Newspace parameters
Level: | \( N \) | \(=\) | \( 558 = 2 \cdot 3^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 558.q (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.45565243279\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
185.1 | −0.866025 | + | 0.500000i | −1.71868 | − | 0.214796i | 0.500000 | − | 0.866025i | −1.16560 | − | 0.672958i | 1.59582 | − | 0.673321i | −2.59128 | − | 4.48824i | 1.00000i | 2.90773 | + | 0.738333i | 1.34592 | ||||
185.2 | −0.866025 | + | 0.500000i | −1.71705 | + | 0.227499i | 0.500000 | − | 0.866025i | 1.92707 | + | 1.11259i | 1.37326 | − | 1.05554i | 0.556441 | + | 0.963784i | 1.00000i | 2.89649 | − | 0.781251i | −2.22519 | ||||
185.3 | −0.866025 | + | 0.500000i | −1.62440 | − | 0.601111i | 0.500000 | − | 0.866025i | −2.48879 | − | 1.43691i | 1.70732 | − | 0.291621i | 1.86356 | + | 3.22779i | 1.00000i | 2.27733 | + | 1.95289i | 2.87381 | ||||
185.4 | −0.866025 | + | 0.500000i | −1.12280 | + | 1.31883i | 0.500000 | − | 0.866025i | 0.615038 | + | 0.355093i | 0.312954 | − | 1.70354i | 0.178545 | + | 0.309248i | 1.00000i | −0.478650 | − | 2.96157i | −0.710185 | ||||
185.5 | −0.866025 | + | 0.500000i | −0.841508 | − | 1.51389i | 0.500000 | − | 0.866025i | 2.53994 | + | 1.46644i | 1.48571 | + | 0.890313i | 2.03804 | + | 3.52999i | 1.00000i | −1.58373 | + | 2.54790i | −2.93287 | ||||
185.6 | −0.866025 | + | 0.500000i | −0.489221 | + | 1.66152i | 0.500000 | − | 0.866025i | 3.61004 | + | 2.08426i | −0.407085 | − | 1.68353i | −2.04301 | − | 3.53859i | 1.00000i | −2.52133 | − | 1.62570i | −4.16852 | ||||
185.7 | −0.866025 | + | 0.500000i | −0.296201 | − | 1.70654i | 0.500000 | − | 0.866025i | −2.42613 | − | 1.40073i | 1.10979 | + | 1.32980i | −0.855855 | − | 1.48238i | 1.00000i | −2.82453 | + | 1.01095i | 2.80145 | ||||
185.8 | −0.866025 | + | 0.500000i | −0.217529 | + | 1.71834i | 0.500000 | − | 0.866025i | −1.11157 | − | 0.641767i | −0.670782 | − | 1.59689i | 0.353559 | + | 0.612382i | 1.00000i | −2.90536 | − | 0.747578i | 1.28353 | ||||
185.9 | −0.866025 | + | 0.500000i | 0.217529 | − | 1.71834i | 0.500000 | − | 0.866025i | −1.11157 | − | 0.641767i | 0.670782 | + | 1.59689i | 0.353559 | + | 0.612382i | 1.00000i | −2.90536 | − | 0.747578i | 1.28353 | ||||
185.10 | −0.866025 | + | 0.500000i | 0.296201 | + | 1.70654i | 0.500000 | − | 0.866025i | −2.42613 | − | 1.40073i | −1.10979 | − | 1.32980i | −0.855855 | − | 1.48238i | 1.00000i | −2.82453 | + | 1.01095i | 2.80145 | ||||
185.11 | −0.866025 | + | 0.500000i | 0.489221 | − | 1.66152i | 0.500000 | − | 0.866025i | 3.61004 | + | 2.08426i | 0.407085 | + | 1.68353i | −2.04301 | − | 3.53859i | 1.00000i | −2.52133 | − | 1.62570i | −4.16852 | ||||
185.12 | −0.866025 | + | 0.500000i | 0.841508 | + | 1.51389i | 0.500000 | − | 0.866025i | 2.53994 | + | 1.46644i | −1.48571 | − | 0.890313i | 2.03804 | + | 3.52999i | 1.00000i | −1.58373 | + | 2.54790i | −2.93287 | ||||
185.13 | −0.866025 | + | 0.500000i | 1.12280 | − | 1.31883i | 0.500000 | − | 0.866025i | 0.615038 | + | 0.355093i | −0.312954 | + | 1.70354i | 0.178545 | + | 0.309248i | 1.00000i | −0.478650 | − | 2.96157i | −0.710185 | ||||
185.14 | −0.866025 | + | 0.500000i | 1.62440 | + | 0.601111i | 0.500000 | − | 0.866025i | −2.48879 | − | 1.43691i | −1.70732 | + | 0.291621i | 1.86356 | + | 3.22779i | 1.00000i | 2.27733 | + | 1.95289i | 2.87381 | ||||
185.15 | −0.866025 | + | 0.500000i | 1.71705 | − | 0.227499i | 0.500000 | − | 0.866025i | 1.92707 | + | 1.11259i | −1.37326 | + | 1.05554i | 0.556441 | + | 0.963784i | 1.00000i | 2.89649 | − | 0.781251i | −2.22519 | ||||
185.16 | −0.866025 | + | 0.500000i | 1.71868 | + | 0.214796i | 0.500000 | − | 0.866025i | −1.16560 | − | 0.672958i | −1.59582 | + | 0.673321i | −2.59128 | − | 4.48824i | 1.00000i | 2.90773 | + | 0.738333i | 1.34592 | ||||
185.17 | 0.866025 | − | 0.500000i | −1.71519 | + | 0.241086i | 0.500000 | − | 0.866025i | −1.01733 | − | 0.587355i | −1.36486 | + | 1.06638i | −0.902070 | − | 1.56243i | − | 1.00000i | 2.88375 | − | 0.827017i | −1.17471 | |||
185.18 | 0.866025 | − | 0.500000i | −1.58459 | − | 0.699349i | 0.500000 | − | 0.866025i | 0.254546 | + | 0.146962i | −1.72197 | + | 0.186639i | 1.66841 | + | 2.88977i | − | 1.00000i | 2.02182 | + | 2.21636i | 0.293925 | |||
185.19 | 0.866025 | − | 0.500000i | −1.55011 | − | 0.772765i | 0.500000 | − | 0.866025i | 3.64602 | + | 2.10503i | −1.72882 | + | 0.105819i | −0.908070 | − | 1.57282i | − | 1.00000i | 1.80567 | + | 2.39574i | 4.21006 | |||
185.20 | 0.866025 | − | 0.500000i | −1.37617 | + | 1.05175i | 0.500000 | − | 0.866025i | 1.74890 | + | 1.00973i | −0.665921 | + | 1.59892i | −1.62183 | − | 2.80910i | − | 1.00000i | 0.787662 | − | 2.89475i | 2.01945 | |||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
31.b | odd | 2 | 1 | inner |
279.s | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 558.2.q.a | ✓ | 64 |
3.b | odd | 2 | 1 | 1674.2.q.a | 64 | ||
9.c | even | 3 | 1 | 1674.2.q.a | 64 | ||
9.d | odd | 6 | 1 | inner | 558.2.q.a | ✓ | 64 |
31.b | odd | 2 | 1 | inner | 558.2.q.a | ✓ | 64 |
93.c | even | 2 | 1 | 1674.2.q.a | 64 | ||
279.m | odd | 6 | 1 | 1674.2.q.a | 64 | ||
279.s | even | 6 | 1 | inner | 558.2.q.a | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
558.2.q.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
558.2.q.a | ✓ | 64 | 9.d | odd | 6 | 1 | inner |
558.2.q.a | ✓ | 64 | 31.b | odd | 2 | 1 | inner |
558.2.q.a | ✓ | 64 | 279.s | even | 6 | 1 | inner |
1674.2.q.a | 64 | 3.b | odd | 2 | 1 | ||
1674.2.q.a | 64 | 9.c | even | 3 | 1 | ||
1674.2.q.a | 64 | 93.c | even | 2 | 1 | ||
1674.2.q.a | 64 | 279.m | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(558, [\chi])\).