Properties

Label 558.2.q.a.185.18
Level $558$
Weight $2$
Character 558.185
Analytic conductor $4.456$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(185,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.185"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 185.18
Character \(\chi\) \(=\) 558.185
Dual form 558.2.q.a.371.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-1.58459 - 0.699349i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.254546 + 0.146962i) q^{5} +(-1.72197 + 0.186639i) q^{6} +(1.66841 + 2.88977i) q^{7} -1.00000i q^{8} +(2.02182 + 2.21636i) q^{9} +0.293925 q^{10} +(-0.689101 - 1.19356i) q^{11} +(-1.39795 + 1.02262i) q^{12} +(5.42761 + 3.13363i) q^{13} +(2.88977 + 1.66841i) q^{14} +(-0.300572 - 0.410891i) q^{15} +(-0.500000 - 0.866025i) q^{16} -1.42910 q^{17} +(2.85913 + 0.908510i) q^{18} +2.23335 q^{19} +(0.254546 - 0.146962i) q^{20} +(-0.622780 - 5.74589i) q^{21} +(-1.19356 - 0.689101i) q^{22} +(2.37297 - 4.11011i) q^{23} +(-0.699349 + 1.58459i) q^{24} +(-2.45680 - 4.25531i) q^{25} +6.26727 q^{26} +(-1.65374 - 4.92597i) q^{27} +3.33682 q^{28} +(1.98252 + 3.43382i) q^{29} +(-0.465749 - 0.205556i) q^{30} +(4.05593 - 3.81438i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(0.257226 + 2.37322i) q^{33} +(-1.23764 + 0.714549i) q^{34} +0.980774i q^{35} +(2.93033 - 0.642771i) q^{36} +5.87646i q^{37} +(1.93414 - 1.11668i) q^{38} +(-6.40901 - 8.76131i) q^{39} +(0.146962 - 0.254546i) q^{40} +(4.05457 + 2.34091i) q^{41} +(-3.41229 - 4.66470i) q^{42} +(-4.22359 + 2.43849i) q^{43} -1.37820 q^{44} +(0.188926 + 0.861297i) q^{45} -4.74595i q^{46} +(2.19470 - 1.26711i) q^{47} +(0.186639 + 1.72197i) q^{48} +(-2.06718 + 3.58047i) q^{49} +(-4.25531 - 2.45680i) q^{50} +(2.26453 + 0.999439i) q^{51} +(5.42761 - 3.13363i) q^{52} +4.42747 q^{53} +(-3.89517 - 3.43914i) q^{54} -0.405088i q^{55} +(2.88977 - 1.66841i) q^{56} +(-3.53894 - 1.56189i) q^{57} +(3.43382 + 1.98252i) q^{58} +(-10.5590 - 6.09626i) q^{59} +(-0.506128 + 0.0548577i) q^{60} +(2.74322 - 1.58380i) q^{61} +(1.60535 - 5.33131i) q^{62} +(-3.03153 + 9.54039i) q^{63} -1.00000 q^{64} +(0.921052 + 1.59531i) q^{65} +(1.40937 + 1.92665i) q^{66} +(-4.11484 + 7.12712i) q^{67} +(-0.714549 + 1.23764i) q^{68} +(-6.63458 + 4.85329i) q^{69} +(0.490387 + 0.849375i) q^{70} +3.53523i q^{71} +(2.21636 - 2.02182i) q^{72} +6.93097i q^{73} +(2.93823 + 5.08916i) q^{74} +(0.917070 + 8.46107i) q^{75} +(1.11668 - 1.93414i) q^{76} +(2.29941 - 3.98269i) q^{77} +(-9.93102 - 4.38301i) q^{78} +(-0.110368 + 0.0637209i) q^{79} -0.293925i q^{80} +(-0.824472 + 8.96216i) q^{81} +4.68181 q^{82} +(-5.84303 - 10.1204i) q^{83} +(-5.28748 - 2.33360i) q^{84} +(-0.363772 - 0.210024i) q^{85} +(-2.43849 + 4.22359i) q^{86} +(-0.740028 - 6.82765i) q^{87} +(-1.19356 + 0.689101i) q^{88} +0.318924 q^{89} +(0.594263 + 0.651442i) q^{90} +20.9127i q^{91} +(-2.37297 - 4.11011i) q^{92} +(-9.09454 + 3.20770i) q^{93} +(1.26711 - 2.19470i) q^{94} +(0.568491 + 0.328219i) q^{95} +(1.02262 + 1.39795i) q^{96} +(4.33481 + 7.50811i) q^{97} +4.13437i q^{98} +(1.25211 - 3.94046i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} + 12 q^{5} - 4 q^{7} - 4 q^{9} - 32 q^{16} + 8 q^{18} - 8 q^{19} + 12 q^{20} + 44 q^{25} - 8 q^{28} + 8 q^{31} - 36 q^{33} - 8 q^{36} + 36 q^{38} - 8 q^{39} + 24 q^{41} - 8 q^{45} - 48 q^{47}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/558\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(497\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −1.58459 0.699349i −0.914861 0.403769i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.254546 + 0.146962i 0.113837 + 0.0657235i 0.555837 0.831291i \(-0.312398\pi\)
−0.442001 + 0.897015i \(0.645731\pi\)
\(6\) −1.72197 + 0.186639i −0.702990 + 0.0761949i
\(7\) 1.66841 + 2.88977i 0.630600 + 1.09223i 0.987429 + 0.158061i \(0.0505243\pi\)
−0.356830 + 0.934169i \(0.616142\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.02182 + 2.21636i 0.673941 + 0.738785i
\(10\) 0.293925 0.0929471
\(11\) −0.689101 1.19356i −0.207772 0.359871i 0.743240 0.669024i \(-0.233288\pi\)
−0.951012 + 0.309153i \(0.899954\pi\)
\(12\) −1.39795 + 1.02262i −0.403552 + 0.295204i
\(13\) 5.42761 + 3.13363i 1.50535 + 0.869114i 0.999981 + 0.00620975i \(0.00197664\pi\)
0.505368 + 0.862904i \(0.331357\pi\)
\(14\) 2.88977 + 1.66841i 0.772324 + 0.445901i
\(15\) −0.300572 0.410891i −0.0776074 0.106092i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.42910 −0.346607 −0.173304 0.984868i \(-0.555444\pi\)
−0.173304 + 0.984868i \(0.555444\pi\)
\(18\) 2.85913 + 0.908510i 0.673903 + 0.214138i
\(19\) 2.23335 0.512366 0.256183 0.966628i \(-0.417535\pi\)
0.256183 + 0.966628i \(0.417535\pi\)
\(20\) 0.254546 0.146962i 0.0569183 0.0328618i
\(21\) −0.622780 5.74589i −0.135902 1.25386i
\(22\) −1.19356 0.689101i −0.254468 0.146917i
\(23\) 2.37297 4.11011i 0.494799 0.857018i −0.505183 0.863012i \(-0.668575\pi\)
0.999982 + 0.00599485i \(0.00190823\pi\)
\(24\) −0.699349 + 1.58459i −0.142754 + 0.323452i
\(25\) −2.45680 4.25531i −0.491361 0.851062i
\(26\) 6.26727 1.22911
\(27\) −1.65374 4.92597i −0.318263 0.948002i
\(28\) 3.33682 0.630600
\(29\) 1.98252 + 3.43382i 0.368144 + 0.637644i 0.989275 0.146062i \(-0.0466600\pi\)
−0.621131 + 0.783706i \(0.713327\pi\)
\(30\) −0.465749 0.205556i −0.0850337 0.0375292i
\(31\) 4.05593 3.81438i 0.728466 0.685082i
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0.257226 + 2.37322i 0.0447773 + 0.413124i
\(34\) −1.23764 + 0.714549i −0.212253 + 0.122544i
\(35\) 0.980774i 0.165781i
\(36\) 2.93033 0.642771i 0.488389 0.107129i
\(37\) 5.87646i 0.966083i 0.875597 + 0.483042i \(0.160468\pi\)
−0.875597 + 0.483042i \(0.839532\pi\)
\(38\) 1.93414 1.11668i 0.313759 0.181149i
\(39\) −6.40901 8.76131i −1.02626 1.40293i
\(40\) 0.146962 0.254546i 0.0232368 0.0402473i
\(41\) 4.05457 + 2.34091i 0.633217 + 0.365588i 0.781997 0.623282i \(-0.214201\pi\)
−0.148780 + 0.988870i \(0.547535\pi\)
\(42\) −3.41229 4.66470i −0.526527 0.719778i
\(43\) −4.22359 + 2.43849i −0.644091 + 0.371866i −0.786189 0.617987i \(-0.787949\pi\)
0.142098 + 0.989853i \(0.454615\pi\)
\(44\) −1.37820 −0.207772
\(45\) 0.188926 + 0.861297i 0.0281635 + 0.128395i
\(46\) 4.74595i 0.699752i
\(47\) 2.19470 1.26711i 0.320130 0.184827i −0.331320 0.943518i \(-0.607494\pi\)
0.651451 + 0.758691i \(0.274161\pi\)
\(48\) 0.186639 + 1.72197i 0.0269390 + 0.248544i
\(49\) −2.06718 + 3.58047i −0.295312 + 0.511495i
\(50\) −4.25531 2.45680i −0.601792 0.347445i
\(51\) 2.26453 + 0.999439i 0.317098 + 0.139949i
\(52\) 5.42761 3.13363i 0.752674 0.434557i
\(53\) 4.42747 0.608159 0.304080 0.952647i \(-0.401651\pi\)
0.304080 + 0.952647i \(0.401651\pi\)
\(54\) −3.89517 3.43914i −0.530065 0.468008i
\(55\) 0.405088i 0.0546220i
\(56\) 2.88977 1.66841i 0.386162 0.222951i
\(57\) −3.53894 1.56189i −0.468744 0.206878i
\(58\) 3.43382 + 1.98252i 0.450882 + 0.260317i
\(59\) −10.5590 6.09626i −1.37467 0.793666i −0.383158 0.923683i \(-0.625164\pi\)
−0.991512 + 0.130017i \(0.958497\pi\)
\(60\) −0.506128 + 0.0548577i −0.0653409 + 0.00708210i
\(61\) 2.74322 1.58380i 0.351233 0.202784i −0.313995 0.949425i \(-0.601668\pi\)
0.665228 + 0.746640i \(0.268334\pi\)
\(62\) 1.60535 5.33131i 0.203879 0.677077i
\(63\) −3.03153 + 9.54039i −0.381937 + 1.20198i
\(64\) −1.00000 −0.125000
\(65\) 0.921052 + 1.59531i 0.114242 + 0.197874i
\(66\) 1.40937 + 1.92665i 0.173482 + 0.237155i
\(67\) −4.11484 + 7.12712i −0.502708 + 0.870716i 0.497287 + 0.867586i \(0.334330\pi\)
−0.999995 + 0.00312998i \(0.999004\pi\)
\(68\) −0.714549 + 1.23764i −0.0866518 + 0.150085i
\(69\) −6.63458 + 4.85329i −0.798710 + 0.584267i
\(70\) 0.490387 + 0.849375i 0.0586124 + 0.101520i
\(71\) 3.53523i 0.419555i 0.977749 + 0.209777i \(0.0672739\pi\)
−0.977749 + 0.209777i \(0.932726\pi\)
\(72\) 2.21636 2.02182i 0.261200 0.238274i
\(73\) 6.93097i 0.811208i 0.914049 + 0.405604i \(0.132939\pi\)
−0.914049 + 0.405604i \(0.867061\pi\)
\(74\) 2.93823 + 5.08916i 0.341562 + 0.591603i
\(75\) 0.917070 + 8.46107i 0.105894 + 0.977000i
\(76\) 1.11668 1.93414i 0.128092 0.221861i
\(77\) 2.29941 3.98269i 0.262042 0.453870i
\(78\) −9.93102 4.38301i −1.12447 0.496278i
\(79\) −0.110368 + 0.0637209i −0.0124174 + 0.00716917i −0.506196 0.862419i \(-0.668949\pi\)
0.493778 + 0.869588i \(0.335615\pi\)
\(80\) 0.293925i 0.0328618i
\(81\) −0.824472 + 8.96216i −0.0916080 + 0.995795i
\(82\) 4.68181 0.517020
\(83\) −5.84303 10.1204i −0.641356 1.11086i −0.985130 0.171808i \(-0.945039\pi\)
0.343775 0.939052i \(-0.388294\pi\)
\(84\) −5.28748 2.33360i −0.576911 0.254617i
\(85\) −0.363772 0.210024i −0.0394566 0.0227803i
\(86\) −2.43849 + 4.22359i −0.262949 + 0.455441i
\(87\) −0.740028 6.82765i −0.0793394 0.732001i
\(88\) −1.19356 + 0.689101i −0.127234 + 0.0734584i
\(89\) 0.318924 0.0338059 0.0169029 0.999857i \(-0.494619\pi\)
0.0169029 + 0.999857i \(0.494619\pi\)
\(90\) 0.594263 + 0.651442i 0.0626409 + 0.0686680i
\(91\) 20.9127i 2.19225i
\(92\) −2.37297 4.11011i −0.247400 0.428509i
\(93\) −9.09454 + 3.20770i −0.943060 + 0.332623i
\(94\) 1.26711 2.19470i 0.130693 0.226366i
\(95\) 0.568491 + 0.328219i 0.0583260 + 0.0336745i
\(96\) 1.02262 + 1.39795i 0.104370 + 0.142677i
\(97\) 4.33481 + 7.50811i 0.440133 + 0.762333i 0.997699 0.0677995i \(-0.0215978\pi\)
−0.557566 + 0.830133i \(0.688264\pi\)
\(98\) 4.13437i 0.417634i
\(99\) 1.25211 3.94046i 0.125842 0.396031i
\(100\) −4.91361 −0.491361
\(101\) −8.71647 + 5.03246i −0.867321 + 0.500748i −0.866457 0.499251i \(-0.833608\pi\)
−0.000864119 1.00000i \(0.500275\pi\)
\(102\) 2.46086 0.266725i 0.243661 0.0264097i
\(103\) 5.74869 9.95702i 0.566435 0.981095i −0.430479 0.902600i \(-0.641655\pi\)
0.996915 0.0784943i \(-0.0250112\pi\)
\(104\) 3.13363 5.42761i 0.307278 0.532221i
\(105\) 0.685903 1.55412i 0.0669373 0.151667i
\(106\) 3.83430 2.21373i 0.372420 0.215017i
\(107\) 14.6419i 1.41549i 0.706468 + 0.707745i \(0.250287\pi\)
−0.706468 + 0.707745i \(0.749713\pi\)
\(108\) −5.09288 1.03080i −0.490063 0.0991887i
\(109\) −12.1199 −1.16087 −0.580436 0.814306i \(-0.697118\pi\)
−0.580436 + 0.814306i \(0.697118\pi\)
\(110\) −0.202544 0.350816i −0.0193118 0.0334490i
\(111\) 4.10969 9.31175i 0.390075 0.883832i
\(112\) 1.66841 2.88977i 0.157650 0.273058i
\(113\) −7.03255 4.06024i −0.661566 0.381956i 0.131307 0.991342i \(-0.458083\pi\)
−0.792874 + 0.609386i \(0.791416\pi\)
\(114\) −3.84576 + 0.416830i −0.360188 + 0.0390397i
\(115\) 1.20806 0.697476i 0.112652 0.0650399i
\(116\) 3.96503 0.368144
\(117\) 4.02842 + 18.3652i 0.372427 + 1.69786i
\(118\) −12.1925 −1.12241
\(119\) −2.38432 4.12977i −0.218571 0.378575i
\(120\) −0.410891 + 0.300572i −0.0375090 + 0.0274384i
\(121\) 4.55028 7.88131i 0.413662 0.716483i
\(122\) 1.58380 2.74322i 0.143390 0.248359i
\(123\) −4.78770 6.54492i −0.431692 0.590136i
\(124\) −1.27538 5.41972i −0.114533 0.486705i
\(125\) 2.91385i 0.260623i
\(126\) 2.14481 + 9.77799i 0.191075 + 0.871093i
\(127\) 10.4455i 0.926886i 0.886127 + 0.463443i \(0.153386\pi\)
−0.886127 + 0.463443i \(0.846614\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 8.39799 0.910233i 0.739402 0.0801416i
\(130\) 1.59531 + 0.921052i 0.139918 + 0.0807816i
\(131\) −18.2202 10.5194i −1.59191 0.919087i −0.992980 0.118282i \(-0.962261\pi\)
−0.598925 0.800805i \(-0.704405\pi\)
\(132\) 2.18388 + 0.963845i 0.190082 + 0.0838919i
\(133\) 3.72615 + 6.45388i 0.323098 + 0.559622i
\(134\) 8.22969i 0.710937i
\(135\) 0.302977 1.49692i 0.0260761 0.128835i
\(136\) 1.42910i 0.122544i
\(137\) −10.4848 18.1601i −0.895774 1.55153i −0.832844 0.553507i \(-0.813289\pi\)
−0.0629292 0.998018i \(-0.520044\pi\)
\(138\) −3.31907 + 7.52036i −0.282538 + 0.640176i
\(139\) 0.487248 + 0.281313i 0.0413278 + 0.0238606i 0.520522 0.853849i \(-0.325738\pi\)
−0.479194 + 0.877709i \(0.659071\pi\)
\(140\) 0.849375 + 0.490387i 0.0717853 + 0.0414452i
\(141\) −4.36385 + 0.472984i −0.367502 + 0.0398325i
\(142\) 1.76761 + 3.06160i 0.148335 + 0.256924i
\(143\) 8.63756i 0.722309i
\(144\) 0.908510 2.85913i 0.0757092 0.238261i
\(145\) 1.16542i 0.0967829i
\(146\) 3.46548 + 6.00239i 0.286805 + 0.496762i
\(147\) 5.77962 4.22787i 0.476695 0.348709i
\(148\) 5.08916 + 2.93823i 0.418326 + 0.241521i
\(149\) 9.64250 + 5.56710i 0.789945 + 0.456075i 0.839943 0.542675i \(-0.182588\pi\)
−0.0499984 + 0.998749i \(0.515922\pi\)
\(150\) 5.02474 + 6.86896i 0.410268 + 0.560848i
\(151\) −7.87062 + 4.54411i −0.640502 + 0.369794i −0.784808 0.619739i \(-0.787238\pi\)
0.144306 + 0.989533i \(0.453905\pi\)
\(152\) 2.23335i 0.181149i
\(153\) −2.88938 3.16739i −0.233593 0.256069i
\(154\) 4.59881i 0.370583i
\(155\) 1.59299 0.374867i 0.127952 0.0301100i
\(156\) −10.7920 + 1.16971i −0.864053 + 0.0936521i
\(157\) −1.96305 + 3.40011i −0.156669 + 0.271358i −0.933665 0.358147i \(-0.883409\pi\)
0.776997 + 0.629505i \(0.216742\pi\)
\(158\) −0.0637209 + 0.110368i −0.00506937 + 0.00878040i
\(159\) −7.01570 3.09635i −0.556381 0.245556i
\(160\) −0.146962 0.254546i −0.0116184 0.0201236i
\(161\) 15.8364 1.24808
\(162\) 3.76706 + 8.17369i 0.295969 + 0.642186i
\(163\) −22.8716 −1.79144 −0.895722 0.444615i \(-0.853341\pi\)
−0.895722 + 0.444615i \(0.853341\pi\)
\(164\) 4.05457 2.34091i 0.316609 0.182794i
\(165\) −0.283298 + 0.641896i −0.0220547 + 0.0499715i
\(166\) −10.1204 5.84303i −0.785497 0.453507i
\(167\) 10.9960 19.0457i 0.850899 1.47380i −0.0294998 0.999565i \(-0.509391\pi\)
0.880398 0.474235i \(-0.157275\pi\)
\(168\) −5.74589 + 0.622780i −0.443305 + 0.0480485i
\(169\) 13.1393 + 22.7580i 1.01072 + 1.75061i
\(170\) −0.420047 −0.0322162
\(171\) 4.51544 + 4.94990i 0.345304 + 0.378529i
\(172\) 4.87698i 0.371866i
\(173\) 0.928358 0.535988i 0.0705818 0.0407504i −0.464294 0.885681i \(-0.653692\pi\)
0.534876 + 0.844931i \(0.320358\pi\)
\(174\) −4.05471 5.54290i −0.307387 0.420206i
\(175\) 8.19791 14.1992i 0.619704 1.07336i
\(176\) −0.689101 + 1.19356i −0.0519430 + 0.0899678i
\(177\) 12.4683 + 17.0445i 0.937174 + 1.28114i
\(178\) 0.276196 0.159462i 0.0207018 0.0119522i
\(179\) −13.4794 −1.00750 −0.503748 0.863851i \(-0.668046\pi\)
−0.503748 + 0.863851i \(0.668046\pi\)
\(180\) 0.840368 + 0.267033i 0.0626373 + 0.0199035i
\(181\) 8.17517i 0.607656i −0.952727 0.303828i \(-0.901735\pi\)
0.952727 0.303828i \(-0.0982647\pi\)
\(182\) 10.4564 + 18.1110i 0.775078 + 1.34247i
\(183\) −5.45449 + 0.591195i −0.403207 + 0.0437024i
\(184\) −4.11011 2.37297i −0.303001 0.174938i
\(185\) −0.863617 + 1.49583i −0.0634944 + 0.109976i
\(186\) −6.27225 + 7.32522i −0.459904 + 0.537111i
\(187\) 0.984794 + 1.70571i 0.0720153 + 0.124734i
\(188\) 2.53422i 0.184827i
\(189\) 11.4758 12.9975i 0.834741 0.945427i
\(190\) 0.656437 0.0476230
\(191\) 7.48738 4.32284i 0.541767 0.312790i −0.204027 0.978965i \(-0.565403\pi\)
0.745795 + 0.666176i \(0.232070\pi\)
\(192\) 1.58459 + 0.699349i 0.114358 + 0.0504712i
\(193\) 5.37331 9.30684i 0.386779 0.669921i −0.605235 0.796047i \(-0.706921\pi\)
0.992014 + 0.126126i \(0.0402542\pi\)
\(194\) 7.50811 + 4.33481i 0.539051 + 0.311221i
\(195\) −0.343808 3.17204i −0.0246206 0.227155i
\(196\) 2.06718 + 3.58047i 0.147656 + 0.255748i
\(197\) 23.8943 1.70240 0.851200 0.524841i \(-0.175875\pi\)
0.851200 + 0.524841i \(0.175875\pi\)
\(198\) −0.885869 4.03859i −0.0629559 0.287010i
\(199\) 22.6790i 1.60767i −0.594849 0.803837i \(-0.702788\pi\)
0.594849 0.803837i \(-0.297212\pi\)
\(200\) −4.25531 + 2.45680i −0.300896 + 0.173722i
\(201\) 11.5047 8.41582i 0.811477 0.593606i
\(202\) −5.03246 + 8.71647i −0.354082 + 0.613289i
\(203\) −6.61530 + 11.4580i −0.464303 + 0.804196i
\(204\) 1.99780 1.46142i 0.139874 0.102320i
\(205\) 0.688050 + 1.19174i 0.0480555 + 0.0832346i
\(206\) 11.4974i 0.801061i
\(207\) 13.9072 3.05056i 0.966618 0.212028i
\(208\) 6.26727i 0.434557i
\(209\) −1.53901 2.66564i −0.106455 0.184386i
\(210\) −0.183050 1.68886i −0.0126317 0.116542i
\(211\) 1.52607 2.64323i 0.105059 0.181967i −0.808703 0.588217i \(-0.799830\pi\)
0.913762 + 0.406249i \(0.133164\pi\)
\(212\) 2.21373 3.83430i 0.152040 0.263341i
\(213\) 2.47236 5.60187i 0.169403 0.383834i
\(214\) 7.32097 + 12.6803i 0.500451 + 0.866807i
\(215\) −1.43346 −0.0977614
\(216\) −4.92597 + 1.65374i −0.335169 + 0.112523i
\(217\) 17.7896 + 5.35675i 1.20764 + 0.363640i
\(218\) −10.4961 + 6.05993i −0.710886 + 0.410430i
\(219\) 4.84716 10.9827i 0.327541 0.742143i
\(220\) −0.350816 0.202544i −0.0236520 0.0136555i
\(221\) −7.75660 4.47827i −0.521765 0.301241i
\(222\) −1.09677 10.1191i −0.0736107 0.679146i
\(223\) −6.74823 + 3.89609i −0.451895 + 0.260901i −0.708630 0.705580i \(-0.750686\pi\)
0.256735 + 0.966482i \(0.417353\pi\)
\(224\) 3.33682i 0.222951i
\(225\) 4.46406 14.0486i 0.297604 0.936575i
\(226\) −8.12049 −0.540167
\(227\) 22.1452 12.7856i 1.46983 0.848607i 0.470403 0.882452i \(-0.344108\pi\)
0.999427 + 0.0338446i \(0.0107751\pi\)
\(228\) −3.12211 + 2.28386i −0.206767 + 0.151253i
\(229\) −21.7948 12.5832i −1.44024 0.831522i −0.442373 0.896831i \(-0.645863\pi\)
−0.997865 + 0.0653094i \(0.979197\pi\)
\(230\) 0.697476 1.20806i 0.0459902 0.0796573i
\(231\) −6.42890 + 4.70282i −0.422990 + 0.309423i
\(232\) 3.43382 1.98252i 0.225441 0.130159i
\(233\) 21.6863i 1.42072i 0.703841 + 0.710358i \(0.251467\pi\)
−0.703841 + 0.710358i \(0.748533\pi\)
\(234\) 12.6713 + 13.8905i 0.828349 + 0.908050i
\(235\) 0.744871 0.0485900
\(236\) −10.5590 + 6.09626i −0.687335 + 0.396833i
\(237\) 0.219451 0.0237856i 0.0142548 0.00154504i
\(238\) −4.12977 2.38432i −0.267693 0.154553i
\(239\) −5.72924 + 9.92334i −0.370594 + 0.641888i −0.989657 0.143454i \(-0.954179\pi\)
0.619063 + 0.785341i \(0.287513\pi\)
\(240\) −0.205556 + 0.465749i −0.0132686 + 0.0300639i
\(241\) −10.5193 + 6.07329i −0.677605 + 0.391215i −0.798952 0.601395i \(-0.794612\pi\)
0.121347 + 0.992610i \(0.461279\pi\)
\(242\) 9.10056i 0.585006i
\(243\) 7.57412 13.6247i 0.485880 0.874025i
\(244\) 3.16759i 0.202784i
\(245\) −1.05239 + 0.607596i −0.0672346 + 0.0388179i
\(246\) −7.41873 3.27422i −0.473001 0.208757i
\(247\) 12.1218 + 6.99851i 0.771290 + 0.445304i
\(248\) −3.81438 4.05593i −0.242213 0.257551i
\(249\) 2.18107 + 20.1230i 0.138220 + 1.27524i
\(250\) −1.45693 2.52347i −0.0921441 0.159598i
\(251\) −25.4400 −1.60576 −0.802879 0.596142i \(-0.796699\pi\)
−0.802879 + 0.596142i \(0.796699\pi\)
\(252\) 6.74646 + 7.39558i 0.424987 + 0.465878i
\(253\) −6.54088 −0.411221
\(254\) 5.22274 + 9.04605i 0.327704 + 0.567600i
\(255\) 0.429547 + 0.587204i 0.0268993 + 0.0367721i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.10477 + 3.52459i 0.380805 + 0.219858i 0.678169 0.734906i \(-0.262774\pi\)
−0.297363 + 0.954764i \(0.596107\pi\)
\(258\) 6.81776 4.98728i 0.424455 0.310494i
\(259\) −16.9816 + 9.80434i −1.05519 + 0.609212i
\(260\) 1.84210 0.114242
\(261\) −3.60227 + 11.3365i −0.222975 + 0.701714i
\(262\) −21.0389 −1.29979
\(263\) −1.56915 2.71785i −0.0967579 0.167590i 0.813583 0.581449i \(-0.197514\pi\)
−0.910341 + 0.413859i \(0.864181\pi\)
\(264\) 2.37322 0.257226i 0.146061 0.0158312i
\(265\) 1.12700 + 0.650671i 0.0692308 + 0.0399704i
\(266\) 6.45388 + 3.72615i 0.395712 + 0.228465i
\(267\) −0.505363 0.223039i −0.0309277 0.0136498i
\(268\) 4.11484 + 7.12712i 0.251354 + 0.435358i
\(269\) −26.2493 −1.60045 −0.800226 0.599699i \(-0.795287\pi\)
−0.800226 + 0.599699i \(0.795287\pi\)
\(270\) −0.486076 1.44786i −0.0295816 0.0881141i
\(271\) 26.4625i 1.60748i 0.594979 + 0.803741i \(0.297160\pi\)
−0.594979 + 0.803741i \(0.702840\pi\)
\(272\) 0.714549 + 1.23764i 0.0433259 + 0.0750427i
\(273\) 14.6253 33.1380i 0.885164 2.00560i
\(274\) −18.1601 10.4848i −1.09709 0.633408i
\(275\) −3.38597 + 5.86468i −0.204182 + 0.353653i
\(276\) 0.885778 + 8.17236i 0.0533176 + 0.491918i
\(277\) 3.62066 2.09039i 0.217544 0.125599i −0.387268 0.921967i \(-0.626581\pi\)
0.604813 + 0.796368i \(0.293248\pi\)
\(278\) 0.562626 0.0337440
\(279\) 16.6544 + 1.27738i 0.997071 + 0.0764750i
\(280\) 0.980774 0.0586124
\(281\) 3.26448 1.88475i 0.194743 0.112435i −0.399458 0.916751i \(-0.630802\pi\)
0.594201 + 0.804317i \(0.297468\pi\)
\(282\) −3.54271 + 2.59154i −0.210965 + 0.154324i
\(283\) 12.0387 20.8516i 0.715625 1.23950i −0.247093 0.968992i \(-0.579475\pi\)
0.962718 0.270507i \(-0.0871912\pi\)
\(284\) 3.06160 + 1.76761i 0.181672 + 0.104889i
\(285\) −0.671284 0.917664i −0.0397634 0.0543577i
\(286\) −4.31878 7.48035i −0.255375 0.442322i
\(287\) 15.6224i 0.922159i
\(288\) −0.642771 2.93033i −0.0378756 0.172671i
\(289\) −14.9577 −0.879863
\(290\) 0.582710 + 1.00928i 0.0342179 + 0.0592672i
\(291\) −1.61809 14.9288i −0.0948540 0.875141i
\(292\) 6.00239 + 3.46548i 0.351263 + 0.202802i
\(293\) −1.74859 1.00955i −0.102154 0.0589786i 0.448053 0.894007i \(-0.352118\pi\)
−0.550207 + 0.835029i \(0.685451\pi\)
\(294\) 2.89137 6.55126i 0.168628 0.382077i
\(295\) −1.79184 3.10356i −0.104325 0.180696i
\(296\) 5.87646 0.341562
\(297\) −4.73983 + 5.36833i −0.275033 + 0.311502i
\(298\) 11.1342 0.644987
\(299\) 25.7592 14.8721i 1.48969 0.860074i
\(300\) 7.78603 + 3.43633i 0.449527 + 0.198396i
\(301\) −14.0933 8.13680i −0.812327 0.468997i
\(302\) −4.54411 + 7.87062i −0.261484 + 0.452903i
\(303\) 17.3314 1.87850i 0.995665 0.107917i
\(304\) −1.11668 1.93414i −0.0640458 0.110931i
\(305\) 0.931033 0.0533108
\(306\) −4.08598 1.29835i −0.233580 0.0742218i
\(307\) 3.40720 0.194459 0.0972295 0.995262i \(-0.469002\pi\)
0.0972295 + 0.995262i \(0.469002\pi\)
\(308\) −2.29941 3.98269i −0.131021 0.226935i
\(309\) −16.0727 + 11.7574i −0.914345 + 0.668856i
\(310\) 1.19214 1.12114i 0.0677088 0.0636764i
\(311\) −0.381978 0.220535i −0.0216600 0.0125054i 0.489131 0.872210i \(-0.337314\pi\)
−0.510791 + 0.859705i \(0.670647\pi\)
\(312\) −8.76131 + 6.40901i −0.496011 + 0.362839i
\(313\) 11.5561 6.67194i 0.653192 0.377121i −0.136486 0.990642i \(-0.543581\pi\)
0.789678 + 0.613521i \(0.210248\pi\)
\(314\) 3.92610i 0.221563i
\(315\) −2.17374 + 1.98295i −0.122477 + 0.111727i
\(316\) 0.127442i 0.00716917i
\(317\) −2.12441 + 1.22653i −0.119319 + 0.0688887i −0.558472 0.829524i \(-0.688612\pi\)
0.439153 + 0.898412i \(0.355279\pi\)
\(318\) −7.62395 + 0.826337i −0.427530 + 0.0463387i
\(319\) 2.73231 4.73250i 0.152980 0.264969i
\(320\) −0.254546 0.146962i −0.0142296 0.00821544i
\(321\) 10.2398 23.2014i 0.571531 1.29498i
\(322\) 13.7147 7.91819i 0.764291 0.441263i
\(323\) −3.19168 −0.177590
\(324\) 7.34922 + 5.19509i 0.408290 + 0.288616i
\(325\) 30.7949i 1.70819i
\(326\) −19.8074 + 11.4358i −1.09703 + 0.633371i
\(327\) 19.2050 + 8.47601i 1.06204 + 0.468725i
\(328\) 2.34091 4.05457i 0.129255 0.223876i
\(329\) 7.32333 + 4.22813i 0.403748 + 0.233104i
\(330\) 0.0756051 + 0.697547i 0.00416192 + 0.0383987i
\(331\) 27.7580 16.0261i 1.52572 0.880874i 0.526183 0.850371i \(-0.323623\pi\)
0.999535 0.0305023i \(-0.00971069\pi\)
\(332\) −11.6861 −0.641356
\(333\) −13.0243 + 11.8811i −0.713728 + 0.651083i
\(334\) 21.9921i 1.20335i
\(335\) −2.09484 + 1.20945i −0.114453 + 0.0660795i
\(336\) −4.66470 + 3.41229i −0.254480 + 0.186156i
\(337\) −7.39401 4.26893i −0.402777 0.232544i 0.284904 0.958556i \(-0.408038\pi\)
−0.687682 + 0.726012i \(0.741372\pi\)
\(338\) 22.7580 + 13.1393i 1.23787 + 0.714685i
\(339\) 8.30415 + 11.3520i 0.451019 + 0.616556i
\(340\) −0.363772 + 0.210024i −0.0197283 + 0.0113901i
\(341\) −7.34762 2.21249i −0.397896 0.119813i
\(342\) 6.38544 + 2.02902i 0.345285 + 0.109717i
\(343\) 9.56210 0.516305
\(344\) 2.43849 + 4.22359i 0.131475 + 0.227721i
\(345\) −2.40206 + 0.260352i −0.129322 + 0.0140169i
\(346\) 0.535988 0.928358i 0.0288149 0.0499089i
\(347\) −14.3256 + 24.8126i −0.769038 + 1.33201i 0.169048 + 0.985608i \(0.445931\pi\)
−0.938085 + 0.346404i \(0.887403\pi\)
\(348\) −6.28293 2.77294i −0.336800 0.148645i
\(349\) 7.25810 + 12.5714i 0.388517 + 0.672932i 0.992250 0.124255i \(-0.0396540\pi\)
−0.603733 + 0.797187i \(0.706321\pi\)
\(350\) 16.3958i 0.876394i
\(351\) 6.46029 31.9185i 0.344825 1.70368i
\(352\) 1.37820i 0.0734584i
\(353\) −7.04069 12.1948i −0.374738 0.649066i 0.615550 0.788098i \(-0.288934\pi\)
−0.990288 + 0.139032i \(0.955601\pi\)
\(354\) 19.3201 + 8.52683i 1.02685 + 0.453196i
\(355\) −0.519545 + 0.899879i −0.0275746 + 0.0477606i
\(356\) 0.159462 0.276196i 0.00845147 0.0146384i
\(357\) 0.890014 + 8.21144i 0.0471045 + 0.434596i
\(358\) −11.6735 + 6.73969i −0.616963 + 0.356204i
\(359\) 6.25093i 0.329912i −0.986301 0.164956i \(-0.947252\pi\)
0.986301 0.164956i \(-0.0527482\pi\)
\(360\) 0.861297 0.188926i 0.0453943 0.00995729i
\(361\) −14.0121 −0.737481
\(362\) −4.08758 7.07990i −0.214839 0.372111i
\(363\) −12.7221 + 9.30638i −0.667737 + 0.488458i
\(364\) 18.1110 + 10.4564i 0.949273 + 0.548063i
\(365\) −1.01859 + 1.76425i −0.0533155 + 0.0923451i
\(366\) −4.42812 + 3.23923i −0.231462 + 0.169317i
\(367\) 22.2113 12.8237i 1.15942 0.669391i 0.208255 0.978075i \(-0.433222\pi\)
0.951165 + 0.308683i \(0.0998883\pi\)
\(368\) −4.74595 −0.247400
\(369\) 3.00933 + 13.7193i 0.156660 + 0.714196i
\(370\) 1.72723i 0.0897947i
\(371\) 7.38683 + 12.7944i 0.383505 + 0.664250i
\(372\) −1.76932 + 9.47995i −0.0917350 + 0.491513i
\(373\) −9.26487 + 16.0472i −0.479717 + 0.830893i −0.999729 0.0232650i \(-0.992594\pi\)
0.520013 + 0.854158i \(0.325927\pi\)
\(374\) 1.70571 + 0.984794i 0.0882003 + 0.0509225i
\(375\) −2.03780 + 4.61725i −0.105232 + 0.238434i
\(376\) −1.26711 2.19470i −0.0653463 0.113183i
\(377\) 24.8499i 1.27984i
\(378\) 3.43959 16.9940i 0.176913 0.874079i
\(379\) 0.535526 0.0275081 0.0137541 0.999905i \(-0.495622\pi\)
0.0137541 + 0.999905i \(0.495622\pi\)
\(380\) 0.568491 0.328219i 0.0291630 0.0168373i
\(381\) 7.30503 16.5518i 0.374248 0.847972i
\(382\) 4.32284 7.48738i 0.221176 0.383087i
\(383\) −11.8298 + 20.4897i −0.604472 + 1.04698i 0.387662 + 0.921801i \(0.373283\pi\)
−0.992135 + 0.125175i \(0.960051\pi\)
\(384\) 1.72197 0.186639i 0.0878737 0.00952437i
\(385\) 1.17061 0.675852i 0.0596598 0.0344446i
\(386\) 10.7466i 0.546988i
\(387\) −13.9439 4.43078i −0.708808 0.225229i
\(388\) 8.66962 0.440133
\(389\) 5.19506 + 8.99811i 0.263400 + 0.456222i 0.967143 0.254232i \(-0.0818227\pi\)
−0.703743 + 0.710455i \(0.748489\pi\)
\(390\) −1.88377 2.57516i −0.0953882 0.130398i
\(391\) −3.39121 + 5.87376i −0.171501 + 0.297049i
\(392\) 3.58047 + 2.06718i 0.180841 + 0.104409i
\(393\) 21.5147 + 29.4112i 1.08527 + 1.48360i
\(394\) 20.6931 11.9472i 1.04250 0.601890i
\(395\) −0.0374583 −0.00188473
\(396\) −2.78648 3.05459i −0.140026 0.153499i
\(397\) 26.0302 1.30642 0.653208 0.757179i \(-0.273423\pi\)
0.653208 + 0.757179i \(0.273423\pi\)
\(398\) −11.3395 19.6406i −0.568399 0.984496i
\(399\) −1.39089 12.8326i −0.0696314 0.642433i
\(400\) −2.45680 + 4.25531i −0.122840 + 0.212765i
\(401\) 9.53749 16.5194i 0.476279 0.824940i −0.523351 0.852117i \(-0.675318\pi\)
0.999631 + 0.0271769i \(0.00865173\pi\)
\(402\) 5.75542 13.0406i 0.287054 0.650408i
\(403\) 33.9668 7.99318i 1.69201 0.398169i
\(404\) 10.0649i 0.500748i
\(405\) −1.52697 + 2.16012i −0.0758755 + 0.107337i
\(406\) 13.2306i 0.656623i
\(407\) 7.01389 4.04947i 0.347666 0.200725i
\(408\) 0.999439 2.26453i 0.0494796 0.112111i
\(409\) −19.6873 11.3665i −0.973475 0.562036i −0.0731812 0.997319i \(-0.523315\pi\)
−0.900294 + 0.435283i \(0.856648\pi\)
\(410\) 1.19174 + 0.688050i 0.0588557 + 0.0339804i
\(411\) 3.91372 + 36.1088i 0.193050 + 1.78112i
\(412\) −5.74869 9.95702i −0.283218 0.490547i
\(413\) 40.6843i 2.00194i
\(414\) 10.5187 9.59546i 0.516967 0.471591i
\(415\) 3.43482i 0.168609i
\(416\) −3.13363 5.42761i −0.153639 0.266111i
\(417\) −0.575350 0.786521i −0.0281750 0.0385161i
\(418\) −2.66564 1.53901i −0.130381 0.0752752i
\(419\) −7.14939 4.12770i −0.349271 0.201651i 0.315093 0.949061i \(-0.397964\pi\)
−0.664364 + 0.747409i \(0.731297\pi\)
\(420\) −1.00296 1.37107i −0.0489392 0.0669013i
\(421\) −15.4287 26.7232i −0.751947 1.30241i −0.946878 0.321593i \(-0.895782\pi\)
0.194931 0.980817i \(-0.437552\pi\)
\(422\) 3.05214i 0.148576i
\(423\) 7.24567 + 2.30237i 0.352297 + 0.111945i
\(424\) 4.42747i 0.215017i
\(425\) 3.51102 + 6.08126i 0.170309 + 0.294984i
\(426\) −0.659811 6.08754i −0.0319679 0.294942i
\(427\) 9.15362 + 5.28484i 0.442974 + 0.255751i
\(428\) 12.6803 + 7.32097i 0.612925 + 0.353872i
\(429\) −6.04067 + 13.6870i −0.291646 + 0.660813i
\(430\) −1.24142 + 0.716732i −0.0598664 + 0.0345639i
\(431\) 5.66394i 0.272822i 0.990652 + 0.136411i \(0.0435568\pi\)
−0.990652 + 0.136411i \(0.956443\pi\)
\(432\) −3.43914 + 3.89517i −0.165466 + 0.187406i
\(433\) 29.3320i 1.40961i −0.709402 0.704804i \(-0.751035\pi\)
0.709402 0.704804i \(-0.248965\pi\)
\(434\) 18.0846 4.25573i 0.868090 0.204282i
\(435\) 0.815036 1.84671i 0.0390780 0.0885429i
\(436\) −6.05993 + 10.4961i −0.290218 + 0.502672i
\(437\) 5.29969 9.17933i 0.253518 0.439107i
\(438\) −1.29359 11.9349i −0.0618100 0.570271i
\(439\) 2.68122 + 4.64400i 0.127967 + 0.221646i 0.922889 0.385066i \(-0.125821\pi\)
−0.794922 + 0.606712i \(0.792488\pi\)
\(440\) −0.405088 −0.0193118
\(441\) −12.1151 + 2.65745i −0.576908 + 0.126545i
\(442\) −8.95654 −0.426019
\(443\) −4.39838 + 2.53941i −0.208973 + 0.120651i −0.600834 0.799374i \(-0.705165\pi\)
0.391861 + 0.920025i \(0.371831\pi\)
\(444\) −6.00936 8.21497i −0.285192 0.389865i
\(445\) 0.0811809 + 0.0468698i 0.00384835 + 0.00222184i
\(446\) −3.89609 + 6.74823i −0.184485 + 0.319538i
\(447\) −11.3860 15.5650i −0.538540 0.736200i
\(448\) −1.66841 2.88977i −0.0788250 0.136529i
\(449\) 3.68408 0.173862 0.0869312 0.996214i \(-0.472294\pi\)
0.0869312 + 0.996214i \(0.472294\pi\)
\(450\) −3.15832 14.3985i −0.148885 0.678752i
\(451\) 6.45249i 0.303836i
\(452\) −7.03255 + 4.06024i −0.330783 + 0.190978i
\(453\) 15.6496 1.69621i 0.735282 0.0796950i
\(454\) 12.7856 22.1452i 0.600056 1.03933i
\(455\) −3.07339 + 5.32326i −0.144083 + 0.249558i
\(456\) −1.56189 + 3.53894i −0.0731423 + 0.165726i
\(457\) −14.4300 + 8.33114i −0.675005 + 0.389714i −0.797971 0.602696i \(-0.794093\pi\)
0.122965 + 0.992411i \(0.460760\pi\)
\(458\) −25.1664 −1.17595
\(459\) 2.36336 + 7.03969i 0.110312 + 0.328585i
\(460\) 1.39495i 0.0650399i
\(461\) 13.2402 + 22.9327i 0.616657 + 1.06808i 0.990091 + 0.140425i \(0.0448467\pi\)
−0.373434 + 0.927657i \(0.621820\pi\)
\(462\) −3.21618 + 7.28721i −0.149630 + 0.339032i
\(463\) 18.8968 + 10.9100i 0.878207 + 0.507033i 0.870067 0.492934i \(-0.164076\pi\)
0.00813989 + 0.999967i \(0.497409\pi\)
\(464\) 1.98252 3.43382i 0.0920360 0.159411i
\(465\) −2.78639 0.520047i −0.129216 0.0241166i
\(466\) 10.8431 + 18.7809i 0.502299 + 0.870007i
\(467\) 30.5580i 1.41405i 0.707186 + 0.707027i \(0.249964\pi\)
−0.707186 + 0.707027i \(0.750036\pi\)
\(468\) 17.9189 + 5.69387i 0.828302 + 0.263199i
\(469\) −27.4610 −1.26803
\(470\) 0.645077 0.372436i 0.0297552 0.0171792i
\(471\) 5.48848 4.01490i 0.252896 0.184997i
\(472\) −6.09626 + 10.5590i −0.280603 + 0.486019i
\(473\) 5.82096 + 3.36073i 0.267648 + 0.154527i
\(474\) 0.178157 0.130324i 0.00818302 0.00598599i
\(475\) −5.48691 9.50360i −0.251757 0.436055i
\(476\) −4.76865 −0.218571
\(477\) 8.95155 + 9.81285i 0.409863 + 0.449299i
\(478\) 11.4585i 0.524099i
\(479\) −35.9776 + 20.7717i −1.64386 + 0.949082i −0.664415 + 0.747364i \(0.731319\pi\)
−0.979444 + 0.201718i \(0.935347\pi\)
\(480\) 0.0548577 + 0.506128i 0.00250390 + 0.0231015i
\(481\) −18.4147 + 31.8951i −0.839636 + 1.45429i
\(482\) −6.07329 + 10.5193i −0.276631 + 0.479139i
\(483\) −25.0941 11.0752i −1.14182 0.503937i
\(484\) −4.55028 7.88131i −0.206831 0.358242i
\(485\) 2.54822i 0.115709i
\(486\) −0.252974 15.5864i −0.0114751 0.707014i
\(487\) 3.72421i 0.168760i −0.996434 0.0843799i \(-0.973109\pi\)
0.996434 0.0843799i \(-0.0268909\pi\)
\(488\) −1.58380 2.74322i −0.0716951 0.124180i
\(489\) 36.2420 + 15.9952i 1.63892 + 0.723330i
\(490\) −0.607596 + 1.05239i −0.0274484 + 0.0475420i
\(491\) −18.8663 + 32.6774i −0.851425 + 1.47471i 0.0284970 + 0.999594i \(0.490928\pi\)
−0.879922 + 0.475118i \(0.842405\pi\)
\(492\) −8.06192 + 0.873808i −0.363459 + 0.0393943i
\(493\) −2.83321 4.90727i −0.127601 0.221012i
\(494\) 13.9970 0.629755
\(495\) 0.897819 0.819015i 0.0403539 0.0368120i
\(496\) −5.33131 1.60535i −0.239383 0.0720821i
\(497\) −10.2160 + 5.89821i −0.458250 + 0.264571i
\(498\) 11.9504 + 16.3365i 0.535508 + 0.732055i
\(499\) −33.2707 19.2088i −1.48940 0.859906i −0.489474 0.872018i \(-0.662811\pi\)
−0.999927 + 0.0121118i \(0.996145\pi\)
\(500\) −2.52347 1.45693i −0.112853 0.0651558i
\(501\) −30.7437 + 22.4895i −1.37353 + 1.00475i
\(502\) −22.0317 + 12.7200i −0.983322 + 0.567721i
\(503\) 15.6481i 0.697715i 0.937176 + 0.348857i \(0.113430\pi\)
−0.937176 + 0.348857i \(0.886570\pi\)
\(504\) 9.54039 + 3.03153i 0.424963 + 0.135035i
\(505\) −2.95833 −0.131644
\(506\) −5.66457 + 3.27044i −0.251821 + 0.145389i
\(507\) −4.90461 45.2509i −0.217821 2.00966i
\(508\) 9.04605 + 5.22274i 0.401354 + 0.231722i
\(509\) −0.896398 + 1.55261i −0.0397321 + 0.0688181i −0.885208 0.465196i \(-0.845984\pi\)
0.845475 + 0.534014i \(0.179317\pi\)
\(510\) 0.665601 + 0.293760i 0.0294733 + 0.0130079i
\(511\) −20.0289 + 11.5637i −0.886027 + 0.511548i
\(512\) 1.00000i 0.0441942i
\(513\) −3.69339 11.0014i −0.163067 0.485724i
\(514\) 7.04918 0.310926
\(515\) 2.92661 1.68968i 0.128962 0.0744563i
\(516\) 3.41071 7.72799i 0.150148 0.340206i
\(517\) −3.02475 1.74634i −0.133028 0.0768038i
\(518\) −9.80434 + 16.9816i −0.430778 + 0.746129i
\(519\) −1.84591 + 0.200072i −0.0810263 + 0.00878220i
\(520\) 1.59531 0.921052i 0.0699589 0.0403908i
\(521\) 22.3109i 0.977460i −0.872435 0.488730i \(-0.837460\pi\)
0.872435 0.488730i \(-0.162540\pi\)
\(522\) 2.54861 + 11.6189i 0.111550 + 0.508544i
\(523\) 18.7594i 0.820291i −0.912020 0.410146i \(-0.865478\pi\)
0.912020 0.410146i \(-0.134522\pi\)
\(524\) −18.2202 + 10.5194i −0.795953 + 0.459543i
\(525\) −22.9205 + 16.7666i −1.00033 + 0.731756i
\(526\) −2.71785 1.56915i −0.118504 0.0684182i
\(527\) −5.79632 + 5.45112i −0.252492 + 0.237455i
\(528\) 1.92665 1.40937i 0.0838468 0.0613351i
\(529\) 0.237987 + 0.412206i 0.0103473 + 0.0179220i
\(530\) 1.30134 0.0565267
\(531\) −7.83700 35.7282i −0.340097 1.55047i
\(532\) 7.45229 0.323098
\(533\) 14.6711 + 25.4111i 0.635475 + 1.10068i
\(534\) −0.549177 + 0.0595236i −0.0237652 + 0.00257584i
\(535\) −2.15181 + 3.72705i −0.0930310 + 0.161134i
\(536\) 7.12712 + 4.11484i 0.307845 + 0.177734i
\(537\) 21.3592 + 9.42679i 0.921719 + 0.406796i
\(538\) −22.7326 + 13.1247i −0.980072 + 0.565845i
\(539\) 5.69800 0.245430
\(540\) −1.14489 1.01085i −0.0492680 0.0435000i
\(541\) −35.2659 −1.51620 −0.758099 0.652140i \(-0.773872\pi\)
−0.758099 + 0.652140i \(0.773872\pi\)
\(542\) 13.2312 + 22.9172i 0.568331 + 0.984378i
\(543\) −5.71730 + 12.9543i −0.245353 + 0.555920i
\(544\) 1.23764 + 0.714549i 0.0530632 + 0.0306361i
\(545\) −3.08506 1.78116i −0.132150 0.0762966i
\(546\) −3.90313 36.0110i −0.167038 1.54113i
\(547\) −4.55764 7.89406i −0.194870 0.337526i 0.751988 0.659177i \(-0.229095\pi\)
−0.946858 + 0.321652i \(0.895762\pi\)
\(548\) −20.9695 −0.895774
\(549\) 9.05655 + 2.87779i 0.386524 + 0.122821i
\(550\) 6.77195i 0.288757i
\(551\) 4.42765 + 7.66892i 0.188624 + 0.326707i
\(552\) 4.85329 + 6.63458i 0.206570 + 0.282387i
\(553\) −0.368278 0.212625i −0.0156608 0.00904175i
\(554\) 2.09039 3.62066i 0.0888121 0.153827i
\(555\) 2.41458 1.76630i 0.102493 0.0749752i
\(556\) 0.487248 0.281313i 0.0206639 0.0119303i
\(557\) 24.5606 1.04067 0.520333 0.853963i \(-0.325808\pi\)
0.520333 + 0.853963i \(0.325808\pi\)
\(558\) 15.0618 7.22094i 0.637617 0.305687i
\(559\) −30.5653 −1.29278
\(560\) 0.849375 0.490387i 0.0358926 0.0207226i
\(561\) −0.367601 3.39156i −0.0155201 0.143192i
\(562\) 1.88475 3.26448i 0.0795033 0.137704i
\(563\) 16.2161 + 9.36237i 0.683427 + 0.394577i 0.801145 0.598470i \(-0.204225\pi\)
−0.117718 + 0.993047i \(0.537558\pi\)
\(564\) −1.77231 + 4.01570i −0.0746276 + 0.169091i
\(565\) −1.19341 2.06704i −0.0502070 0.0869610i
\(566\) 24.0773i 1.01205i
\(567\) −27.2741 + 12.5700i −1.14541 + 0.527891i
\(568\) 3.53523 0.148335
\(569\) 7.54534 + 13.0689i 0.316317 + 0.547877i 0.979717 0.200388i \(-0.0642203\pi\)
−0.663399 + 0.748265i \(0.730887\pi\)
\(570\) −1.04018 0.459079i −0.0435684 0.0192287i
\(571\) 27.7815 + 16.0396i 1.16262 + 0.671238i 0.951930 0.306315i \(-0.0990961\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(572\) −7.48035 4.31878i −0.312769 0.180577i
\(573\) −14.8876 + 1.61362i −0.621937 + 0.0674099i
\(574\) 7.81118 + 13.5294i 0.326032 + 0.564705i
\(575\) −23.3197 −0.972500
\(576\) −2.02182 2.21636i −0.0842426 0.0923482i
\(577\) 10.2648 0.427330 0.213665 0.976907i \(-0.431460\pi\)
0.213665 + 0.976907i \(0.431460\pi\)
\(578\) −12.9537 + 7.47884i −0.538804 + 0.311079i
\(579\) −15.0232 + 10.9897i −0.624343 + 0.456715i
\(580\) 1.00928 + 0.582710i 0.0419082 + 0.0241957i
\(581\) 19.4971 33.7700i 0.808877 1.40102i
\(582\) −8.86570 12.1197i −0.367495 0.502376i
\(583\) −3.05097 5.28444i −0.126358 0.218859i
\(584\) 6.93097 0.286805
\(585\) −1.67357 + 5.26681i −0.0691936 + 0.217756i
\(586\) −2.01910 −0.0834084
\(587\) −5.28104 9.14703i −0.217972 0.377539i 0.736216 0.676747i \(-0.236611\pi\)
−0.954188 + 0.299208i \(0.903277\pi\)
\(588\) −0.771633 7.11924i −0.0318216 0.293592i
\(589\) 9.05831 8.51885i 0.373241 0.351013i
\(590\) −3.10356 1.79184i −0.127772 0.0737690i
\(591\) −37.8626 16.7105i −1.55746 0.687377i
\(592\) 5.08916 2.93823i 0.209163 0.120760i
\(593\) 34.3728i 1.41152i −0.708449 0.705762i \(-0.750605\pi\)
0.708449 0.705762i \(-0.249395\pi\)
\(594\) −1.42065 + 7.01902i −0.0582900 + 0.287994i
\(595\) 1.40162i 0.0574609i
\(596\) 9.64250 5.56710i 0.394972 0.228037i
\(597\) −15.8606 + 35.9369i −0.649130 + 1.47080i
\(598\) 14.8721 25.7592i 0.608164 1.05337i
\(599\) −15.2292 8.79256i −0.622247 0.359254i 0.155496 0.987836i \(-0.450302\pi\)
−0.777743 + 0.628582i \(0.783636\pi\)
\(600\) 8.46107 0.917070i 0.345422 0.0374392i
\(601\) −10.3669 + 5.98532i −0.422874 + 0.244146i −0.696306 0.717745i \(-0.745174\pi\)
0.273432 + 0.961891i \(0.411841\pi\)
\(602\) −16.2736 −0.663262
\(603\) −24.1157 + 5.28980i −0.982068 + 0.215418i
\(604\) 9.08821i 0.369794i
\(605\) 2.31651 1.33744i 0.0941796 0.0543746i
\(606\) 14.0702 10.2925i 0.571563 0.418106i
\(607\) 4.78565 8.28899i 0.194244 0.336440i −0.752409 0.658696i \(-0.771108\pi\)
0.946652 + 0.322257i \(0.104441\pi\)
\(608\) −1.93414 1.11668i −0.0784397 0.0452872i
\(609\) 18.4957 13.5298i 0.749482 0.548256i
\(610\) 0.806299 0.465517i 0.0326461 0.0188482i
\(611\) 15.8827 0.642544
\(612\) −4.18773 + 0.918583i −0.169279 + 0.0371315i
\(613\) 5.64188i 0.227873i −0.993488 0.113937i \(-0.963654\pi\)
0.993488 0.113937i \(-0.0363461\pi\)
\(614\) 2.95072 1.70360i 0.119081 0.0687517i
\(615\) −0.256834 2.36960i −0.0103565 0.0955514i
\(616\) −3.98269 2.29941i −0.160467 0.0926457i
\(617\) 14.4337 + 8.33328i 0.581077 + 0.335485i 0.761561 0.648093i \(-0.224433\pi\)
−0.180484 + 0.983578i \(0.557766\pi\)
\(618\) −8.04068 + 18.2186i −0.323444 + 0.732859i
\(619\) 16.8361 9.72035i 0.676702 0.390694i −0.121909 0.992541i \(-0.538902\pi\)
0.798611 + 0.601847i \(0.205568\pi\)
\(620\) 0.471851 1.56700i 0.0189500 0.0629324i
\(621\) −24.1706 4.89212i −0.969931 0.196314i
\(622\) −0.441070 −0.0176853
\(623\) 0.532096 + 0.921618i 0.0213180 + 0.0369238i
\(624\) −4.38301 + 9.93102i −0.175461 + 0.397559i
\(625\) −11.8558 + 20.5348i −0.474232 + 0.821394i
\(626\) 6.67194 11.5561i 0.266664 0.461876i
\(627\) 0.574476 + 5.30023i 0.0229424 + 0.211671i
\(628\) 1.96305 + 3.40011i 0.0783343 + 0.135679i
\(629\) 8.39804i 0.334852i
\(630\) −0.891043 + 2.80416i −0.0355000 + 0.111720i
\(631\) 13.2263i 0.526531i 0.964723 + 0.263266i \(0.0847995\pi\)
−0.964723 + 0.263266i \(0.915200\pi\)
\(632\) 0.0637209 + 0.110368i 0.00253468 + 0.00439020i
\(633\) −4.26673 + 3.12117i −0.169587 + 0.124055i
\(634\) −1.22653 + 2.12441i −0.0487117 + 0.0843711i
\(635\) −1.53509 + 2.65886i −0.0609183 + 0.105514i
\(636\) −6.18936 + 4.52760i −0.245424 + 0.179531i
\(637\) −22.4397 + 12.9556i −0.889095 + 0.513319i
\(638\) 5.46462i 0.216346i
\(639\) −7.83533 + 7.14760i −0.309961 + 0.282755i
\(640\) −0.293925 −0.0116184
\(641\) −12.0787 20.9210i −0.477081 0.826328i 0.522574 0.852594i \(-0.324972\pi\)
−0.999655 + 0.0262654i \(0.991638\pi\)
\(642\) −2.73275 25.2129i −0.107853 0.995074i
\(643\) 25.9743 + 14.9962i 1.02432 + 0.591394i 0.915354 0.402651i \(-0.131911\pi\)
0.108971 + 0.994045i \(0.465244\pi\)
\(644\) 7.91819 13.7147i 0.312020 0.540435i
\(645\) 2.27145 + 1.00249i 0.0894381 + 0.0394731i
\(646\) −2.76408 + 1.59584i −0.108751 + 0.0627875i
\(647\) 4.16433 0.163717 0.0818584 0.996644i \(-0.473914\pi\)
0.0818584 + 0.996644i \(0.473914\pi\)
\(648\) 8.96216 + 0.824472i 0.352067 + 0.0323883i
\(649\) 16.8038i 0.659606i
\(650\) −15.3974 26.6692i −0.603938 1.04605i
\(651\) −24.4429 20.9294i −0.957994 0.820287i
\(652\) −11.4358 + 19.8074i −0.447861 + 0.775718i
\(653\) −33.7669 19.4953i −1.32140 0.762911i −0.337449 0.941344i \(-0.609564\pi\)
−0.983952 + 0.178432i \(0.942897\pi\)
\(654\) 20.8700 2.26204i 0.816081 0.0884526i
\(655\) −3.09192 5.35536i −0.120811 0.209251i
\(656\) 4.68181i 0.182794i
\(657\) −15.3615 + 14.0132i −0.599309 + 0.546706i
\(658\) 8.45625 0.329659
\(659\) 2.97069 1.71513i 0.115722 0.0668120i −0.441022 0.897496i \(-0.645384\pi\)
0.556744 + 0.830684i \(0.312051\pi\)
\(660\) 0.414249 + 0.566291i 0.0161246 + 0.0220428i
\(661\) 19.0019 32.9122i 0.739086 1.28014i −0.213821 0.976873i \(-0.568591\pi\)
0.952907 0.303262i \(-0.0980758\pi\)
\(662\) 16.0261 27.7580i 0.622872 1.07885i
\(663\) 9.15911 + 12.5208i 0.355710 + 0.486266i
\(664\) −10.1204 + 5.84303i −0.392748 + 0.226753i
\(665\) 2.19041i 0.0849406i
\(666\) −5.33882 + 16.8015i −0.206875 + 0.651046i
\(667\) 18.8178 0.728629
\(668\) −10.9960 19.0457i −0.425449 0.736900i
\(669\) 13.4179 1.45432i 0.518765 0.0562274i
\(670\) −1.20945 + 2.09484i −0.0467253 + 0.0809306i
\(671\) −3.78071 2.18279i −0.145953 0.0842657i
\(672\) −2.33360 + 5.28748i −0.0900206 + 0.203969i
\(673\) 13.6337 7.87140i 0.525539 0.303420i −0.213659 0.976908i \(-0.568538\pi\)
0.739198 + 0.673488i \(0.235205\pi\)
\(674\) −8.53787 −0.328866
\(675\) −16.8986 + 19.1393i −0.650427 + 0.736673i
\(676\) 26.2786 1.01072
\(677\) 15.8422 + 27.4395i 0.608866 + 1.05459i 0.991428 + 0.130656i \(0.0417084\pi\)
−0.382562 + 0.923930i \(0.624958\pi\)
\(678\) 12.8676 + 5.67905i 0.494177 + 0.218103i
\(679\) −14.4645 + 25.0532i −0.555096 + 0.961454i
\(680\) −0.210024 + 0.363772i −0.00805404 + 0.0139500i
\(681\) −44.0326 + 4.77256i −1.68733 + 0.182885i
\(682\) −7.46948 + 1.75774i −0.286021 + 0.0673073i
\(683\) 37.7952i 1.44619i 0.690748 + 0.723096i \(0.257282\pi\)
−0.690748 + 0.723096i \(0.742718\pi\)
\(684\) 6.54446 1.43553i 0.250234 0.0548890i
\(685\) 6.16346i 0.235494i
\(686\) 8.28102 4.78105i 0.316171 0.182541i
\(687\) 25.7356 + 35.1813i 0.981874 + 1.34225i
\(688\) 4.22359 + 2.43849i 0.161023 + 0.0929665i
\(689\) 24.0306 + 13.8741i 0.915492 + 0.528560i
\(690\) −1.95007 + 1.42650i −0.0742378 + 0.0543059i
\(691\) 10.1505 + 17.5812i 0.386143 + 0.668820i 0.991927 0.126809i \(-0.0404737\pi\)
−0.605784 + 0.795629i \(0.707140\pi\)
\(692\) 1.07198i 0.0407504i
\(693\) 13.4761 2.95598i 0.511913 0.112289i
\(694\) 28.6512i 1.08758i
\(695\) 0.0826848 + 0.143214i 0.00313641 + 0.00543242i
\(696\) −6.82765 + 0.740028i −0.258801 + 0.0280507i
\(697\) −5.79438 3.34539i −0.219478 0.126716i
\(698\) 12.5714 + 7.25810i 0.475835 + 0.274723i
\(699\) 15.1663 34.3638i 0.573641 1.29976i
\(700\) −8.19791 14.1992i −0.309852 0.536679i
\(701\) 2.14125i 0.0808740i −0.999182 0.0404370i \(-0.987125\pi\)
0.999182 0.0404370i \(-0.0128750\pi\)
\(702\) −10.3644 30.8723i −0.391181 1.16520i
\(703\) 13.1242i 0.494988i
\(704\) 0.689101 + 1.19356i 0.0259715 + 0.0449839i
\(705\) −1.18031 0.520925i −0.0444531 0.0196192i
\(706\) −12.1948 7.04069i −0.458959 0.264980i
\(707\) −29.0853 16.7924i −1.09387 0.631543i
\(708\) 20.9951 2.27560i 0.789045 0.0855222i
\(709\) 17.5298 10.1208i 0.658346 0.380096i −0.133301 0.991076i \(-0.542558\pi\)
0.791646 + 0.610980i \(0.209224\pi\)
\(710\) 1.03909i 0.0389964i
\(711\) −0.364373 0.115782i −0.0136650 0.00434217i
\(712\) 0.318924i 0.0119522i
\(713\) −6.05291 25.7217i −0.226683 0.963286i
\(714\) 4.87650 + 6.66631i 0.182498 + 0.249480i
\(715\) 1.26940 2.19866i 0.0474727 0.0822252i
\(716\) −6.73969 + 11.6735i −0.251874 + 0.436259i
\(717\) 16.0184 11.7176i 0.598216 0.437603i
\(718\) −3.12547 5.41347i −0.116641 0.202029i
\(719\) 44.8856 1.67395 0.836975 0.547241i \(-0.184322\pi\)
0.836975 + 0.547241i \(0.184322\pi\)
\(720\) 0.651442 0.594263i 0.0242778 0.0221469i
\(721\) 38.3647 1.42878
\(722\) −12.1349 + 7.00607i −0.451613 + 0.260739i
\(723\) 20.9160 2.26702i 0.777874 0.0843115i
\(724\) −7.07990 4.08758i −0.263123 0.151914i
\(725\) 9.74131 16.8724i 0.361783 0.626627i
\(726\) −6.36447 + 14.4206i −0.236207 + 0.535199i
\(727\) 15.3725 + 26.6259i 0.570134 + 0.987501i 0.996552 + 0.0829745i \(0.0264420\pi\)
−0.426418 + 0.904526i \(0.640225\pi\)
\(728\) 20.9127 0.775078
\(729\) −21.5303 + 16.2926i −0.797417 + 0.603428i
\(730\) 2.03718i 0.0753995i
\(731\) 6.03592 3.48484i 0.223247 0.128892i
\(732\) −2.21525 + 5.01932i −0.0818781 + 0.185519i
\(733\) −10.5832 + 18.3306i −0.390899 + 0.677057i −0.992568 0.121688i \(-0.961169\pi\)
0.601669 + 0.798745i \(0.294503\pi\)
\(734\) 12.8237 22.2113i 0.473331 0.819833i
\(735\) 2.09252 0.226802i 0.0771838 0.00836572i
\(736\) −4.11011 + 2.37297i −0.151501 + 0.0874690i
\(737\) 11.3422 0.417794
\(738\) 9.46579 + 10.3766i 0.348441 + 0.381967i
\(739\) 35.9785i 1.32349i 0.749728 + 0.661746i \(0.230184\pi\)
−0.749728 + 0.661746i \(0.769816\pi\)
\(740\) 0.863617 + 1.49583i 0.0317472 + 0.0549878i
\(741\) −14.3136 19.5671i −0.525823 0.718815i
\(742\) 12.7944 + 7.38683i 0.469696 + 0.271179i
\(743\) 15.0852 26.1284i 0.553424 0.958558i −0.444600 0.895729i \(-0.646654\pi\)
0.998024 0.0628294i \(-0.0200124\pi\)
\(744\) 3.20770 + 9.09454i 0.117600 + 0.333422i
\(745\) 1.63631 + 2.83417i 0.0599497 + 0.103836i
\(746\) 18.5297i 0.678422i
\(747\) 10.6169 33.4119i 0.388452 1.22248i
\(748\) 1.96959 0.0720153
\(749\) −42.3118 + 24.4288i −1.54604 + 0.892607i
\(750\) 0.543838 + 5.01756i 0.0198582 + 0.183215i
\(751\) −18.7657 + 32.5031i −0.684770 + 1.18606i 0.288740 + 0.957408i \(0.406764\pi\)
−0.973509 + 0.228648i \(0.926570\pi\)
\(752\) −2.19470 1.26711i −0.0800326 0.0462068i
\(753\) 40.3118 + 17.7914i 1.46904 + 0.648356i
\(754\) 12.4250 + 21.5207i 0.452490 + 0.783736i
\(755\) −2.67125 −0.0972167
\(756\) −5.51824 16.4371i −0.200697 0.597810i
\(757\) 10.9984i 0.399742i −0.979822 0.199871i \(-0.935948\pi\)
0.979822 0.199871i \(-0.0640524\pi\)
\(758\) 0.463779 0.267763i 0.0168452 0.00972559i
\(759\) 10.3646 + 4.57436i 0.376210 + 0.166039i
\(760\) 0.328219 0.568491i 0.0119057 0.0206213i
\(761\) 2.04875 3.54853i 0.0742670 0.128634i −0.826500 0.562936i \(-0.809672\pi\)
0.900767 + 0.434302i \(0.143005\pi\)
\(762\) −1.94953 17.9868i −0.0706240 0.651591i
\(763\) −20.2209 35.0236i −0.732046 1.26794i
\(764\) 8.64568i 0.312790i
\(765\) −0.269994 1.23088i −0.00976166 0.0445025i
\(766\) 23.6595i 0.854853i
\(767\) −38.2069 66.1763i −1.37957 2.38949i
\(768\) 1.39795 1.02262i 0.0504441 0.0369005i
\(769\) 21.8654 37.8720i 0.788487 1.36570i −0.138406 0.990376i \(-0.544198\pi\)
0.926893 0.375325i \(-0.122469\pi\)
\(770\) 0.675852 1.17061i 0.0243560 0.0421859i
\(771\) −7.20861 9.85438i −0.259612 0.354897i
\(772\) −5.37331 9.30684i −0.193390 0.334961i
\(773\) −9.88211 −0.355435 −0.177717 0.984082i \(-0.556871\pi\)
−0.177717 + 0.984082i \(0.556871\pi\)
\(774\) −14.2912 + 3.13478i −0.513685 + 0.112677i
\(775\) −26.1960 7.88804i −0.940987 0.283347i
\(776\) 7.50811 4.33481i 0.269526 0.155611i
\(777\) 33.7655 3.65974i 1.21133 0.131292i
\(778\) 8.99811 + 5.19506i 0.322598 + 0.186252i
\(779\) 9.05528 + 5.22807i 0.324439 + 0.187315i
\(780\) −2.91897 1.28827i −0.104516 0.0461276i
\(781\) 4.21950 2.43613i 0.150986 0.0871716i
\(782\) 6.78243i 0.242539i
\(783\) 13.6363 15.4445i 0.487321 0.551940i
\(784\) 4.13437 0.147656
\(785\) −0.999375 + 0.576989i −0.0356692 + 0.0205936i
\(786\) 33.3379 + 14.7135i 1.18912 + 0.524813i
\(787\) 32.4294 + 18.7231i 1.15598 + 0.667407i 0.950338 0.311220i \(-0.100738\pi\)
0.205645 + 0.978627i \(0.434071\pi\)
\(788\) 11.9472 20.6931i 0.425600 0.737161i
\(789\) 0.585728 + 5.40405i 0.0208525 + 0.192389i
\(790\) −0.0324398 + 0.0187292i −0.00115416 + 0.000666353i
\(791\) 27.0966i 0.963444i
\(792\) −3.94046 1.25211i −0.140018 0.0444918i
\(793\) 19.8521 0.704970
\(794\) 22.5428 13.0151i 0.800013 0.461888i
\(795\) −1.33077 1.81921i −0.0471977 0.0645206i
\(796\) −19.6406 11.3395i −0.696144 0.401919i
\(797\) 1.19124 2.06329i 0.0421959 0.0730854i −0.844156 0.536097i \(-0.819898\pi\)
0.886352 + 0.463012i \(0.153231\pi\)
\(798\) −7.62084 10.4179i −0.269775 0.368790i
\(799\) −3.13645 + 1.81083i −0.110960 + 0.0640625i
\(800\) 4.91361i 0.173722i
\(801\) 0.644808 + 0.706850i 0.0227832 + 0.0249753i
\(802\) 19.0750i 0.673561i
\(803\) 8.27251 4.77614i 0.291931 0.168546i
\(804\) −1.53598 14.1712i −0.0541698 0.499781i
\(805\) 4.03109 + 2.32735i 0.142077 + 0.0820283i
\(806\) 25.4196 23.9057i 0.895366 0.842043i
\(807\) 41.5943 + 18.3575i 1.46419 + 0.646213i
\(808\) 5.03246 + 8.71647i 0.177041 + 0.306644i
\(809\) 45.3221 1.59344 0.796720 0.604348i \(-0.206566\pi\)
0.796720 + 0.604348i \(0.206566\pi\)
\(810\) −0.242333 + 2.63420i −0.00851470 + 0.0925563i
\(811\) 46.5573 1.63485 0.817424 0.576036i \(-0.195401\pi\)
0.817424 + 0.576036i \(0.195401\pi\)
\(812\) 6.61530 + 11.4580i 0.232151 + 0.402098i
\(813\) 18.5065 41.9321i 0.649052 1.47062i
\(814\) 4.04947 7.01389i 0.141934 0.245837i
\(815\) −5.82188 3.36127i −0.203932 0.117740i
\(816\) −0.266725 2.46086i −0.00933725 0.0861473i
\(817\) −9.43276 + 5.44600i −0.330010 + 0.190532i
\(818\) −22.7330 −0.794839
\(819\) −46.3501 + 42.2818i −1.61960 + 1.47745i
\(820\) 1.37610 0.0480555
\(821\) 17.3795 + 30.1022i 0.606549 + 1.05057i 0.991805 + 0.127764i \(0.0407799\pi\)
−0.385256 + 0.922810i \(0.625887\pi\)
\(822\) 21.4438 + 29.3143i 0.747938 + 1.02245i
\(823\) 4.87079 + 2.81215i 0.169785 + 0.0980255i 0.582485 0.812842i \(-0.302081\pi\)
−0.412699 + 0.910867i \(0.635414\pi\)
\(824\) −9.95702 5.74869i −0.346869 0.200265i
\(825\) 9.46682 6.92511i 0.329592 0.241101i
\(826\) −20.3421 35.2336i −0.707793 1.22593i
\(827\) 16.8515 0.585985 0.292992 0.956115i \(-0.405349\pi\)
0.292992 + 0.956115i \(0.405349\pi\)
\(828\) 4.31174 13.5693i 0.149843 0.471565i
\(829\) 11.5377i 0.400722i 0.979722 + 0.200361i \(0.0642115\pi\)
−0.979722 + 0.200361i \(0.935788\pi\)
\(830\) −1.71741 2.97464i −0.0596122 0.103251i
\(831\) −7.19916 + 0.780295i −0.249736 + 0.0270681i
\(832\) −5.42761 3.13363i −0.188169 0.108639i
\(833\) 2.95421 5.11684i 0.102357 0.177288i
\(834\) −0.891528 0.393472i −0.0308711 0.0136248i
\(835\) 5.59800 3.23201i 0.193727 0.111848i
\(836\) −3.07801 −0.106455
\(837\) −25.4969 13.6713i −0.881303 0.472551i
\(838\) −8.25540 −0.285178
\(839\) 11.2407 6.48984i 0.388073 0.224054i −0.293252 0.956035i \(-0.594737\pi\)
0.681325 + 0.731981i \(0.261404\pi\)
\(840\) −1.55412 0.685903i −0.0536222 0.0236659i
\(841\) 6.63926 11.4995i 0.228940 0.396536i
\(842\) −26.7232 15.4287i −0.920943 0.531707i
\(843\) −6.49094 + 0.703534i −0.223560 + 0.0242310i
\(844\) −1.52607 2.64323i −0.0525295 0.0909837i
\(845\) 7.72394i 0.265712i
\(846\) 7.42612 1.62893i 0.255315 0.0560036i
\(847\) 30.3669 1.04342
\(848\) −2.21373 3.83430i −0.0760199 0.131670i
\(849\) −33.6588 + 24.6219i −1.15517 + 0.845021i
\(850\) 6.08126 + 3.51102i 0.208585 + 0.120427i
\(851\) 24.1529 + 13.9447i 0.827950 + 0.478017i
\(852\) −3.61518 4.94206i −0.123854 0.169312i
\(853\) −12.6319 21.8791i −0.432507 0.749125i 0.564581 0.825378i \(-0.309038\pi\)
−0.997089 + 0.0762528i \(0.975704\pi\)
\(854\) 10.5697 0.361687
\(855\) 0.421939 + 1.92358i 0.0144300 + 0.0657850i
\(856\) 14.6419 0.500451
\(857\) 35.3973 20.4366i 1.20915 0.698102i 0.246574 0.969124i \(-0.420695\pi\)
0.962573 + 0.271022i \(0.0873617\pi\)
\(858\) 1.61210 + 14.8736i 0.0550363 + 0.507776i
\(859\) −40.3209 23.2793i −1.37573 0.794278i −0.384088 0.923296i \(-0.625484\pi\)
−0.991642 + 0.129018i \(0.958817\pi\)
\(860\) −0.716732 + 1.24142i −0.0244404 + 0.0423319i
\(861\) 10.9255 24.7550i 0.372340 0.843647i
\(862\) 2.83197 + 4.90512i 0.0964573 + 0.167069i
\(863\) −43.0865 −1.46668 −0.733340 0.679862i \(-0.762040\pi\)
−0.733340 + 0.679862i \(0.762040\pi\)
\(864\) −1.03080 + 5.09288i −0.0350685 + 0.173263i
\(865\) 0.315080 0.0107130
\(866\) −14.6660 25.4023i −0.498372 0.863205i
\(867\) 23.7017 + 10.4606i 0.804952 + 0.355262i
\(868\) 13.5339 12.7279i 0.459370 0.432013i
\(869\) 0.152109 + 0.0878204i 0.00515996 + 0.00297910i
\(870\) −0.217513 2.00681i −0.00737437 0.0680374i
\(871\) −44.6676 + 25.7888i −1.51350 + 0.873821i
\(872\) 12.1199i 0.410430i
\(873\) −7.87644 + 24.7876i −0.266577 + 0.838932i
\(874\) 10.5994i 0.358529i
\(875\) 8.42037 4.86150i 0.284660 0.164349i
\(876\) −7.08772 9.68912i −0.239472 0.327365i
\(877\) 7.61307 13.1862i 0.257075 0.445267i −0.708382 0.705829i \(-0.750575\pi\)
0.965457 + 0.260562i \(0.0839079\pi\)
\(878\) 4.64400 + 2.68122i 0.156728 + 0.0904867i
\(879\) 2.06477 + 2.82260i 0.0696429 + 0.0952039i
\(880\) −0.350816 + 0.202544i −0.0118260 + 0.00682775i
\(881\) 20.5454 0.692193 0.346097 0.938199i \(-0.387507\pi\)
0.346097 + 0.938199i \(0.387507\pi\)
\(882\) −9.16323 + 8.35895i −0.308542 + 0.281461i
\(883\) 4.50248i 0.151520i −0.997126 0.0757602i \(-0.975862\pi\)
0.997126 0.0757602i \(-0.0241384\pi\)
\(884\) −7.75660 + 4.47827i −0.260883 + 0.150621i
\(885\) 0.668854 + 6.17098i 0.0224833 + 0.207435i
\(886\) −2.53941 + 4.39838i −0.0853131 + 0.147767i
\(887\) 43.5787 + 25.1602i 1.46323 + 0.844796i 0.999159 0.0410030i \(-0.0130553\pi\)
0.464070 + 0.885799i \(0.346389\pi\)
\(888\) −9.31175 4.10969i −0.312482 0.137912i
\(889\) −30.1850 + 17.4273i −1.01237 + 0.584494i
\(890\) 0.0937397 0.00314216
\(891\) 11.2650 5.19178i 0.377392 0.173931i
\(892\) 7.79218i 0.260901i
\(893\) 4.90154 2.82991i 0.164024 0.0946993i
\(894\) −17.6431 7.78669i −0.590073 0.260426i
\(895\) −3.43113 1.98096i −0.114690 0.0662162i
\(896\) −2.88977 1.66841i −0.0965405 0.0557377i
\(897\) −51.2184 + 5.55141i −1.71013 + 0.185356i
\(898\) 3.19051 1.84204i 0.106469 0.0614697i
\(899\) 21.1388 + 6.36525i 0.705019 + 0.212293i
\(900\) −9.93444 10.8903i −0.331148 0.363010i
\(901\) −6.32729 −0.210793
\(902\) −3.22624 5.58802i −0.107422 0.186061i
\(903\) 16.6417 + 22.7496i 0.553800 + 0.757060i
\(904\) −4.06024 + 7.03255i −0.135042 + 0.233899i
\(905\) 1.20144 2.08096i 0.0399373 0.0691734i
\(906\) 12.7048 9.29376i 0.422090 0.308764i
\(907\) 14.5490 + 25.1996i 0.483091 + 0.836739i 0.999811 0.0194158i \(-0.00618062\pi\)
−0.516720 + 0.856154i \(0.672847\pi\)
\(908\) 25.5711i 0.848607i
\(909\) −28.7769 9.14407i −0.954469 0.303290i
\(910\) 6.14677i 0.203763i
\(911\) −14.7040 25.4682i −0.487167 0.843798i 0.512724 0.858553i \(-0.328636\pi\)
−0.999891 + 0.0147557i \(0.995303\pi\)
\(912\) 0.416830 + 3.84576i 0.0138026 + 0.127346i
\(913\) −8.05288 + 13.9480i −0.266511 + 0.461611i
\(914\) −8.33114 + 14.4300i −0.275570 + 0.477301i
\(915\) −1.47530 0.651117i −0.0487720 0.0215253i
\(916\) −21.7948 + 12.5832i −0.720119 + 0.415761i
\(917\) 70.2029i 2.31830i
\(918\) 5.56658 + 4.91487i 0.183724 + 0.162215i
\(919\) 38.0198 1.25416 0.627079 0.778956i \(-0.284250\pi\)
0.627079 + 0.778956i \(0.284250\pi\)
\(920\) −0.697476 1.20806i −0.0229951 0.0398287i
\(921\) −5.39900 2.38282i −0.177903 0.0785166i
\(922\) 22.9327 + 13.2402i 0.755247 + 0.436042i
\(923\) −11.0781 + 19.1879i −0.364641 + 0.631576i
\(924\) 0.858317 + 7.91900i 0.0282365 + 0.260516i
\(925\) 25.0061 14.4373i 0.822197 0.474695i
\(926\) 21.8201 0.717053
\(927\) 33.6911 7.39018i 1.10656 0.242725i
\(928\) 3.96503i 0.130159i
\(929\) 23.9557 + 41.4925i 0.785961 + 1.36132i 0.928423 + 0.371524i \(0.121165\pi\)
−0.142462 + 0.989800i \(0.545502\pi\)
\(930\) −2.67311 + 0.942822i −0.0876547 + 0.0309163i
\(931\) −4.61675 + 7.99644i −0.151308 + 0.262073i
\(932\) 18.7809 + 10.8431i 0.615188 + 0.355179i
\(933\) 0.451045 + 0.616592i 0.0147666 + 0.0201863i
\(934\) 15.2790 + 26.4640i 0.499944 + 0.865928i
\(935\) 0.578910i 0.0189324i
\(936\) 18.3652 4.02842i 0.600284 0.131673i
\(937\) 28.2514 0.922933 0.461466 0.887158i \(-0.347324\pi\)
0.461466 + 0.887158i \(0.347324\pi\)
\(938\) −23.7819 + 13.7305i −0.776507 + 0.448316i
\(939\) −22.9777 + 2.49049i −0.749849 + 0.0812739i
\(940\) 0.372436 0.645077i 0.0121475 0.0210401i
\(941\) −13.3349 + 23.0967i −0.434706 + 0.752932i −0.997272 0.0738200i \(-0.976481\pi\)
0.562566 + 0.826753i \(0.309814\pi\)
\(942\) 2.74572 6.22125i 0.0894603 0.202699i
\(943\) 19.2428 11.1098i 0.626631 0.361786i
\(944\) 12.1925i 0.396833i
\(945\) 4.83126 1.62195i 0.157161 0.0527620i
\(946\) 6.72146 0.218534
\(947\) −2.00845 3.47874i −0.0652660 0.113044i 0.831546 0.555456i \(-0.187456\pi\)
−0.896812 + 0.442412i \(0.854123\pi\)
\(948\) 0.0891263 0.201943i 0.00289469 0.00655879i
\(949\) −21.7191 + 37.6186i −0.705032 + 1.22115i
\(950\) −9.50360 5.48691i −0.308338 0.178019i
\(951\) 4.22408 0.457836i 0.136975 0.0148463i
\(952\) −4.12977 + 2.38432i −0.133847 + 0.0772763i
\(953\) −24.6241 −0.797652 −0.398826 0.917027i \(-0.630582\pi\)
−0.398826 + 0.917027i \(0.630582\pi\)
\(954\) 12.6587 + 4.02240i 0.409840 + 0.130230i
\(955\) 2.54118 0.0822306
\(956\) 5.72924 + 9.92334i 0.185297 + 0.320944i
\(957\) −7.63924 + 5.58821i −0.246942 + 0.180641i
\(958\) −20.7717 + 35.9776i −0.671102 + 1.16238i
\(959\) 34.9858 60.5971i 1.12975 1.95678i
\(960\) 0.300572 + 0.410891i 0.00970093 + 0.0132614i
\(961\) 1.90106 30.9417i 0.0613244 0.998118i
\(962\) 36.8293i 1.18742i
\(963\) −32.4517 + 29.6034i −1.04574 + 0.953956i
\(964\) 12.1466i 0.391215i
\(965\) 2.73551 1.57935i 0.0880592 0.0508410i
\(966\) −27.2697 + 2.95568i −0.877388 + 0.0950975i
\(967\) −42.1430 24.3313i −1.35523 0.782441i −0.366251 0.930516i \(-0.619359\pi\)
−0.988976 + 0.148075i \(0.952692\pi\)
\(968\) −7.88131 4.55028i −0.253315 0.146252i
\(969\) 5.05749 + 2.23210i 0.162470 + 0.0717053i
\(970\) 1.27411 + 2.20682i 0.0409091 + 0.0708567i
\(971\) 4.27649i 0.137239i −0.997643 0.0686195i \(-0.978141\pi\)
0.997643 0.0686195i \(-0.0218594\pi\)
\(972\) −8.01228 13.3717i −0.256994 0.428899i
\(973\) 1.87738i 0.0601861i
\(974\) −1.86210 3.22526i −0.0596656 0.103344i
\(975\) −21.5364 + 48.7971i −0.689716 + 1.56276i
\(976\) −2.74322 1.58380i −0.0878082 0.0506961i
\(977\) −14.9563 8.63500i −0.478493 0.276258i 0.241295 0.970452i \(-0.422428\pi\)
−0.719788 + 0.694194i \(0.755761\pi\)
\(978\) 39.3842 4.26873i 1.25937 0.136499i
\(979\) −0.219771 0.380655i −0.00702391 0.0121658i
\(980\) 1.21519i 0.0388179i
\(981\) −24.5042 26.8619i −0.782359 0.857635i
\(982\) 37.7326i 1.20410i
\(983\) 19.2700 + 33.3765i 0.614616 + 1.06455i 0.990452 + 0.137860i \(0.0440224\pi\)
−0.375835 + 0.926686i \(0.622644\pi\)
\(984\) −6.54492 + 4.78770i −0.208645 + 0.152626i
\(985\) 6.08221 + 3.51157i 0.193795 + 0.111888i
\(986\) −4.90727 2.83321i −0.156279 0.0902278i
\(987\) −8.64750 11.8214i −0.275253 0.376279i
\(988\) 12.1218 6.99851i 0.385645 0.222652i
\(989\) 23.1459i 0.735996i
\(990\) 0.368026 1.15820i 0.0116966 0.0368099i
\(991\) 12.5111i 0.397430i 0.980057 + 0.198715i \(0.0636767\pi\)
−0.980057 + 0.198715i \(0.936323\pi\)
\(992\) −5.41972 + 1.27538i −0.172076 + 0.0404935i
\(993\) −55.1928 + 5.98218i −1.75149 + 0.189839i
\(994\) −5.89821 + 10.2160i −0.187080 + 0.324032i
\(995\) 3.33296 5.77286i 0.105662 0.183012i
\(996\) 18.5176 + 8.17263i 0.586751 + 0.258960i
\(997\) −4.35689 7.54636i −0.137984 0.238996i 0.788749 0.614715i \(-0.210729\pi\)
−0.926733 + 0.375719i \(0.877396\pi\)
\(998\) −38.4177 −1.21609
\(999\) 28.9472 9.71815i 0.915849 0.307469i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.q.a.185.18 64
3.2 odd 2 1674.2.q.a.557.3 64
9.2 odd 6 inner 558.2.q.a.371.31 yes 64
9.7 even 3 1674.2.q.a.1115.10 64
31.30 odd 2 inner 558.2.q.a.185.31 yes 64
93.92 even 2 1674.2.q.a.557.10 64
279.61 odd 6 1674.2.q.a.1115.3 64
279.92 even 6 inner 558.2.q.a.371.18 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.q.a.185.18 64 1.1 even 1 trivial
558.2.q.a.185.31 yes 64 31.30 odd 2 inner
558.2.q.a.371.18 yes 64 279.92 even 6 inner
558.2.q.a.371.31 yes 64 9.2 odd 6 inner
1674.2.q.a.557.3 64 3.2 odd 2
1674.2.q.a.557.10 64 93.92 even 2
1674.2.q.a.1115.3 64 279.61 odd 6
1674.2.q.a.1115.10 64 9.7 even 3