.425600 0.737161i
\(789\) 0.585728 5.40405i 0.0208525 0.192389i
\(790\) 0.0324398 + 0.0187292i 0.00115416 + 0.000666353i
\(791\) 27.0966i 0.963444i
\(792\) 3.94046 1.25211i 0.140018 0.0444918i
\(793\) 19.8521 0.704970
\(794\) 22.5428 + 13.0151i 0.800013 + 0.461888i
\(795\) −1.33077 + 1.81921i −0.0471977 + 0.0645206i
\(796\) 19.6406 11.3395i 0.696144 0.401919i
\(797\) −1.19124 2.06329i −0.0421959 0.0730854i 0.844156 0.536097i \(-0.180102\pi\)
−0.886352 + 0.463012i \(0.846769\pi\)
\(798\) 7.62084 10.4179i 0.269775 0.368790i
\(799\) 3.13645 + 1.81083i 0.110960 + 0.0640625i
\(800\) 4.91361i 0.173722i
\(801\) −0.644808 + 0.706850i −0.0227832 + 0.0249753i
\(802\) 19.0750i 0.673561i
\(803\) 8.27251 + 4.77614i 0.291931 + 0.168546i
\(804\) 1.53598 14.1712i 0.0541698 0.499781i
\(805\) −4.03109 + 2.32735i −0.142077 + 0.0820283i
\(806\) −7.99318 33.9668i −0.281548 1.19643i
\(807\) 41.5943 18.3575i 1.46419 0.646213i
\(808\) 5.03246 8.71647i 0.177041 0.306644i
\(809\) −45.3221 −1.59344 −0.796720 0.604348i \(-0.793434\pi\)
−0.796720 + 0.604348i \(0.793434\pi\)
\(810\) −0.242333 2.63420i −0.00851470 0.0925563i
\(811\) 46.5573 1.63485 0.817424 0.576036i \(-0.195401\pi\)
0.817424 + 0.576036i \(0.195401\pi\)
\(812\) −6.61530 + 11.4580i −0.232151 + 0.402098i
\(813\) 18.5065 + 41.9321i 0.649052 + 1.47062i
\(814\) 4.04947 + 7.01389i 0.141934 + 0.245837i
\(815\) −5.82188 + 3.36127i −0.203932 + 0.117740i
\(816\) −0.266725 + 2.46086i −0.00933725 + 0.0861473i
\(817\) 9.43276 + 5.44600i 0.330010 + 0.190532i
\(818\) 22.7330 0.794839
\(819\) 46.3501 + 42.2818i 1.61960 + 1.47745i
\(820\) 1.37610 0.0480555
\(821\) −17.3795 + 30.1022i −0.606549 + 1.05057i 0.385256 + 0.922810i \(0.374113\pi\)
−0.991805 + 0.127764i \(0.959220\pi\)
\(822\) 21.4438 29.3143i 0.747938 1.02245i
\(823\) −4.87079 + 2.81215i −0.169785 + 0.0980255i −0.582485 0.812842i \(-0.697919\pi\)
0.412699 + 0.910867i \(0.364586\pi\)
\(824\) −9.95702 + 5.74869i −0.346869 + 0.200265i
\(825\) 9.46682 + 6.92511i 0.329592 + 0.241101i
\(826\) −20.3421 + 35.2336i −0.707793 + 1.22593i
\(827\) −16.8515 −0.585985 −0.292992 0.956115i \(-0.594651\pi\)
−0.292992 + 0.956115i \(0.594651\pi\)
\(828\) −4.31174 13.5693i −0.149843 0.471565i
\(829\) 11.5377i 0.400722i 0.979722 + 0.200361i \(0.0642115\pi\)
−0.979722 + 0.200361i \(0.935788\pi\)
\(830\) 1.71741 2.97464i 0.0596122 0.103251i
\(831\) −7.19916 0.780295i −0.249736 0.0270681i
\(832\) 5.42761 3.13363i 0.188169 0.108639i
\(833\) −2.95421 5.11684i −0.102357 0.177288i
\(834\) −0.891528 + 0.393472i −0.0308711 + 0.0136248i
\(835\) −5.59800 3.23201i −0.193727 0.111848i
\(836\) 3.07801 0.106455
\(837\) 28.8065 + 2.68033i 0.995699 + 0.0926457i
\(838\) −8.25540 −0.285178
\(839\) 11.2407 + 6.48984i 0.388073 + 0.224054i 0.681325 0.731981i \(-0.261404\pi\)
−0.293252 + 0.956035i \(0.594737\pi\)
\(840\) 1.55412 0.685903i 0.0536222 0.0236659i
\(841\) 6.63926 + 11.4995i 0.228940 + 0.396536i
\(842\) −26.7232 + 15.4287i −0.920943 + 0.531707i
\(843\) 6.49094 + 0.703534i 0.223560 + 0.0242310i
\(844\) −1.52607 + 2.64323i −0.0525295 + 0.0909837i
\(845\) 7.72394i 0.265712i
\(846\) 7.42612 + 1.62893i 0.255315 + 0.0560036i
\(847\) 30.3669 1.04342
\(848\) 2.21373 3.83430i 0.0760199 0.131670i
\(849\) 33.6588 + 24.6219i 1.15517 + 0.845021i
\(850\) −6.08126 + 3.51102i −0.208585 + 0.120427i
\(851\) 24.1529 13.9447i 0.827950 0.478017i
\(852\) 3.61518 4.94206i 0.123854 0.169312i
\(853\) −12.6319 + 21.8791i −0.432507 + 0.749125i −0.997089 0.0762528i \(-0.975704\pi\)
0.564581 + 0.825378i \(0.309038\pi\)
\(854\) −10.5697 −0.361687
\(855\) 0.421939 1.92358i 0.0144300 0.0657850i
\(856\) 14.6419 0.500451
\(857\) 35.3973 + 20.4366i 1.20915 + 0.698102i 0.962573 0.271022i \(-0.0873617\pi\)
0.246574 + 0.969124i \(0.420695\pi\)
\(858\) −1.61210 + 14.8736i −0.0550363 + 0.507776i
\(859\) 40.3209 23.2793i 1.37573 0.794278i 0.384088 0.923296i \(-0.374516\pi\)
0.991642 + 0.129018i \(0.0411825\pi\)
\(860\) 0.716732 + 1.24142i 0.0244404 + 0.0423319i
\(861\) −10.9255 24.7550i −0.372340 0.843647i
\(862\) 2.83197 4.90512i 0.0964573 0.167069i
\(863\) 43.0865 1.46668 0.733340 0.679862i \(-0.237960\pi\)
0.733340 + 0.679862i \(0.237960\pi\)
\(864\) 1.03080 + 5.09288i 0.0350685 + 0.173263i
\(865\) 0.315080 0.0107130
\(866\) 14.6660 25.4023i 0.498372 0.863205i
\(867\) −23.7017 + 10.4606i −0.804952 + 0.355262i
\(868\) 4.25573 + 18.0846i 0.144449 + 0.613833i
\(869\) 0.152109 0.0878204i 0.00515996 0.00297910i
\(870\) −0.217513 + 2.00681i −0.00737437 + 0.0680374i
\(871\) 44.6676 + 25.7888i 1.51350 + 0.873821i
\(872\) 12.1199i 0.410430i
\(873\) −7.87644 24.7876i −0.266577 0.838932i
\(874\) 10.5994i 0.358529i
\(875\) 8.42037 + 4.86150i 0.284660 + 0.164349i
\(876\) −7.08772 + 9.68912i −0.239472 + 0.327365i
\(877\) 7.61307 + 13.1862i 0.257075 + 0.445267i 0.965457 0.260562i \(-0.0839079\pi\)
−0.708382 + 0.705829i \(0.750575\pi\)
\(878\) 4.64400 2.68122i 0.156728 0.0904867i
\(879\) −2.06477 + 2.82260i −0.0696429 + 0.0952039i
\(880\) 0.350816 + 0.202544i 0.0118260 + 0.00682775i
\(881\) −20.5454 −0.692193 −0.346097 0.938199i \(-0.612493\pi\)
−0.346097 + 0.938199i \(0.612493\pi\)
\(882\) −9.16323 8.35895i −0.308542 0.281461i
\(883\) 4.50248i 0.151520i −0.997126 0.0757602i \(-0.975862\pi\)
0.997126 0.0757602i \(-0.0241384\pi\)
\(884\) −7.75660 4.47827i −0.260883 0.150621i
\(885\) −0.668854 + 6.17098i −0.0224833 + 0.207435i
\(886\) −2.53941 4.39838i −0.0853131 0.147767i
\(887\) 43.5787 25.1602i 1.46323 0.844796i 0.464070 0.885799i \(-0.346389\pi\)
0.999159 + 0.0410030i \(0.0130553\pi\)
\(888\) −9.31175 + 4.10969i −0.312482 + 0.137912i
\(889\) 30.1850 + 17.4273i 1.01237 + 0.584494i
\(890\) −0.0937397 −0.00314216
\(891\) −11.2650 5.19178i −0.377392 0.173931i
\(892\) 7.79218i 0.260901i
\(893\) 4.90154 + 2.82991i 0.164024 + 0.0946993i
\(894\) 17.6431 7.78669i 0.590073 0.260426i
\(895\) 3.43113 1.98096i 0.114690 0.0662162i
\(896\) −2.88977 + 1.66841i −0.0965405 + 0.0557377i
\(897\) 51.2184 + 5.55141i 1.71013 + 0.185356i
\(898\) −3.19051 1.84204i −0.106469 0.0614697i
\(899\) −21.1388 6.36525i −0.705019 0.212293i
\(900\) −9.93444 + 10.8903i −0.331148 + 0.363010i
\(901\) −6.32729 −0.210793
\(902\) 3.22624 5.58802i 0.107422 0.186061i
\(903\) 16.6417 22.7496i 0.553800 0.757060i
\(904\) −4.06024 7.03255i −0.135042 0.233899i
\(905\) −1.20144 2.08096i −0.0399373 0.0691734i
\(906\) 12.7048 + 9.29376i 0.422090 + 0.308764i
\(907\) 14.5490 25.1996i 0.483091 0.836739i −0.516720 0.856154i \(-0.672847\pi\)
0.999811 + 0.0194158i \(0.00618062\pi\)
\(908\) 25.5711i 0.848607i
\(909\) −28.7769 + 9.14407i −0.954469 + 0.303290i
\(910\) 6.14677i 0.203763i
\(911\) 14.7040 25.4682i 0.487167 0.843798i −0.512724 0.858553i \(-0.671364\pi\)
0.999891 + 0.0147557i \(0.00469705\pi\)
\(912\) −0.416830 + 3.84576i −0.0138026 + 0.127346i
\(913\) −8.05288 13.9480i −0.266511 0.461611i
\(914\) 8.33114 + 14.4300i 0.275570 + 0.477301i
\(915\) −1.47530 + 0.651117i −0.0487720 + 0.0215253i
\(916\) 21.7948 + 12.5832i 0.720119 + 0.415761i
\(917\) 70.2029i 2.31830i
\(918\) 5.56658 4.91487i 0.183724 0.162215i
\(919\) 38.0198 1.25416 0.627079 0.778956i \(-0.284250\pi\)
0.627079 + 0.778956i \(0.284250\pi\)
\(920\) 0.697476 1.20806i 0.0229951 0.0398287i
\(921\) 5.39900 2.38282i 0.177903 0.0785166i
\(922\) −22.9327 + 13.2402i −0.755247 + 0.436042i
\(923\) 11.0781 + 19.1879i 0.364641 + 0.631576i
\(924\) 0.858317 7.91900i 0.0282365 0.260516i
\(925\) −25.0061 14.4373i −0.822197 0.474695i
\(926\) −21.8201 −0.717053
\(927\) 33.6911 + 7.39018i 1.10656 + 0.242725i
\(928\) 3.96503i 0.130159i
\(929\) −23.9557 + 41.4925i −0.785961 + 1.36132i 0.142462 + 0.989800i \(0.454498\pi\)
−0.928423 + 0.371524i \(0.878835\pi\)
\(930\) 1.70806 + 2.26207i 0.0560097 + 0.0741761i
\(931\) −4.61675 7.99644i −0.151308 0.262073i
\(932\) 18.7809 10.8431i 0.615188 0.355179i
\(933\) −0.451045 + 0.616592i −0.0147666 + 0.0201863i
\(934\) 15.2790 26.4640i 0.499944 0.865928i
\(935\) 0.578910i 0.0189324i
\(936\) −18.3652 4.02842i −0.600284 0.131673i
\(937\) 28.2514 0.922933 0.461466 0.887158i \(-0.347324\pi\)
0.461466 + 0.887158i \(0.347324\pi\)
\(938\) −23.7819 13.7305i −0.776507 0.448316i
\(939\) −22.9777 2.49049i −0.749849 0.0812739i
\(940\) 0.372436 + 0.645077i 0.0121475 + 0.0210401i
\(941\) 13.3349 + 23.0967i 0.434706 + 0.752932i 0.997272 0.0738200i \(-0.0235190\pi\)
−0.562566 + 0.826753i \(0.690186\pi\)
\(942\) −2.74572 6.22125i −0.0894603 0.202699i
\(943\) −19.2428 11.1098i −0.626631 0.361786i
\(944\) 12.1925i 0.396833i
\(945\) −4.83126 1.62195i −0.157161 0.0527620i
\(946\) 6.72146 0.218534
\(947\) 2.00845 3.47874i 0.0652660 0.113044i −0.831546 0.555456i \(-0.812544\pi\)
0.896812 + 0.442412i \(0.145877\pi\)
\(948\) 0.0891263 + 0.201943i 0.00289469 + 0.00655879i
\(949\) −21.7191 37.6186i −0.705032 1.22115i
\(950\) −9.50360 + 5.48691i −0.308338 + 0.178019i
\(951\) −4.22408 0.457836i −0.136975 0.0148463i
\(952\) 4.12977 + 2.38432i 0.133847 + 0.0772763i
\(953\) 24.6241 0.797652 0.398826 0.917027i \(-0.369418\pi\)
0.398826 + 0.917027i \(0.369418\pi\)
\(954\) −12.6587 + 4.02240i −0.409840 + 0.130230i
\(955\) 2.54118 0.0822306
\(956\) −5.72924 + 9.92334i −0.185297 + 0.320944i
\(957\) 7.63924 + 5.58821i 0.246942 + 0.180641i
\(958\) −20.7717 35.9776i −0.671102 1.16238i
\(959\) −34.9858 60.5971i −1.12975 1.95678i
\(960\) −0.300572 + 0.410891i −0.00970093 + 0.0132614i
\(961\) −27.7468 + 13.8245i −0.895058 + 0.445950i
\(962\) 36.8293i 1.18742i
\(963\) −32.4517 29.6034i −1.04574 0.953956i
\(964\) 12.1466i 0.391215i
\(965\) 2.73551 + 1.57935i 0.0880592 + 0.0508410i
\(966\) −27.2697 2.95568i −0.877388 0.0950975i
\(967\) 42.1430 24.3313i 1.35523 0.782441i 0.366251 0.930516i \(-0.380641\pi\)
0.988976 + 0.148075i \(0.0473078\pi\)
\(968\) −7.88131 + 4.55028i −0.253315 + 0.146252i
\(969\) 5.05749 2.23210i 0.162470 0.0717053i
\(970\) 1.27411 2.20682i 0.0409091 0.0708567i
\(971\) 4.27649i 0.137239i 0.997643 + 0.0686195i \(0.0218594\pi\)
−0.997643 + 0.0686195i \(0.978141\pi\)
\(972\) 8.01228 13.3717i 0.256994 0.428899i
\(973\) 1.87738i 0.0601861i
\(974\) 1.86210 3.22526i 0.0596656 0.103344i
\(975\) −21.5364 48.7971i −0.689716 1.56276i
\(976\) 2.74322 1.58380i 0.0878082 0.0506961i
\(977\) −14.9563 + 8.63500i −0.478493 + 0.276258i −0.719788 0.694194i \(-0.755761\pi\)
0.241295 + 0.970452i \(0.422428\pi\)
\(978\) −39.3842 4.26873i −1.25937 0.136499i
\(979\) −0.219771 + 0.380655i −0.00702391 + 0.0121658i
\(980\) 1.21519i 0.0388179i
\(981\) −24.5042 + 26.8619i −0.782359 + 0.857635i
\(982\) 37.7326i 1.20410i
\(983\) −19.2700 + 33.3765i −0.614616 + 1.06455i 0.375835 + 0.926686i \(0.377356\pi\)
−0.990452 + 0.137860i \(0.955978\pi\)
\(984\) 6.54492 + 4.78770i 0.208645 + 0.152626i
\(985\) −6.08221 + 3.51157i −0.193795 + 0.111888i
\(986\) −4.90727 + 2.83321i −0.156279 + 0.0902278i
\(987\) 8.64750 11.8214i 0.275253 0.376279i
\(988\) −12.1218 6.99851i −0.385645 0.222652i
\(989\) 23.1459i 0.735996i
\(990\) −0.368026 1.15820i −0.0116966 0.0368099i
\(991\) 12.5111i 0.397430i 0.980057 + 0.198715i \(0.0636767\pi\)
−0.980057 + 0.198715i \(0.936323\pi\)
\(992\) −3.81438 4.05593i −0.121107 0.128776i
\(993\) −55.1928 5.98218i −1.75149 0.189839i
\(994\) −5.89821 10.2160i −0.187080 0.324032i
\(995\) −3.33296 5.77286i −0.105662 0.183012i
\(996\) 18.5176 8.17263i 0.586751 0.258960i
\(997\) −4.35689 + 7.54636i −0.137984 + 0.238996i −0.926733 0.375719i \(-0.877396\pi\)
0.788749 + 0.614715i \(0.210729\pi\)
\(998\) 38.4177 1.21609
\(999\) 28.9472 + 9.71815i 0.915849 + 0.307469i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.q.a.371.31 yes 64
3.2 odd 2 1674.2.q.a.1115.10 64
9.4 even 3 1674.2.q.a.557.3 64
9.5 odd 6 inner 558.2.q.a.185.18 64
31.30 odd 2 inner 558.2.q.a.371.18 yes 64
93.92 even 2 1674.2.q.a.1115.3 64
279.185 even 6 inner 558.2.q.a.185.31 yes 64
279.247 odd 6 1674.2.q.a.557.10 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.q.a.185.18 64 9.5 odd 6 inner
558.2.q.a.185.31 yes 64 279.185 even 6 inner
558.2.q.a.371.18 yes 64 31.30 odd 2 inner
558.2.q.a.371.31 yes 64 1.1 even 1 trivial
1674.2.q.a.557.3 64 9.4 even 3
1674.2.q.a.557.10 64 279.247 odd 6
1674.2.q.a.1115.3 64 93.92 even 2
1674.2.q.a.1115.10 64 3.2 odd 2