Properties

Label 558.2.q.a.185.15
Level $558$
Weight $2$
Character 558.185
Analytic conductor $4.456$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(185,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.185"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 185.15
Character \(\chi\) \(=\) 558.185
Dual form 558.2.q.a.371.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(1.71705 - 0.227499i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.92707 + 1.11259i) q^{5} +(-1.37326 + 1.05554i) q^{6} +(0.556441 + 0.963784i) q^{7} +1.00000i q^{8} +(2.89649 - 0.781251i) q^{9} -2.22519 q^{10} +(-0.510234 - 0.883751i) q^{11} +(0.661503 - 1.60075i) q^{12} +(2.77056 + 1.59958i) q^{13} +(-0.963784 - 0.556441i) q^{14} +(3.56198 + 1.47197i) q^{15} +(-0.500000 - 0.866025i) q^{16} -4.61929 q^{17} +(-2.11781 + 2.12483i) q^{18} +2.48701 q^{19} +(1.92707 - 1.11259i) q^{20} +(1.17469 + 1.52827i) q^{21} +(0.883751 + 0.510234i) q^{22} +(-1.93084 + 3.34431i) q^{23} +(0.227499 + 1.71705i) q^{24} +(-0.0242726 - 0.0420413i) q^{25} -3.19916 q^{26} +(4.79567 - 2.00039i) q^{27} +1.11288 q^{28} +(-2.06180 - 3.57113i) q^{29} +(-3.82075 + 0.506227i) q^{30} +(-4.17770 + 3.68060i) q^{31} +(0.866025 + 0.500000i) q^{32} +(-1.07715 - 1.40136i) q^{33} +(4.00043 - 2.30965i) q^{34} +2.47637i q^{35} +(0.771661 - 2.89906i) q^{36} -9.83752i q^{37} +(-2.15382 + 1.24351i) q^{38} +(5.12107 + 2.11626i) q^{39} +(-1.11259 + 1.92707i) q^{40} +(9.95860 + 5.74960i) q^{41} +(-1.78145 - 0.736175i) q^{42} +(5.89094 - 3.40113i) q^{43} -1.02047 q^{44} +(6.45095 + 1.71709i) q^{45} -3.86168i q^{46} +(-8.88791 + 5.13144i) q^{47} +(-1.05554 - 1.37326i) q^{48} +(2.88075 - 4.98960i) q^{49} +(0.0420413 + 0.0242726i) q^{50} +(-7.93154 + 1.05088i) q^{51} +(2.77056 - 1.59958i) q^{52} -9.85277 q^{53} +(-3.15298 + 4.13022i) q^{54} -2.27073i q^{55} +(-0.963784 + 0.556441i) q^{56} +(4.27031 - 0.565792i) q^{57} +(3.57113 + 2.06180i) q^{58} +(5.10909 + 2.94973i) q^{59} +(3.05575 - 2.34878i) q^{60} +(1.55017 - 0.894989i) q^{61} +(1.77769 - 5.27635i) q^{62} +(2.36468 + 2.35687i) q^{63} -1.00000 q^{64} +(3.55937 + 6.16501i) q^{65} +(1.63352 + 0.675042i) q^{66} +(-1.63010 + 2.82341i) q^{67} +(-2.30965 + 4.00043i) q^{68} +(-2.55451 + 6.18160i) q^{69} +(-1.23818 - 2.14460i) q^{70} +1.19637i q^{71} +(0.781251 + 2.89649i) q^{72} +6.14833i q^{73} +(4.91876 + 8.51955i) q^{74} +(-0.0512414 - 0.0666648i) q^{75} +(1.24351 - 2.15382i) q^{76} +(0.567830 - 0.983510i) q^{77} +(-5.49311 + 0.727805i) q^{78} +(2.18886 - 1.26374i) q^{79} -2.22519i q^{80} +(7.77929 - 4.52577i) q^{81} -11.4992 q^{82} +(-1.01481 - 1.75771i) q^{83} +(1.91087 - 0.253179i) q^{84} +(-8.90169 - 5.13940i) q^{85} +(-3.40113 + 5.89094i) q^{86} +(-4.35262 - 5.66274i) q^{87} +(0.883751 - 0.510234i) q^{88} -5.33213 q^{89} +(-6.44523 + 1.73843i) q^{90} +3.56029i q^{91} +(1.93084 + 3.34431i) q^{92} +(-6.33596 + 7.27018i) q^{93} +(5.13144 - 8.88791i) q^{94} +(4.79264 + 2.76703i) q^{95} +(1.60075 + 0.661503i) q^{96} +(1.06005 + 1.83605i) q^{97} +5.76149i q^{98} +(-2.16832 - 2.16115i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} + 12 q^{5} - 4 q^{7} - 4 q^{9} - 32 q^{16} + 8 q^{18} - 8 q^{19} + 12 q^{20} + 44 q^{25} - 8 q^{28} + 8 q^{31} - 36 q^{33} - 8 q^{36} + 36 q^{38} - 8 q^{39} + 24 q^{41} - 8 q^{45} - 48 q^{47}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/558\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(497\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 1.71705 0.227499i 0.991337 0.131346i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.92707 + 1.11259i 0.861811 + 0.497567i 0.864618 0.502429i \(-0.167560\pi\)
−0.00280731 + 0.999996i \(0.500894\pi\)
\(6\) −1.37326 + 1.05554i −0.560629 + 0.430923i
\(7\) 0.556441 + 0.963784i 0.210315 + 0.364276i 0.951813 0.306679i \(-0.0992178\pi\)
−0.741498 + 0.670955i \(0.765884\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.89649 0.781251i 0.965496 0.260417i
\(10\) −2.22519 −0.703666
\(11\) −0.510234 0.883751i −0.153841 0.266461i 0.778795 0.627278i \(-0.215831\pi\)
−0.932636 + 0.360817i \(0.882498\pi\)
\(12\) 0.661503 1.60075i 0.190959 0.462098i
\(13\) 2.77056 + 1.59958i 0.768414 + 0.443644i 0.832309 0.554313i \(-0.187019\pi\)
−0.0638944 + 0.997957i \(0.520352\pi\)
\(14\) −0.963784 0.556441i −0.257582 0.148715i
\(15\) 3.56198 + 1.47197i 0.919698 + 0.380060i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −4.61929 −1.12034 −0.560172 0.828377i \(-0.689265\pi\)
−0.560172 + 0.828377i \(0.689265\pi\)
\(18\) −2.11781 + 2.12483i −0.499172 + 0.500827i
\(19\) 2.48701 0.570560 0.285280 0.958444i \(-0.407913\pi\)
0.285280 + 0.958444i \(0.407913\pi\)
\(20\) 1.92707 1.11259i 0.430906 0.248783i
\(21\) 1.17469 + 1.52827i 0.256339 + 0.333496i
\(22\) 0.883751 + 0.510234i 0.188416 + 0.108782i
\(23\) −1.93084 + 3.34431i −0.402608 + 0.697338i −0.994040 0.109017i \(-0.965230\pi\)
0.591432 + 0.806355i \(0.298563\pi\)
\(24\) 0.227499 + 1.71705i 0.0464380 + 0.350490i
\(25\) −0.0242726 0.0420413i −0.00485451 0.00840826i
\(26\) −3.19916 −0.627408
\(27\) 4.79567 2.00039i 0.922927 0.384975i
\(28\) 1.11288 0.210315
\(29\) −2.06180 3.57113i −0.382866 0.663143i 0.608605 0.793473i \(-0.291730\pi\)
−0.991471 + 0.130330i \(0.958396\pi\)
\(30\) −3.82075 + 0.506227i −0.697570 + 0.0924239i
\(31\) −4.17770 + 3.68060i −0.750337 + 0.661056i
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −1.07715 1.40136i −0.187507 0.243946i
\(34\) 4.00043 2.30965i 0.686067 0.396101i
\(35\) 2.47637i 0.418583i
\(36\) 0.771661 2.89906i 0.128610 0.483176i
\(37\) 9.83752i 1.61728i −0.588304 0.808640i \(-0.700204\pi\)
0.588304 0.808640i \(-0.299796\pi\)
\(38\) −2.15382 + 1.24351i −0.349395 + 0.201723i
\(39\) 5.12107 + 2.11626i 0.820028 + 0.338872i
\(40\) −1.11259 + 1.92707i −0.175916 + 0.304696i
\(41\) 9.95860 + 5.74960i 1.55527 + 0.897937i 0.997698 + 0.0678092i \(0.0216009\pi\)
0.557574 + 0.830127i \(0.311732\pi\)
\(42\) −1.78145 0.736175i −0.274884 0.113594i
\(43\) 5.89094 3.40113i 0.898360 0.518668i 0.0216919 0.999765i \(-0.493095\pi\)
0.876668 + 0.481097i \(0.159761\pi\)
\(44\) −1.02047 −0.153841
\(45\) 6.45095 + 1.71709i 0.961650 + 0.255969i
\(46\) 3.86168i 0.569374i
\(47\) −8.88791 + 5.13144i −1.29644 + 0.748497i −0.979787 0.200046i \(-0.935891\pi\)
−0.316649 + 0.948543i \(0.602558\pi\)
\(48\) −1.05554 1.37326i −0.152354 0.198212i
\(49\) 2.88075 4.98960i 0.411535 0.712800i
\(50\) 0.0420413 + 0.0242726i 0.00594554 + 0.00343266i
\(51\) −7.93154 + 1.05088i −1.11064 + 0.147153i
\(52\) 2.77056 1.59958i 0.384207 0.221822i
\(53\) −9.85277 −1.35338 −0.676691 0.736267i \(-0.736587\pi\)
−0.676691 + 0.736267i \(0.736587\pi\)
\(54\) −3.15298 + 4.13022i −0.429066 + 0.562052i
\(55\) 2.27073i 0.306185i
\(56\) −0.963784 + 0.556441i −0.128791 + 0.0743575i
\(57\) 4.27031 0.565792i 0.565617 0.0749410i
\(58\) 3.57113 + 2.06180i 0.468913 + 0.270727i
\(59\) 5.10909 + 2.94973i 0.665146 + 0.384022i 0.794235 0.607611i \(-0.207872\pi\)
−0.129089 + 0.991633i \(0.541205\pi\)
\(60\) 3.05575 2.34878i 0.394496 0.303226i
\(61\) 1.55017 0.894989i 0.198478 0.114592i −0.397467 0.917616i \(-0.630111\pi\)
0.595946 + 0.803025i \(0.296777\pi\)
\(62\) 1.77769 5.27635i 0.225767 0.670096i
\(63\) 2.36468 + 2.35687i 0.297922 + 0.296938i
\(64\) −1.00000 −0.125000
\(65\) 3.55937 + 6.16501i 0.441485 + 0.764675i
\(66\) 1.63352 + 0.675042i 0.201072 + 0.0830919i
\(67\) −1.63010 + 2.82341i −0.199148 + 0.344935i −0.948252 0.317517i \(-0.897151\pi\)
0.749104 + 0.662452i \(0.230484\pi\)
\(68\) −2.30965 + 4.00043i −0.280086 + 0.485123i
\(69\) −2.55451 + 6.18160i −0.307527 + 0.744178i
\(70\) −1.23818 2.14460i −0.147991 0.256329i
\(71\) 1.19637i 0.141983i 0.997477 + 0.0709913i \(0.0226163\pi\)
−0.997477 + 0.0709913i \(0.977384\pi\)
\(72\) 0.781251 + 2.89649i 0.0920713 + 0.341354i
\(73\) 6.14833i 0.719608i 0.933028 + 0.359804i \(0.117156\pi\)
−0.933028 + 0.359804i \(0.882844\pi\)
\(74\) 4.91876 + 8.51955i 0.571795 + 0.990377i
\(75\) −0.0512414 0.0666648i −0.00591685 0.00769779i
\(76\) 1.24351 2.15382i 0.142640 0.247060i
\(77\) 0.567830 0.983510i 0.0647102 0.112081i
\(78\) −5.49311 + 0.727805i −0.621972 + 0.0824077i
\(79\) 2.18886 1.26374i 0.246266 0.142182i −0.371787 0.928318i \(-0.621255\pi\)
0.618053 + 0.786136i \(0.287922\pi\)
\(80\) 2.22519i 0.248783i
\(81\) 7.77929 4.52577i 0.864366 0.502863i
\(82\) −11.4992 −1.26987
\(83\) −1.01481 1.75771i −0.111390 0.192933i 0.804941 0.593355i \(-0.202197\pi\)
−0.916331 + 0.400422i \(0.868864\pi\)
\(84\) 1.91087 0.253179i 0.208493 0.0276241i
\(85\) −8.90169 5.13940i −0.965524 0.557446i
\(86\) −3.40113 + 5.89094i −0.366754 + 0.635236i
\(87\) −4.35262 5.66274i −0.466650 0.607110i
\(88\) 0.883751 0.510234i 0.0942081 0.0543911i
\(89\) −5.33213 −0.565204 −0.282602 0.959237i \(-0.591198\pi\)
−0.282602 + 0.959237i \(0.591198\pi\)
\(90\) −6.44523 + 1.73843i −0.679387 + 0.183246i
\(91\) 3.56029i 0.373220i
\(92\) 1.93084 + 3.34431i 0.201304 + 0.348669i
\(93\) −6.33596 + 7.27018i −0.657009 + 0.753883i
\(94\) 5.13144 8.88791i 0.529267 0.916718i
\(95\) 4.79264 + 2.76703i 0.491715 + 0.283892i
\(96\) 1.60075 + 0.661503i 0.163376 + 0.0675144i
\(97\) 1.06005 + 1.83605i 0.107631 + 0.186423i 0.914810 0.403884i \(-0.132340\pi\)
−0.807179 + 0.590307i \(0.799007\pi\)
\(98\) 5.76149i 0.581999i
\(99\) −2.16832 2.16115i −0.217924 0.217204i
\(100\) −0.0485451 −0.00485451
\(101\) 1.98249 1.14459i 0.197265 0.113891i −0.398114 0.917336i \(-0.630335\pi\)
0.595379 + 0.803445i \(0.297002\pi\)
\(102\) 6.34347 4.87586i 0.628097 0.482782i
\(103\) −0.608600 + 1.05413i −0.0599671 + 0.103866i −0.894450 0.447167i \(-0.852433\pi\)
0.834483 + 0.551033i \(0.185766\pi\)
\(104\) −1.59958 + 2.77056i −0.156852 + 0.271675i
\(105\) 0.563370 + 4.25204i 0.0549793 + 0.414956i
\(106\) 8.53275 4.92639i 0.828774 0.478493i
\(107\) 10.3952i 1.00494i −0.864594 0.502472i \(-0.832424\pi\)
0.864594 0.502472i \(-0.167576\pi\)
\(108\) 0.665446 5.15337i 0.0640326 0.495883i
\(109\) −11.6174 −1.11275 −0.556373 0.830933i \(-0.687807\pi\)
−0.556373 + 0.830933i \(0.687807\pi\)
\(110\) 1.13536 + 1.96651i 0.108253 + 0.187499i
\(111\) −2.23802 16.8915i −0.212424 1.60327i
\(112\) 0.556441 0.963784i 0.0525787 0.0910690i
\(113\) −14.5565 8.40422i −1.36936 0.790602i −0.378517 0.925595i \(-0.623566\pi\)
−0.990847 + 0.134992i \(0.956899\pi\)
\(114\) −3.41530 + 2.62515i −0.319873 + 0.245868i
\(115\) −7.44172 + 4.29648i −0.693944 + 0.400649i
\(116\) −4.12359 −0.382866
\(117\) 9.27456 + 2.46867i 0.857433 + 0.228229i
\(118\) −5.89947 −0.543090
\(119\) −2.57036 4.45200i −0.235625 0.408114i
\(120\) −1.47197 + 3.56198i −0.134372 + 0.325162i
\(121\) 4.97932 8.62444i 0.452666 0.784040i
\(122\) −0.894989 + 1.55017i −0.0810285 + 0.140345i
\(123\) 18.4074 + 7.60676i 1.65974 + 0.685878i
\(124\) 1.09865 + 5.45829i 0.0986615 + 0.490169i
\(125\) 11.2340i 1.00480i
\(126\) −3.22631 0.858768i −0.287422 0.0765051i
\(127\) 2.30229i 0.204295i 0.994769 + 0.102147i \(0.0325713\pi\)
−0.994769 + 0.102147i \(0.967429\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 9.34125 7.18008i 0.822451 0.632171i
\(130\) −6.16501 3.55937i −0.540707 0.312177i
\(131\) −4.64203 2.68008i −0.405576 0.234159i 0.283311 0.959028i \(-0.408567\pi\)
−0.688887 + 0.724869i \(0.741900\pi\)
\(132\) −1.75219 + 0.232155i −0.152508 + 0.0202065i
\(133\) 1.38388 + 2.39694i 0.119997 + 0.207841i
\(134\) 3.26020i 0.281638i
\(135\) 11.4672 + 1.48074i 0.986939 + 0.127442i
\(136\) 4.61929i 0.396101i
\(137\) −6.98169 12.0926i −0.596486 1.03314i −0.993335 0.115260i \(-0.963230\pi\)
0.396849 0.917884i \(-0.370104\pi\)
\(138\) −0.878527 6.63068i −0.0747852 0.564441i
\(139\) −6.56075 3.78785i −0.556476 0.321281i 0.195254 0.980753i \(-0.437447\pi\)
−0.751730 + 0.659471i \(0.770780\pi\)
\(140\) 2.14460 + 1.23818i 0.181252 + 0.104646i
\(141\) −14.0936 + 10.8329i −1.18689 + 0.912295i
\(142\) −0.598183 1.03608i −0.0501984 0.0869462i
\(143\) 3.26464i 0.273003i
\(144\) −2.12483 2.11781i −0.177069 0.176484i
\(145\) 9.17576i 0.762005i
\(146\) −3.07417 5.32461i −0.254420 0.440668i
\(147\) 3.81125 9.22274i 0.314346 0.760678i
\(148\) −8.51955 4.91876i −0.700302 0.404320i
\(149\) 4.53497 + 2.61827i 0.371519 + 0.214497i 0.674122 0.738620i \(-0.264522\pi\)
−0.302603 + 0.953117i \(0.597856\pi\)
\(150\) 0.0777088 + 0.0321127i 0.00634490 + 0.00262199i
\(151\) −8.53103 + 4.92539i −0.694245 + 0.400823i −0.805200 0.593003i \(-0.797942\pi\)
0.110955 + 0.993825i \(0.464609\pi\)
\(152\) 2.48701i 0.201723i
\(153\) −13.3797 + 3.60883i −1.08169 + 0.291756i
\(154\) 1.13566i 0.0915140i
\(155\) −12.1457 + 2.44470i −0.975568 + 0.196363i
\(156\) 4.39327 3.37685i 0.351743 0.270365i
\(157\) 6.67621 11.5635i 0.532819 0.922870i −0.466446 0.884550i \(-0.654466\pi\)
0.999265 0.0383206i \(-0.0122008\pi\)
\(158\) −1.26374 + 2.18886i −0.100538 + 0.174136i
\(159\) −16.9177 + 2.24149i −1.34166 + 0.177762i
\(160\) 1.11259 + 1.92707i 0.0879582 + 0.152348i
\(161\) −4.29760 −0.338698
\(162\) −4.47418 + 7.80908i −0.351525 + 0.613539i
\(163\) −13.6554 −1.06957 −0.534787 0.844987i \(-0.679608\pi\)
−0.534787 + 0.844987i \(0.679608\pi\)
\(164\) 9.95860 5.74960i 0.777636 0.448968i
\(165\) −0.516588 3.89895i −0.0402163 0.303533i
\(166\) 1.75771 + 1.01481i 0.136424 + 0.0787647i
\(167\) 3.02979 5.24776i 0.234453 0.406084i −0.724661 0.689106i \(-0.758004\pi\)
0.959113 + 0.283022i \(0.0913369\pi\)
\(168\) −1.52827 + 1.17469i −0.117909 + 0.0906296i
\(169\) −1.38268 2.39487i −0.106360 0.184221i
\(170\) 10.2788 0.788347
\(171\) 7.20361 1.94298i 0.550873 0.148583i
\(172\) 6.80227i 0.518668i
\(173\) −12.7432 + 7.35730i −0.968849 + 0.559365i −0.898885 0.438184i \(-0.855622\pi\)
−0.0699640 + 0.997550i \(0.522288\pi\)
\(174\) 6.60085 + 2.72777i 0.500410 + 0.206792i
\(175\) 0.0270125 0.0467870i 0.00204195 0.00353676i
\(176\) −0.510234 + 0.883751i −0.0384603 + 0.0666152i
\(177\) 9.44359 + 3.90251i 0.709824 + 0.293331i
\(178\) 4.61776 2.66606i 0.346116 0.199830i
\(179\) −13.1686 −0.984269 −0.492135 0.870519i \(-0.663783\pi\)
−0.492135 + 0.870519i \(0.663783\pi\)
\(180\) 4.71252 4.72814i 0.351250 0.352415i
\(181\) 0.183146i 0.0136132i −0.999977 0.00680658i \(-0.997833\pi\)
0.999977 0.00680658i \(-0.00216662\pi\)
\(182\) −1.78014 3.08330i −0.131953 0.228550i
\(183\) 2.45810 1.88940i 0.181708 0.139668i
\(184\) −3.34431 1.93084i −0.246546 0.142343i
\(185\) 10.9452 18.9576i 0.804704 1.39379i
\(186\) 1.85201 9.46415i 0.135796 0.693945i
\(187\) 2.35692 + 4.08230i 0.172355 + 0.298528i
\(188\) 10.2629i 0.748497i
\(189\) 4.59645 + 3.50889i 0.334342 + 0.255234i
\(190\) −5.53407 −0.401483
\(191\) 0.0556007 0.0321011i 0.00402313 0.00232275i −0.497987 0.867184i \(-0.665927\pi\)
0.502010 + 0.864862i \(0.332594\pi\)
\(192\) −1.71705 + 0.227499i −0.123917 + 0.0164183i
\(193\) −1.25910 + 2.18083i −0.0906320 + 0.156979i −0.907777 0.419453i \(-0.862222\pi\)
0.817145 + 0.576432i \(0.195555\pi\)
\(194\) −1.83605 1.06005i −0.131821 0.0761068i
\(195\) 7.51412 + 9.77584i 0.538098 + 0.700063i
\(196\) −2.88075 4.98960i −0.205768 0.356400i
\(197\) 18.4548 1.31485 0.657426 0.753519i \(-0.271645\pi\)
0.657426 + 0.753519i \(0.271645\pi\)
\(198\) 2.95839 + 0.787455i 0.210244 + 0.0559620i
\(199\) 26.1593i 1.85439i 0.374583 + 0.927194i \(0.377786\pi\)
−0.374583 + 0.927194i \(0.622214\pi\)
\(200\) 0.0420413 0.0242726i 0.00297277 0.00171633i
\(201\) −2.15663 + 5.21877i −0.152117 + 0.368104i
\(202\) −1.14459 + 1.98249i −0.0805333 + 0.139488i
\(203\) 2.29453 3.97425i 0.161045 0.278938i
\(204\) −3.05568 + 7.39435i −0.213940 + 0.517708i
\(205\) 12.7939 + 22.1597i 0.893567 + 1.54770i
\(206\) 1.21720i 0.0848063i
\(207\) −2.97991 + 11.1952i −0.207118 + 0.778123i
\(208\) 3.19916i 0.221822i
\(209\) −1.26896 2.19790i −0.0877756 0.152032i
\(210\) −2.61391 3.40069i −0.180377 0.234670i
\(211\) 7.05862 12.2259i 0.485936 0.841665i −0.513934 0.857830i \(-0.671812\pi\)
0.999869 + 0.0161647i \(0.00514561\pi\)
\(212\) −4.92639 + 8.53275i −0.338346 + 0.586032i
\(213\) 0.272172 + 2.05422i 0.0186489 + 0.140753i
\(214\) 5.19761 + 9.00252i 0.355301 + 0.615400i
\(215\) 15.1363 1.03229
\(216\) 2.00039 + 4.79567i 0.136109 + 0.326304i
\(217\) −5.87195 1.97836i −0.398614 0.134300i
\(218\) 10.0610 5.80870i 0.681415 0.393415i
\(219\) 1.39874 + 10.5570i 0.0945179 + 0.713374i
\(220\) −1.96651 1.13536i −0.132582 0.0765463i
\(221\) −12.7980 7.38894i −0.860888 0.497034i
\(222\) 10.3839 + 13.5094i 0.696923 + 0.906694i
\(223\) −24.9380 + 14.3979i −1.66997 + 0.964158i −0.702320 + 0.711861i \(0.747853\pi\)
−0.967650 + 0.252297i \(0.918814\pi\)
\(224\) 1.11288i 0.0743575i
\(225\) −0.103150 0.102809i −0.00687667 0.00685395i
\(226\) 16.8084 1.11808
\(227\) −12.7248 + 7.34666i −0.844573 + 0.487615i −0.858816 0.512284i \(-0.828800\pi\)
0.0142427 + 0.999899i \(0.495466\pi\)
\(228\) 1.64517 3.98110i 0.108954 0.263655i
\(229\) 6.07989 + 3.51023i 0.401771 + 0.231962i 0.687248 0.726423i \(-0.258819\pi\)
−0.285477 + 0.958386i \(0.592152\pi\)
\(230\) 4.29648 7.44172i 0.283302 0.490693i
\(231\) 0.751242 1.81791i 0.0494281 0.119610i
\(232\) 3.57113 2.06180i 0.234456 0.135364i
\(233\) 2.04882i 0.134223i 0.997745 + 0.0671113i \(0.0213783\pi\)
−0.997745 + 0.0671113i \(0.978622\pi\)
\(234\) −9.26634 + 2.49935i −0.605760 + 0.163388i
\(235\) −22.8368 −1.48971
\(236\) 5.10909 2.94973i 0.332573 0.192011i
\(237\) 3.47087 2.66786i 0.225457 0.173296i
\(238\) 4.45200 + 2.57036i 0.288580 + 0.166612i
\(239\) 7.43679 12.8809i 0.481046 0.833196i −0.518718 0.854946i \(-0.673590\pi\)
0.999763 + 0.0217497i \(0.00692370\pi\)
\(240\) −0.506227 3.82075i −0.0326768 0.246628i
\(241\) 11.0795 6.39675i 0.713693 0.412051i −0.0987341 0.995114i \(-0.531479\pi\)
0.812427 + 0.583063i \(0.198146\pi\)
\(242\) 9.95865i 0.640166i
\(243\) 12.3278 9.54073i 0.790828 0.612038i
\(244\) 1.78998i 0.114592i
\(245\) 11.1028 6.41020i 0.709331 0.409533i
\(246\) −19.7446 + 2.61605i −1.25887 + 0.166793i
\(247\) 6.89041 + 3.97818i 0.438426 + 0.253126i
\(248\) −3.68060 4.17770i −0.233719 0.265284i
\(249\) −2.14235 2.78719i −0.135766 0.176631i
\(250\) 5.61698 + 9.72889i 0.355249 + 0.615309i
\(251\) −26.7812 −1.69042 −0.845208 0.534437i \(-0.820524\pi\)
−0.845208 + 0.534437i \(0.820524\pi\)
\(252\) 3.22345 0.869440i 0.203058 0.0547695i
\(253\) 3.94072 0.247751
\(254\) −1.15114 1.99384i −0.0722291 0.125104i
\(255\) −16.4538 6.79945i −1.03038 0.425798i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.66716 + 3.84929i 0.415886 + 0.240112i 0.693316 0.720634i \(-0.256149\pi\)
−0.277430 + 0.960746i \(0.589483\pi\)
\(258\) −4.49972 + 10.8888i −0.280140 + 0.677905i
\(259\) 9.48125 5.47400i 0.589136 0.340138i
\(260\) 7.11873 0.441485
\(261\) −8.76192 8.73297i −0.542349 0.540557i
\(262\) 5.36015 0.331151
\(263\) 8.91249 + 15.4369i 0.549567 + 0.951879i 0.998304 + 0.0582147i \(0.0185408\pi\)
−0.448737 + 0.893664i \(0.648126\pi\)
\(264\) 1.40136 1.07715i 0.0862479 0.0662938i
\(265\) −18.9870 10.9621i −1.16636 0.673398i
\(266\) −2.39694 1.38388i −0.146966 0.0848509i
\(267\) −9.15551 + 1.21305i −0.560308 + 0.0742376i
\(268\) 1.63010 + 2.82341i 0.0995741 + 0.172467i
\(269\) 31.1931 1.90188 0.950938 0.309383i \(-0.100122\pi\)
0.950938 + 0.309383i \(0.100122\pi\)
\(270\) −10.6713 + 4.45124i −0.649432 + 0.270894i
\(271\) 29.8901i 1.81569i 0.419301 + 0.907847i \(0.362275\pi\)
−0.419301 + 0.907847i \(0.637725\pi\)
\(272\) 2.30965 + 4.00043i 0.140043 + 0.242561i
\(273\) 0.809961 + 6.11318i 0.0490211 + 0.369986i
\(274\) 12.0926 + 6.98169i 0.730543 + 0.421779i
\(275\) −0.0247693 + 0.0429018i −0.00149365 + 0.00258707i
\(276\) 4.07617 + 5.30308i 0.245357 + 0.319208i
\(277\) −2.47722 + 1.43022i −0.148842 + 0.0859337i −0.572571 0.819855i \(-0.694054\pi\)
0.423730 + 0.905789i \(0.360721\pi\)
\(278\) 7.57570 0.454360
\(279\) −9.22518 + 13.9247i −0.552297 + 0.833647i
\(280\) −2.47637 −0.147991
\(281\) 18.7340 10.8161i 1.11758 0.645235i 0.176797 0.984247i \(-0.443426\pi\)
0.940782 + 0.339013i \(0.110093\pi\)
\(282\) 6.78892 16.4283i 0.404275 0.978294i
\(283\) −3.83801 + 6.64763i −0.228146 + 0.395161i −0.957259 0.289233i \(-0.906600\pi\)
0.729113 + 0.684394i \(0.239933\pi\)
\(284\) 1.03608 + 0.598183i 0.0614803 + 0.0354956i
\(285\) 8.85868 + 3.66080i 0.524743 + 0.216847i
\(286\) 1.63232 + 2.82726i 0.0965211 + 0.167180i
\(287\) 12.7972i 0.755398i
\(288\) 2.89906 + 0.771661i 0.170829 + 0.0454706i
\(289\) 4.33788 0.255169
\(290\) 4.58788 + 7.94644i 0.269410 + 0.466631i
\(291\) 2.23785 + 2.91143i 0.131185 + 0.170671i
\(292\) 5.32461 + 3.07417i 0.311599 + 0.179902i
\(293\) 12.5129 + 7.22431i 0.731010 + 0.422049i 0.818792 0.574091i \(-0.194644\pi\)
−0.0877814 + 0.996140i \(0.527978\pi\)
\(294\) 1.31073 + 9.89275i 0.0764434 + 0.576957i
\(295\) 6.56371 + 11.3687i 0.382154 + 0.661910i
\(296\) 9.83752 0.571795
\(297\) −4.21476 3.21751i −0.244565 0.186699i
\(298\) −5.23653 −0.303344
\(299\) −10.6990 + 6.17708i −0.618740 + 0.357230i
\(300\) −0.0833542 + 0.0110439i −0.00481245 + 0.000637622i
\(301\) 6.55592 + 3.78506i 0.377877 + 0.218167i
\(302\) 4.92539 8.53103i 0.283424 0.490905i
\(303\) 3.14364 2.41633i 0.180597 0.138815i
\(304\) −1.24351 2.15382i −0.0713200 0.123530i
\(305\) 3.98303 0.228068
\(306\) 9.78278 9.81520i 0.559244 0.561098i
\(307\) 33.7966 1.92887 0.964436 0.264317i \(-0.0851465\pi\)
0.964436 + 0.264317i \(0.0851465\pi\)
\(308\) −0.567830 0.983510i −0.0323551 0.0560407i
\(309\) −0.805181 + 1.94844i −0.0458052 + 0.110843i
\(310\) 9.29616 8.19003i 0.527986 0.465162i
\(311\) 12.3453 + 7.12756i 0.700038 + 0.404167i 0.807361 0.590057i \(-0.200895\pi\)
−0.107324 + 0.994224i \(0.534228\pi\)
\(312\) −2.11626 + 5.12107i −0.119809 + 0.289924i
\(313\) −7.96020 + 4.59583i −0.449937 + 0.259771i −0.707804 0.706409i \(-0.750314\pi\)
0.257866 + 0.966181i \(0.416981\pi\)
\(314\) 13.3524i 0.753520i
\(315\) 1.93467 + 7.17278i 0.109006 + 0.404140i
\(316\) 2.52748i 0.142182i
\(317\) 6.43584 3.71574i 0.361473 0.208696i −0.308254 0.951304i \(-0.599745\pi\)
0.669727 + 0.742608i \(0.266411\pi\)
\(318\) 13.5304 10.4000i 0.758746 0.583204i
\(319\) −2.10399 + 3.64423i −0.117801 + 0.204037i
\(320\) −1.92707 1.11259i −0.107726 0.0621959i
\(321\) −2.36490 17.8491i −0.131996 0.996237i
\(322\) 3.72183 2.14880i 0.207409 0.119748i
\(323\) −11.4882 −0.639223
\(324\) −0.0297829 8.99995i −0.00165461 0.499997i
\(325\) 0.155304i 0.00861470i
\(326\) 11.8259 6.82771i 0.654978 0.378152i
\(327\) −19.9476 + 2.64294i −1.10311 + 0.146155i
\(328\) −5.74960 + 9.95860i −0.317469 + 0.549872i
\(329\) −9.89119 5.71068i −0.545319 0.314840i
\(330\) 2.39685 + 3.11829i 0.131942 + 0.171656i
\(331\) 23.7405 13.7066i 1.30489 0.753381i 0.323655 0.946175i \(-0.395088\pi\)
0.981239 + 0.192794i \(0.0617549\pi\)
\(332\) −2.02962 −0.111390
\(333\) −7.68557 28.4943i −0.421167 1.56148i
\(334\) 6.05959i 0.331566i
\(335\) −6.28262 + 3.62727i −0.343256 + 0.198179i
\(336\) 0.736175 1.78145i 0.0401616 0.0971861i
\(337\) −2.96074 1.70938i −0.161282 0.0931160i 0.417187 0.908821i \(-0.363016\pi\)
−0.578468 + 0.815705i \(0.696349\pi\)
\(338\) 2.39487 + 1.38268i 0.130264 + 0.0752077i
\(339\) −26.9062 11.1188i −1.46134 0.603892i
\(340\) −8.90169 + 5.13940i −0.482762 + 0.278723i
\(341\) 5.38434 + 1.81407i 0.291578 + 0.0982377i
\(342\) −5.26701 + 5.28447i −0.284808 + 0.285752i
\(343\) 14.2020 0.766838
\(344\) 3.40113 + 5.89094i 0.183377 + 0.317618i
\(345\) −11.8003 + 9.07024i −0.635309 + 0.488325i
\(346\) 7.35730 12.7432i 0.395531 0.685080i
\(347\) −7.11555 + 12.3245i −0.381983 + 0.661613i −0.991346 0.131278i \(-0.958092\pi\)
0.609363 + 0.792891i \(0.291425\pi\)
\(348\) −7.08039 + 0.938111i −0.379549 + 0.0502880i
\(349\) 12.1759 + 21.0892i 0.651759 + 1.12888i 0.982696 + 0.185227i \(0.0593020\pi\)
−0.330937 + 0.943653i \(0.607365\pi\)
\(350\) 0.0540250i 0.00288776i
\(351\) 16.4865 + 2.12887i 0.879982 + 0.113631i
\(352\) 1.02047i 0.0543911i
\(353\) 13.1781 + 22.8251i 0.701400 + 1.21486i 0.967975 + 0.251046i \(0.0807744\pi\)
−0.266576 + 0.963814i \(0.585892\pi\)
\(354\) −10.1296 + 1.34212i −0.538385 + 0.0713329i
\(355\) −1.33107 + 2.30548i −0.0706458 + 0.122362i
\(356\) −2.66606 + 4.61776i −0.141301 + 0.244741i
\(357\) −5.42625 7.05953i −0.287188 0.373630i
\(358\) 11.4044 6.58431i 0.602739 0.347992i
\(359\) 16.3382i 0.862297i −0.902281 0.431149i \(-0.858108\pi\)
0.902281 0.431149i \(-0.141892\pi\)
\(360\) −1.71709 + 6.45095i −0.0904986 + 0.339995i
\(361\) −12.8148 −0.674461
\(362\) 0.0915732 + 0.158609i 0.00481298 + 0.00833633i
\(363\) 6.58768 15.9413i 0.345763 0.836704i
\(364\) 3.08330 + 1.78014i 0.161609 + 0.0933049i
\(365\) −6.84059 + 11.8483i −0.358053 + 0.620166i
\(366\) −1.18408 + 2.86531i −0.0618926 + 0.149772i
\(367\) −8.01274 + 4.62616i −0.418262 + 0.241483i −0.694333 0.719654i \(-0.744301\pi\)
0.276072 + 0.961137i \(0.410967\pi\)
\(368\) 3.86168 0.201304
\(369\) 33.3369 + 8.87349i 1.73545 + 0.461935i
\(370\) 21.8903i 1.13802i
\(371\) −5.48249 9.49594i −0.284636 0.493005i
\(372\) 3.12818 + 9.12220i 0.162189 + 0.472964i
\(373\) 4.49388 7.78363i 0.232684 0.403021i −0.725913 0.687787i \(-0.758582\pi\)
0.958597 + 0.284766i \(0.0919157\pi\)
\(374\) −4.08230 2.35692i −0.211091 0.121873i
\(375\) −2.55571 19.2892i −0.131976 0.996090i
\(376\) −5.13144 8.88791i −0.264634 0.458359i
\(377\) 13.1920i 0.679425i
\(378\) −5.73509 0.740562i −0.294981 0.0380904i
\(379\) −23.1494 −1.18910 −0.594552 0.804057i \(-0.702670\pi\)
−0.594552 + 0.804057i \(0.702670\pi\)
\(380\) 4.79264 2.76703i 0.245857 0.141946i
\(381\) 0.523767 + 3.95313i 0.0268334 + 0.202525i
\(382\) −0.0321011 + 0.0556007i −0.00164244 + 0.00284478i
\(383\) −3.83913 + 6.64957i −0.196170 + 0.339777i −0.947284 0.320396i \(-0.896184\pi\)
0.751113 + 0.660174i \(0.229517\pi\)
\(384\) 1.37326 1.05554i 0.0700787 0.0538654i
\(385\) 2.18849 1.26353i 0.111536 0.0643953i
\(386\) 2.51820i 0.128173i
\(387\) 14.4059 14.4536i 0.732293 0.734720i
\(388\) 2.12009 0.107631
\(389\) 8.96129 + 15.5214i 0.454355 + 0.786967i 0.998651 0.0519269i \(-0.0165363\pi\)
−0.544295 + 0.838894i \(0.683203\pi\)
\(390\) −11.3953 4.70906i −0.577026 0.238453i
\(391\) 8.91912 15.4484i 0.451059 0.781258i
\(392\) 4.98960 + 2.88075i 0.252013 + 0.145500i
\(393\) −8.58029 3.54576i −0.432818 0.178860i
\(394\) −15.9823 + 9.22741i −0.805179 + 0.464870i
\(395\) 5.62410 0.282979
\(396\) −2.95577 + 0.797241i −0.148533 + 0.0400629i
\(397\) −28.6115 −1.43597 −0.717984 0.696060i \(-0.754935\pi\)
−0.717984 + 0.696060i \(0.754935\pi\)
\(398\) −13.0797 22.6547i −0.655625 1.13558i
\(399\) 2.92148 + 3.80083i 0.146257 + 0.190279i
\(400\) −0.0242726 + 0.0420413i −0.00121363 + 0.00210207i
\(401\) 7.63116 13.2176i 0.381082 0.660053i −0.610135 0.792297i \(-0.708885\pi\)
0.991217 + 0.132244i \(0.0422182\pi\)
\(402\) −0.741690 5.59791i −0.0369921 0.279198i
\(403\) −17.4620 + 3.51475i −0.869843 + 0.175082i
\(404\) 2.28919i 0.113891i
\(405\) 20.0266 0.0662725i 0.995128 0.00329311i
\(406\) 4.58907i 0.227752i
\(407\) −8.69392 + 5.01944i −0.430941 + 0.248804i
\(408\) −1.05088 7.93154i −0.0520265 0.392670i
\(409\) −24.7600 14.2952i −1.22430 0.706852i −0.258471 0.966019i \(-0.583219\pi\)
−0.965832 + 0.259167i \(0.916552\pi\)
\(410\) −22.1597 12.7939i −1.09439 0.631847i
\(411\) −14.7389 19.1753i −0.727018 0.945847i
\(412\) 0.608600 + 1.05413i 0.0299836 + 0.0519330i
\(413\) 6.56541i 0.323063i
\(414\) −3.01694 11.1853i −0.148275 0.549728i
\(415\) 4.51629i 0.221696i
\(416\) 1.59958 + 2.77056i 0.0784259 + 0.135838i
\(417\) −12.1268 5.01135i −0.593854 0.245407i
\(418\) 2.19790 + 1.26896i 0.107503 + 0.0620667i
\(419\) 7.33646 + 4.23571i 0.358409 + 0.206928i 0.668383 0.743817i \(-0.266987\pi\)
−0.309973 + 0.950745i \(0.600320\pi\)
\(420\) 3.96406 + 1.63813i 0.193426 + 0.0799323i
\(421\) −13.1893 22.8445i −0.642807 1.11337i −0.984803 0.173673i \(-0.944436\pi\)
0.341996 0.939701i \(-0.388897\pi\)
\(422\) 14.1172i 0.687217i
\(423\) −21.7348 + 21.8068i −1.05678 + 1.06028i
\(424\) 9.85277i 0.478493i
\(425\) 0.112122 + 0.194201i 0.00543872 + 0.00942014i
\(426\) −1.26282 1.64292i −0.0611836 0.0795996i
\(427\) 1.72515 + 0.996017i 0.0834859 + 0.0482006i
\(428\) −9.00252 5.19761i −0.435153 0.251236i
\(429\) −0.742701 5.60554i −0.0358580 0.270638i
\(430\) −13.1084 + 7.56816i −0.632145 + 0.364969i
\(431\) 20.6052i 0.992519i −0.868174 0.496260i \(-0.834706\pi\)
0.868174 0.496260i \(-0.165294\pi\)
\(432\) −4.13022 3.15298i −0.198715 0.151698i
\(433\) 24.4623i 1.17558i 0.809012 + 0.587792i \(0.200003\pi\)
−0.809012 + 0.587792i \(0.799997\pi\)
\(434\) 6.07443 1.22266i 0.291582 0.0586898i
\(435\) −2.08747 15.7552i −0.100087 0.755404i
\(436\) −5.80870 + 10.0610i −0.278186 + 0.481833i
\(437\) −4.80203 + 8.31736i −0.229712 + 0.397873i
\(438\) −6.48983 8.44323i −0.310096 0.403433i
\(439\) 7.15542 + 12.3935i 0.341509 + 0.591512i 0.984713 0.174183i \(-0.0557285\pi\)
−0.643204 + 0.765695i \(0.722395\pi\)
\(440\) 2.27073 0.108253
\(441\) 4.44592 16.7029i 0.211711 0.795377i
\(442\) 14.7779 0.702912
\(443\) 4.39636 2.53824i 0.208877 0.120595i −0.391912 0.920003i \(-0.628186\pi\)
0.600789 + 0.799407i \(0.294853\pi\)
\(444\) −15.7475 6.50755i −0.747341 0.308835i
\(445\) −10.2754 5.93249i −0.487099 0.281227i
\(446\) 14.3979 24.9380i 0.681762 1.18085i
\(447\) 8.38240 + 3.46398i 0.396474 + 0.163841i
\(448\) −0.556441 0.963784i −0.0262894 0.0455345i
\(449\) 34.1185 1.61015 0.805076 0.593172i \(-0.202125\pi\)
0.805076 + 0.593172i \(0.202125\pi\)
\(450\) 0.140735 + 0.0374604i 0.00663432 + 0.00176590i
\(451\) 11.7346i 0.552559i
\(452\) −14.5565 + 8.40422i −0.684682 + 0.395301i
\(453\) −13.5276 + 10.3979i −0.635584 + 0.488537i
\(454\) 7.34666 12.7248i 0.344796 0.597204i
\(455\) −3.96115 + 6.86092i −0.185702 + 0.321645i
\(456\) 0.565792 + 4.27031i 0.0264956 + 0.199976i
\(457\) 5.09131 2.93947i 0.238161 0.137503i −0.376170 0.926551i \(-0.622759\pi\)
0.614331 + 0.789048i \(0.289426\pi\)
\(458\) −7.02046 −0.328044
\(459\) −22.1526 + 9.24039i −1.03400 + 0.431304i
\(460\) 8.59296i 0.400649i
\(461\) −19.7473 34.2032i −0.919721 1.59300i −0.799838 0.600216i \(-0.795081\pi\)
−0.119883 0.992788i \(-0.538252\pi\)
\(462\) 0.258361 + 1.94998i 0.0120200 + 0.0907212i
\(463\) 20.0463 + 11.5738i 0.931633 + 0.537878i 0.887328 0.461140i \(-0.152559\pi\)
0.0443051 + 0.999018i \(0.485893\pi\)
\(464\) −2.06180 + 3.57113i −0.0957164 + 0.165786i
\(465\) −20.2986 + 6.96079i −0.941325 + 0.322799i
\(466\) −1.02441 1.77433i −0.0474549 0.0821943i
\(467\) 6.12670i 0.283510i −0.989902 0.141755i \(-0.954725\pi\)
0.989902 0.141755i \(-0.0452745\pi\)
\(468\) 6.77521 6.79767i 0.313184 0.314222i
\(469\) −3.62821 −0.167535
\(470\) 19.7773 11.4184i 0.912257 0.526692i
\(471\) 8.83266 21.3739i 0.406988 0.984859i
\(472\) −2.94973 + 5.10909i −0.135772 + 0.235165i
\(473\) −6.01151 3.47075i −0.276409 0.159585i
\(474\) −1.67193 + 4.04587i −0.0767944 + 0.185833i
\(475\) −0.0603662 0.104557i −0.00276979 0.00479742i
\(476\) −5.14073 −0.235625
\(477\) −28.5385 + 7.69749i −1.30669 + 0.352444i
\(478\) 14.8736i 0.680302i
\(479\) −6.48652 + 3.74499i −0.296377 + 0.171113i −0.640814 0.767696i \(-0.721403\pi\)
0.344437 + 0.938809i \(0.388070\pi\)
\(480\) 2.34878 + 3.05575i 0.107207 + 0.139475i
\(481\) 15.7359 27.2554i 0.717496 1.24274i
\(482\) −6.39675 + 11.0795i −0.291364 + 0.504657i
\(483\) −7.37917 + 0.977697i −0.335764 + 0.0444867i
\(484\) −4.97932 8.62444i −0.226333 0.392020i
\(485\) 4.71760i 0.214215i
\(486\) −5.90582 + 14.4264i −0.267893 + 0.654395i
\(487\) 9.68519i 0.438878i 0.975626 + 0.219439i \(0.0704227\pi\)
−0.975626 + 0.219439i \(0.929577\pi\)
\(488\) 0.894989 + 1.55017i 0.0405142 + 0.0701727i
\(489\) −23.4470 + 3.10659i −1.06031 + 0.140485i
\(490\) −6.41020 + 11.1028i −0.289583 + 0.501573i
\(491\) −8.25821 + 14.3036i −0.372688 + 0.645514i −0.989978 0.141221i \(-0.954897\pi\)
0.617290 + 0.786736i \(0.288230\pi\)
\(492\) 15.7913 12.1379i 0.711929 0.547218i
\(493\) 9.52404 + 16.4961i 0.428941 + 0.742948i
\(494\) −7.95636 −0.357974
\(495\) −1.77401 6.57714i −0.0797358 0.295621i
\(496\) 5.27635 + 1.77769i 0.236915 + 0.0798207i
\(497\) −1.15304 + 0.665707i −0.0517208 + 0.0298610i
\(498\) 3.24893 + 1.34260i 0.145588 + 0.0601634i
\(499\) 16.5265 + 9.54159i 0.739829 + 0.427140i 0.822007 0.569477i \(-0.192854\pi\)
−0.0821782 + 0.996618i \(0.526188\pi\)
\(500\) −9.72889 5.61698i −0.435089 0.251199i
\(501\) 4.00844 9.69991i 0.179084 0.433360i
\(502\) 23.1932 13.3906i 1.03516 0.597652i
\(503\) 7.99974i 0.356691i 0.983968 + 0.178345i \(0.0570744\pi\)
−0.983968 + 0.178345i \(0.942926\pi\)
\(504\) −2.35687 + 2.36468i −0.104983 + 0.105331i
\(505\) 5.09386 0.226674
\(506\) −3.41276 + 1.97036i −0.151716 + 0.0875932i
\(507\) −2.91895 3.79754i −0.129635 0.168655i
\(508\) 1.99384 + 1.15114i 0.0884622 + 0.0510737i
\(509\) 8.01549 13.8832i 0.355280 0.615363i −0.631886 0.775062i \(-0.717719\pi\)
0.987166 + 0.159698i \(0.0510521\pi\)
\(510\) 17.6491 2.33841i 0.781517 0.103547i
\(511\) −5.92566 + 3.42118i −0.262136 + 0.151344i
\(512\) 1.00000i 0.0441942i
\(513\) 11.9269 4.97500i 0.526585 0.219651i
\(514\) −7.69857 −0.339569
\(515\) −2.34563 + 1.35425i −0.103361 + 0.0596753i
\(516\) −1.54751 11.6798i −0.0681252 0.514175i
\(517\) 9.06982 + 5.23646i 0.398890 + 0.230299i
\(518\) −5.47400 + 9.48125i −0.240514 + 0.416582i
\(519\) −20.2069 + 15.5319i −0.886985 + 0.681774i
\(520\) −6.16501 + 3.55937i −0.270353 + 0.156089i
\(521\) 33.5039i 1.46783i −0.679241 0.733915i \(-0.737691\pi\)
0.679241 0.733915i \(-0.262309\pi\)
\(522\) 11.9545 + 3.18202i 0.523236 + 0.139273i
\(523\) 37.4112i 1.63588i 0.575304 + 0.817940i \(0.304884\pi\)
−0.575304 + 0.817940i \(0.695116\pi\)
\(524\) −4.64203 + 2.68008i −0.202788 + 0.117080i
\(525\) 0.0357377 0.0864807i 0.00155972 0.00377433i
\(526\) −15.4369 8.91249i −0.673080 0.388603i
\(527\) 19.2980 17.0018i 0.840635 0.740610i
\(528\) −0.675042 + 1.63352i −0.0293774 + 0.0710897i
\(529\) 4.04370 + 7.00390i 0.175813 + 0.304517i
\(530\) 21.9243 0.952329
\(531\) 17.1029 + 4.55239i 0.742202 + 0.197557i
\(532\) 2.76775 0.119997
\(533\) 18.3939 + 31.8592i 0.796729 + 1.37997i
\(534\) 7.32237 5.62829i 0.316870 0.243560i
\(535\) 11.5656 20.0323i 0.500026 0.866071i
\(536\) −2.82341 1.63010i −0.121953 0.0704095i
\(537\) −22.6111 + 2.99584i −0.975742 + 0.129280i
\(538\) −27.0140 + 15.5965i −1.16466 + 0.672414i
\(539\) −5.87942 −0.253244
\(540\) 7.01596 9.19052i 0.301919 0.395497i
\(541\) 30.6235 1.31661 0.658303 0.752753i \(-0.271275\pi\)
0.658303 + 0.752753i \(0.271275\pi\)
\(542\) −14.9451 25.8856i −0.641945 1.11188i
\(543\) −0.0416656 0.314471i −0.00178804 0.0134952i
\(544\) −4.00043 2.30965i −0.171517 0.0990253i
\(545\) −22.3875 12.9255i −0.958977 0.553665i
\(546\) −3.75804 4.88919i −0.160829 0.209238i
\(547\) 1.58488 + 2.74509i 0.0677645 + 0.117372i 0.897917 0.440165i \(-0.145080\pi\)
−0.830152 + 0.557536i \(0.811747\pi\)
\(548\) −13.9634 −0.596486
\(549\) 3.79083 3.80339i 0.161789 0.162325i
\(550\) 0.0495387i 0.00211234i
\(551\) −5.12771 8.88146i −0.218448 0.378363i
\(552\) −6.18160 2.55451i −0.263107 0.108727i
\(553\) 2.43594 + 1.40639i 0.103587 + 0.0598058i
\(554\) 1.43022 2.47722i 0.0607643 0.105247i
\(555\) 14.4805 35.0410i 0.614664 1.48741i
\(556\) −6.56075 + 3.78785i −0.278238 + 0.160641i
\(557\) 2.07470 0.0879079 0.0439539 0.999034i \(-0.486005\pi\)
0.0439539 + 0.999034i \(0.486005\pi\)
\(558\) 1.02691 16.6717i 0.0434726 0.705769i
\(559\) 21.7616 0.920416
\(560\) 2.14460 1.23818i 0.0906258 0.0523228i
\(561\) 4.97566 + 6.47330i 0.210072 + 0.273303i
\(562\) −10.8161 + 18.7340i −0.456250 + 0.790248i
\(563\) 37.5837 + 21.6990i 1.58397 + 0.914503i 0.994272 + 0.106876i \(0.0340846\pi\)
0.589693 + 0.807627i \(0.299249\pi\)
\(564\) 2.33479 + 17.6218i 0.0983124 + 0.742013i
\(565\) −18.7009 32.3910i −0.786755 1.36270i
\(566\) 7.67602i 0.322647i
\(567\) 8.69058 + 4.97924i 0.364970 + 0.209108i
\(568\) −1.19637 −0.0501984
\(569\) 17.6206 + 30.5197i 0.738693 + 1.27945i 0.953084 + 0.302706i \(0.0978900\pi\)
−0.214391 + 0.976748i \(0.568777\pi\)
\(570\) −9.50224 + 1.25899i −0.398005 + 0.0527334i
\(571\) 31.1820 + 18.0029i 1.30492 + 0.753399i 0.981244 0.192768i \(-0.0617465\pi\)
0.323680 + 0.946167i \(0.395080\pi\)
\(572\) −2.82726 1.63232i −0.118214 0.0682508i
\(573\) 0.0881660 0.0677681i 0.00368319 0.00283105i
\(574\) −6.39862 11.0827i −0.267073 0.462585i
\(575\) 0.187466 0.00781786
\(576\) −2.89649 + 0.781251i −0.120687 + 0.0325521i
\(577\) −32.1410 −1.33805 −0.669023 0.743242i \(-0.733287\pi\)
−0.669023 + 0.743242i \(0.733287\pi\)
\(578\) −3.75671 + 2.16894i −0.156259 + 0.0902160i
\(579\) −1.66580 + 4.03102i −0.0692282 + 0.167523i
\(580\) −7.94644 4.58788i −0.329958 0.190501i
\(581\) 1.12937 1.95612i 0.0468540 0.0811534i
\(582\) −3.39375 1.40245i −0.140675 0.0581333i
\(583\) 5.02722 + 8.70740i 0.208206 + 0.360623i
\(584\) −6.14833 −0.254420
\(585\) 15.1261 + 15.0761i 0.625387 + 0.623320i
\(586\) −14.4486 −0.596867
\(587\) −6.41401 11.1094i −0.264734 0.458533i 0.702760 0.711427i \(-0.251951\pi\)
−0.967494 + 0.252894i \(0.918618\pi\)
\(588\) −6.08150 7.91200i −0.250797 0.326286i
\(589\) −10.3900 + 9.15371i −0.428112 + 0.377172i
\(590\) −11.3687 6.56371i −0.468041 0.270223i
\(591\) 31.6878 4.19845i 1.30346 0.172701i
\(592\) −8.51955 + 4.91876i −0.350151 + 0.202160i
\(593\) 23.3171i 0.957519i −0.877946 0.478760i \(-0.841087\pi\)
0.877946 0.478760i \(-0.158913\pi\)
\(594\) 5.25884 + 0.679066i 0.215773 + 0.0278624i
\(595\) 11.4391i 0.468956i
\(596\) 4.53497 2.61827i 0.185760 0.107248i
\(597\) 5.95122 + 44.9168i 0.243567 + 1.83832i
\(598\) 6.17708 10.6990i 0.252599 0.437515i
\(599\) −22.1736 12.8019i −0.905988 0.523073i −0.0268500 0.999639i \(-0.508548\pi\)
−0.879138 + 0.476567i \(0.841881\pi\)
\(600\) 0.0666648 0.0512414i 0.00272158 0.00209192i
\(601\) 5.37109 3.10100i 0.219091 0.126492i −0.386438 0.922315i \(-0.626295\pi\)
0.605529 + 0.795823i \(0.292961\pi\)
\(602\) −7.57012 −0.308535
\(603\) −2.51577 + 9.45150i −0.102450 + 0.384895i
\(604\) 9.85078i 0.400823i
\(605\) 19.1910 11.0799i 0.780225 0.450463i
\(606\) −1.51430 + 3.66442i −0.0615144 + 0.148857i
\(607\) −15.6728 + 27.1461i −0.636141 + 1.10183i 0.350132 + 0.936700i \(0.386137\pi\)
−0.986272 + 0.165127i \(0.947197\pi\)
\(608\) 2.15382 + 1.24351i 0.0873488 + 0.0504308i
\(609\) 3.03568 7.34597i 0.123012 0.297674i
\(610\) −3.44941 + 1.99152i −0.139663 + 0.0806342i
\(611\) −32.8326 −1.32827
\(612\) −3.56453 + 13.3916i −0.144088 + 0.541323i
\(613\) 40.9491i 1.65392i −0.562261 0.826960i \(-0.690068\pi\)
0.562261 0.826960i \(-0.309932\pi\)
\(614\) −29.2687 + 16.8983i −1.18119 + 0.681959i
\(615\) 27.0091 + 35.1387i 1.08911 + 1.41693i
\(616\) 0.983510 + 0.567830i 0.0396267 + 0.0228785i
\(617\) 34.9638 + 20.1863i 1.40759 + 0.812671i 0.995155 0.0983164i \(-0.0313457\pi\)
0.412433 + 0.910988i \(0.364679\pi\)
\(618\) −0.276911 2.08999i −0.0111390 0.0840716i
\(619\) 17.5241 10.1175i 0.704353 0.406659i −0.104614 0.994513i \(-0.533361\pi\)
0.808967 + 0.587854i \(0.200027\pi\)
\(620\) −3.95569 + 11.7409i −0.158864 + 0.471524i
\(621\) −2.56974 + 19.9007i −0.103120 + 0.798586i
\(622\) −14.2551 −0.571578
\(623\) −2.96701 5.13902i −0.118871 0.205890i
\(624\) −0.727805 5.49311i −0.0291355 0.219900i
\(625\) 12.3775 21.4384i 0.495098 0.857536i
\(626\) 4.59583 7.96020i 0.183686 0.318154i
\(627\) −2.67888 3.48521i −0.106984 0.139186i
\(628\) −6.67621 11.5635i −0.266410 0.461435i
\(629\) 45.4424i 1.81191i
\(630\) −5.26186 5.24447i −0.209637 0.208945i
\(631\) 32.7799i 1.30495i −0.757811 0.652475i \(-0.773731\pi\)
0.757811 0.652475i \(-0.226269\pi\)
\(632\) 1.26374 + 2.18886i 0.0502688 + 0.0870681i
\(633\) 9.33860 22.5982i 0.371176 0.898199i
\(634\) −3.71574 + 6.43584i −0.147571 + 0.255600i
\(635\) −2.56151 + 4.43666i −0.101650 + 0.176063i
\(636\) −6.51764 + 15.7719i −0.258441 + 0.625395i
\(637\) 15.9625 9.21598i 0.632459 0.365150i
\(638\) 4.20799i 0.166596i
\(639\) 0.934662 + 3.46526i 0.0369747 + 0.137084i
\(640\) 2.22519 0.0879582
\(641\) 10.6439 + 18.4357i 0.420408 + 0.728167i 0.995979 0.0895841i \(-0.0285538\pi\)
−0.575572 + 0.817751i \(0.695220\pi\)
\(642\) 10.9726 + 14.2753i 0.433054 + 0.563401i
\(643\) 40.7748 + 23.5413i 1.60800 + 0.928379i 0.989817 + 0.142344i \(0.0454639\pi\)
0.618182 + 0.786035i \(0.287869\pi\)
\(644\) −2.14880 + 3.72183i −0.0846745 + 0.146661i
\(645\) 25.9897 3.44349i 1.02335 0.135587i
\(646\) 9.94911 5.74412i 0.391443 0.225999i
\(647\) −29.5056 −1.15998 −0.579992 0.814622i \(-0.696945\pi\)
−0.579992 + 0.814622i \(0.696945\pi\)
\(648\) 4.52577 + 7.77929i 0.177789 + 0.305600i
\(649\) 6.02021i 0.236314i
\(650\) 0.0776519 + 0.134497i 0.00304576 + 0.00527541i
\(651\) −10.5325 2.06107i −0.412800 0.0807798i
\(652\) −6.82771 + 11.8259i −0.267394 + 0.463139i
\(653\) 9.32930 + 5.38627i 0.365084 + 0.210781i 0.671308 0.741178i \(-0.265733\pi\)
−0.306225 + 0.951959i \(0.599066\pi\)
\(654\) 15.9537 12.2627i 0.623838 0.479508i
\(655\) −5.96367 10.3294i −0.233020 0.403602i
\(656\) 11.4992i 0.448968i
\(657\) 4.80339 + 17.8086i 0.187398 + 0.694779i
\(658\) 11.4214 0.445251
\(659\) −1.37174 + 0.791977i −0.0534356 + 0.0308510i −0.526480 0.850188i \(-0.676488\pi\)
0.473044 + 0.881039i \(0.343155\pi\)
\(660\) −3.63488 1.50209i −0.141488 0.0584690i
\(661\) −16.1220 + 27.9242i −0.627075 + 1.08613i 0.361061 + 0.932542i \(0.382415\pi\)
−0.988136 + 0.153583i \(0.950919\pi\)
\(662\) −13.7066 + 23.7405i −0.532721 + 0.922700i
\(663\) −23.6557 9.77561i −0.918713 0.379653i
\(664\) 1.75771 1.01481i 0.0682122 0.0393823i
\(665\) 6.15876i 0.238827i
\(666\) 20.9030 + 20.8340i 0.809976 + 0.807300i
\(667\) 15.9240 0.616580
\(668\) −3.02979 5.24776i −0.117226 0.203042i
\(669\) −39.5441 + 30.3953i −1.52886 + 1.17515i
\(670\) 3.62727 6.28262i 0.140134 0.242719i
\(671\) −1.58189 0.913307i −0.0610683 0.0352578i
\(672\) 0.253179 + 1.91087i 0.00976659 + 0.0737133i
\(673\) −7.10562 + 4.10243i −0.273902 + 0.158137i −0.630659 0.776060i \(-0.717215\pi\)
0.356758 + 0.934197i \(0.383882\pi\)
\(674\) 3.41877 0.131686
\(675\) −0.200502 0.153062i −0.00771733 0.00589134i
\(676\) −2.76535 −0.106360
\(677\) 3.99517 + 6.91983i 0.153547 + 0.265951i 0.932529 0.361095i \(-0.117597\pi\)
−0.778982 + 0.627046i \(0.784264\pi\)
\(678\) 28.8608 3.82389i 1.10839 0.146856i
\(679\) −1.17971 + 2.04331i −0.0452729 + 0.0784150i
\(680\) 5.13940 8.90169i 0.197087 0.341364i
\(681\) −20.1777 + 15.5094i −0.773210 + 0.594322i
\(682\) −5.57001 + 1.12113i −0.213287 + 0.0429304i
\(683\) 19.0681i 0.729619i 0.931082 + 0.364809i \(0.118866\pi\)
−0.931082 + 0.364809i \(0.881134\pi\)
\(684\) 1.91913 7.21000i 0.0733798 0.275681i
\(685\) 31.0711i 1.18717i
\(686\) −12.2993 + 7.10102i −0.469590 + 0.271118i
\(687\) 11.2380 + 4.64405i 0.428757 + 0.177182i
\(688\) −5.89094 3.40113i −0.224590 0.129667i
\(689\) −27.2977 15.7603i −1.03996 0.600420i
\(690\) 5.68427 13.7552i 0.216397 0.523652i
\(691\) −12.0546 20.8792i −0.458580 0.794284i 0.540306 0.841469i \(-0.318308\pi\)
−0.998886 + 0.0471845i \(0.984975\pi\)
\(692\) 14.7146i 0.559365i
\(693\) 0.876344 3.29234i 0.0332896 0.125066i
\(694\) 14.2311i 0.540205i
\(695\) −8.42867 14.5989i −0.319718 0.553768i
\(696\) 5.66274 4.35262i 0.214646 0.164986i
\(697\) −46.0017 26.5591i −1.74244 1.00600i
\(698\) −21.0892 12.1759i −0.798239 0.460863i
\(699\) 0.466104 + 3.51792i 0.0176297 + 0.133060i
\(700\) −0.0270125 0.0467870i −0.00102098 0.00176838i
\(701\) 24.8694i 0.939303i 0.882852 + 0.469651i \(0.155620\pi\)
−0.882852 + 0.469651i \(0.844380\pi\)
\(702\) −15.3421 + 6.39957i −0.579051 + 0.241536i
\(703\) 24.4661i 0.922755i
\(704\) 0.510234 + 0.883751i 0.0192302 + 0.0333076i
\(705\) −39.2118 + 5.19534i −1.47680 + 0.195668i
\(706\) −22.8251 13.1781i −0.859036 0.495964i
\(707\) 2.20628 + 1.27380i 0.0829757 + 0.0479060i
\(708\) 8.10147 6.22713i 0.304472 0.234030i
\(709\) 11.2903 6.51847i 0.424017 0.244806i −0.272778 0.962077i \(-0.587942\pi\)
0.696794 + 0.717271i \(0.254609\pi\)
\(710\) 2.66214i 0.0999083i
\(711\) 5.35271 5.37045i 0.200742 0.201408i
\(712\) 5.33213i 0.199830i
\(713\) −4.24263 21.0782i −0.158888 0.789385i
\(714\) 8.22904 + 3.40061i 0.307964 + 0.127265i
\(715\) 3.63222 6.29119i 0.135837 0.235277i
\(716\) −6.58431 + 11.4044i −0.246067 + 0.426201i
\(717\) 9.83892 23.8089i 0.367441 0.889161i
\(718\) 8.16910 + 14.1493i 0.304868 + 0.528047i
\(719\) 15.1422 0.564708 0.282354 0.959310i \(-0.408885\pi\)
0.282354 + 0.959310i \(0.408885\pi\)
\(720\) −1.73843 6.44523i −0.0647874 0.240199i
\(721\) −1.35460 −0.0504479
\(722\) 11.0979 6.40738i 0.413022 0.238458i
\(723\) 17.5687 13.5041i 0.653388 0.502222i
\(724\) −0.158609 0.0915732i −0.00589467 0.00340329i
\(725\) −0.100090 + 0.173361i −0.00371725 + 0.00643847i
\(726\) 2.26558 + 17.0994i 0.0840835 + 0.634620i
\(727\) −13.4296 23.2608i −0.498077 0.862695i 0.501921 0.864914i \(-0.332627\pi\)
−0.999998 + 0.00221912i \(0.999294\pi\)
\(728\) −3.56029 −0.131953
\(729\) 18.9969 19.1864i 0.703588 0.710608i
\(730\) 13.6812i 0.506364i
\(731\) −27.2120 + 15.7108i −1.00647 + 0.581086i
\(732\) −0.407217 3.07347i −0.0150512 0.113599i
\(733\) −16.7337 + 28.9836i −0.618073 + 1.07053i 0.371764 + 0.928327i \(0.378753\pi\)
−0.989837 + 0.142207i \(0.954580\pi\)
\(734\) 4.62616 8.01274i 0.170755 0.295756i
\(735\) 17.6057 13.5325i 0.649395 0.499153i
\(736\) −3.34431 + 1.93084i −0.123273 + 0.0711717i
\(737\) 3.32692 0.122549
\(738\) −33.3073 + 8.98376i −1.22606 + 0.330697i
\(739\) 18.4729i 0.679537i −0.940509 0.339769i \(-0.889651\pi\)
0.940509 0.339769i \(-0.110349\pi\)
\(740\) −10.9452 18.9576i −0.402352 0.696894i
\(741\) 12.7362 + 5.26316i 0.467875 + 0.193347i
\(742\) 9.49594 + 5.48249i 0.348607 + 0.201268i
\(743\) 17.6305 30.5369i 0.646799 1.12029i −0.337084 0.941475i \(-0.609441\pi\)
0.983883 0.178814i \(-0.0572261\pi\)
\(744\) −7.27018 6.33596i −0.266538 0.232288i
\(745\) 5.82613 + 10.0912i 0.213453 + 0.369711i
\(746\) 8.98776i 0.329065i
\(747\) −4.31260 4.29835i −0.157790 0.157268i
\(748\) 4.71384 0.172355
\(749\) 10.0187 5.78432i 0.366077 0.211355i
\(750\) 11.8579 + 15.4271i 0.432990 + 0.563318i
\(751\) −0.496728 + 0.860358i −0.0181259 + 0.0313949i −0.874946 0.484220i \(-0.839103\pi\)
0.856820 + 0.515615i \(0.172437\pi\)
\(752\) 8.88791 + 5.13144i 0.324109 + 0.187124i
\(753\) −45.9846 + 6.09269i −1.67577 + 0.222030i
\(754\) 6.59602 + 11.4246i 0.240213 + 0.416061i
\(755\) −21.9198 −0.797744
\(756\) 5.33701 2.22620i 0.194105 0.0809660i
\(757\) 11.9119i 0.432946i 0.976289 + 0.216473i \(0.0694553\pi\)
−0.976289 + 0.216473i \(0.930545\pi\)
\(758\) 20.0479 11.5747i 0.728174 0.420412i
\(759\) 6.76639 0.896508i 0.245605 0.0325412i
\(760\) −2.76703 + 4.79264i −0.100371 + 0.173847i
\(761\) −26.4497 + 45.8122i −0.958800 + 1.66069i −0.233378 + 0.972386i \(0.574978\pi\)
−0.725422 + 0.688305i \(0.758355\pi\)
\(762\) −2.43016 3.16163i −0.0880354 0.114534i
\(763\) −6.46440 11.1967i −0.234027 0.405347i
\(764\) 0.0642022i 0.00232275i
\(765\) −29.7988 7.93175i −1.07738 0.286773i
\(766\) 7.67826i 0.277427i
\(767\) 9.43668 + 16.3448i 0.340739 + 0.590177i
\(768\) −0.661503 + 1.60075i −0.0238699 + 0.0577622i
\(769\) −13.1731 + 22.8165i −0.475036 + 0.822786i −0.999591 0.0285904i \(-0.990898\pi\)
0.524556 + 0.851376i \(0.324231\pi\)
\(770\) −1.26353 + 2.18849i −0.0455343 + 0.0788678i
\(771\) 12.3235 + 5.09263i 0.443821 + 0.183407i
\(772\) 1.25910 + 2.18083i 0.0453160 + 0.0784896i
\(773\) 41.3321 1.48661 0.743305 0.668952i \(-0.233257\pi\)
0.743305 + 0.668952i \(0.233257\pi\)
\(774\) −5.24905 + 19.7202i −0.188673 + 0.708827i
\(775\) 0.256141 + 0.0862982i 0.00920085 + 0.00309992i
\(776\) −1.83605 + 1.06005i −0.0659105 + 0.0380534i
\(777\) 15.0344 11.5561i 0.539356 0.414572i
\(778\) −15.5214 8.96129i −0.556469 0.321278i
\(779\) 24.7672 + 14.2993i 0.887376 + 0.512327i
\(780\) 12.2232 1.61950i 0.437660 0.0579875i
\(781\) 1.05729 0.610426i 0.0378328 0.0218428i
\(782\) 17.8382i 0.637894i
\(783\) −17.0313 13.0016i −0.608651 0.464639i
\(784\) −5.76149 −0.205768
\(785\) 25.7310 14.8558i 0.918379 0.530226i
\(786\) 9.20363 1.21943i 0.328282 0.0434955i
\(787\) 1.17396 + 0.677787i 0.0418472 + 0.0241605i 0.520778 0.853692i \(-0.325642\pi\)
−0.478930 + 0.877853i \(0.658975\pi\)
\(788\) 9.22741 15.9823i 0.328713 0.569347i
\(789\) 18.8150 + 24.4782i 0.669832 + 0.871449i
\(790\) −4.87062 + 2.81205i −0.173289 + 0.100048i
\(791\) 18.7058i 0.665102i
\(792\) 2.16115 2.16832i 0.0767932 0.0770478i
\(793\) 5.72643 0.203352
\(794\) 24.7782 14.3057i 0.879347 0.507691i
\(795\) −35.0954 14.5030i −1.24470 0.514367i
\(796\) 22.6547 + 13.0797i 0.802973 + 0.463597i
\(797\) −4.91284 + 8.50928i −0.174022 + 0.301414i −0.939822 0.341664i \(-0.889010\pi\)
0.765801 + 0.643078i \(0.222343\pi\)
\(798\) −4.43049 1.83088i −0.156838 0.0648123i
\(799\) 41.0559 23.7036i 1.45245 0.838574i
\(800\) 0.0485451i 0.00171633i
\(801\) −15.4444 + 4.16573i −0.545703 + 0.147189i
\(802\) 15.2623i 0.538931i
\(803\) 5.43359 3.13709i 0.191747 0.110705i
\(804\) 3.44128 + 4.47708i 0.121364 + 0.157895i
\(805\) −8.28176 4.78148i −0.291894 0.168525i
\(806\) 13.3651 11.7749i 0.470767 0.414751i
\(807\) 53.5599 7.09638i 1.88540 0.249804i
\(808\) 1.14459 + 1.98249i 0.0402666 + 0.0697438i
\(809\) −32.6168 −1.14674 −0.573372 0.819295i \(-0.694365\pi\)
−0.573372 + 0.819295i \(0.694365\pi\)
\(810\) −17.3104 + 10.0707i −0.608225 + 0.353848i
\(811\) 50.1843 1.76221 0.881105 0.472921i \(-0.156800\pi\)
0.881105 + 0.472921i \(0.156800\pi\)
\(812\) −2.29453 3.97425i −0.0805224 0.139469i
\(813\) 6.79996 + 51.3227i 0.238485 + 1.79996i
\(814\) 5.01944 8.69392i 0.175931 0.304722i
\(815\) −26.3149 15.1929i −0.921771 0.532185i
\(816\) 4.87586 + 6.34347i 0.170689 + 0.222066i
\(817\) 14.6508 8.45867i 0.512568 0.295931i
\(818\) 28.5904 0.999640
\(819\) 2.78148 + 10.3123i 0.0971927 + 0.360342i
\(820\) 25.5879 0.893567
\(821\) 11.0576 + 19.1523i 0.385912 + 0.668420i 0.991895 0.127058i \(-0.0405534\pi\)
−0.605983 + 0.795478i \(0.707220\pi\)
\(822\) 22.3519 + 9.23682i 0.779614 + 0.322171i
\(823\) −28.0176 16.1759i −0.976631 0.563858i −0.0753796 0.997155i \(-0.524017\pi\)
−0.901251 + 0.433297i \(0.857350\pi\)
\(824\) −1.05413 0.608600i −0.0367222 0.0212016i
\(825\) −0.0327700 + 0.0792993i −0.00114090 + 0.00276085i
\(826\) −3.28270 5.68581i −0.114220 0.197835i
\(827\) −15.7673 −0.548282 −0.274141 0.961690i \(-0.588393\pi\)
−0.274141 + 0.961690i \(0.588393\pi\)
\(828\) 8.20541 + 8.17830i 0.285158 + 0.284216i
\(829\) 8.39199i 0.291466i −0.989324 0.145733i \(-0.953446\pi\)
0.989324 0.145733i \(-0.0465540\pi\)
\(830\) 2.25814 + 3.91122i 0.0783814 + 0.135760i
\(831\) −3.92812 + 3.01932i −0.136265 + 0.104739i
\(832\) −2.77056 1.59958i −0.0960518 0.0554555i
\(833\) −13.3070 + 23.0484i −0.461061 + 0.798581i
\(834\) 13.0078 1.72346i 0.450424 0.0596786i
\(835\) 11.6772 6.74186i 0.404107 0.233312i
\(836\) −2.53792 −0.0877756
\(837\) −12.6722 + 26.0080i −0.438016 + 0.898967i
\(838\) −8.47141 −0.292640
\(839\) 27.8508 16.0797i 0.961516 0.555131i 0.0648765 0.997893i \(-0.479335\pi\)
0.896639 + 0.442762i \(0.146001\pi\)
\(840\) −4.25204 + 0.563370i −0.146709 + 0.0194381i
\(841\) 5.99800 10.3888i 0.206828 0.358236i
\(842\) 22.8445 + 13.1893i 0.787275 + 0.454533i
\(843\) 29.7065 22.8337i 1.02315 0.786435i
\(844\) −7.05862 12.2259i −0.242968 0.420833i
\(845\) 6.15343i 0.211684i
\(846\) 7.91947 29.7527i 0.272277 1.02292i
\(847\) 11.0828 0.380809
\(848\) 4.92639 + 8.53275i 0.169173 + 0.293016i
\(849\) −5.07771 + 12.2874i −0.174267 + 0.421703i
\(850\) −0.194201 0.112122i −0.00666104 0.00384576i
\(851\) 32.8998 + 18.9947i 1.12779 + 0.651130i
\(852\) 1.91509 + 0.791400i 0.0656099 + 0.0271129i
\(853\) 3.42036 + 5.92425i 0.117111 + 0.202842i 0.918622 0.395138i \(-0.129303\pi\)
−0.801511 + 0.597981i \(0.795970\pi\)
\(854\) −1.99203 −0.0681660
\(855\) 16.0436 + 4.27043i 0.548679 + 0.146046i
\(856\) 10.3952 0.355301
\(857\) −33.3784 + 19.2710i −1.14018 + 0.658285i −0.946476 0.322774i \(-0.895385\pi\)
−0.193707 + 0.981059i \(0.562051\pi\)
\(858\) 3.44597 + 4.48319i 0.117643 + 0.153053i
\(859\) −16.4040 9.47085i −0.559697 0.323141i 0.193327 0.981134i \(-0.438072\pi\)
−0.753024 + 0.657993i \(0.771406\pi\)
\(860\) 7.56816 13.1084i 0.258072 0.446994i
\(861\) 2.91136 + 21.9735i 0.0992187 + 0.748853i
\(862\) 10.3026 + 17.8447i 0.350909 + 0.607792i
\(863\) −1.15240 −0.0392282 −0.0196141 0.999808i \(-0.506244\pi\)
−0.0196141 + 0.999808i \(0.506244\pi\)
\(864\) 5.15337 + 0.665446i 0.175321 + 0.0226389i
\(865\) −32.7427 −1.11329
\(866\) −12.2312 21.1850i −0.415631 0.719895i
\(867\) 7.44834 0.986862i 0.252959 0.0335156i
\(868\) −4.64928 + 4.09608i −0.157807 + 0.139030i
\(869\) −2.23366 1.28960i −0.0757716 0.0437468i
\(870\) 9.68540 + 12.6007i 0.328366 + 0.427202i
\(871\) −9.03256 + 5.21495i −0.306057 + 0.176702i
\(872\) 11.6174i 0.393415i
\(873\) 4.50483 + 4.48995i 0.152465 + 0.151962i
\(874\) 9.60405i 0.324862i
\(875\) 10.8271 6.25103i 0.366023 0.211323i
\(876\) 9.84197 + 4.06714i 0.332529 + 0.137416i
\(877\) −28.7645 + 49.8216i −0.971309 + 1.68236i −0.279696 + 0.960089i \(0.590234\pi\)
−0.691613 + 0.722268i \(0.743100\pi\)
\(878\) −12.3935 7.15542i −0.418262 0.241484i
\(879\) 23.1287 + 9.55781i 0.780112 + 0.322377i
\(880\) −1.96651 + 1.13536i −0.0662910 + 0.0382731i
\(881\) −1.62120 −0.0546197 −0.0273098 0.999627i \(-0.508694\pi\)
−0.0273098 + 0.999627i \(0.508694\pi\)
\(882\) 4.50117 + 16.6881i 0.151562 + 0.561918i
\(883\) 23.7417i 0.798971i −0.916739 0.399486i \(-0.869189\pi\)
0.916739 0.399486i \(-0.130811\pi\)
\(884\) −12.7980 + 7.38894i −0.430444 + 0.248517i
\(885\) 13.8565 + 18.0273i 0.465782 + 0.605981i
\(886\) −2.53824 + 4.39636i −0.0852738 + 0.147698i
\(887\) 3.06497 + 1.76956i 0.102912 + 0.0594160i 0.550572 0.834787i \(-0.314409\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(888\) 16.8915 2.23802i 0.566841 0.0751031i
\(889\) −2.21890 + 1.28109i −0.0744197 + 0.0429662i
\(890\) 11.8650 0.397715
\(891\) −7.96891 4.56576i −0.266968 0.152959i
\(892\) 28.7959i 0.964158i
\(893\) −22.1044 + 12.7620i −0.739694 + 0.427063i
\(894\) −8.99137 + 1.19130i −0.300716 + 0.0398432i
\(895\) −25.3768 14.6513i −0.848254 0.489740i
\(896\) 0.963784 + 0.556441i 0.0321978 + 0.0185894i
\(897\) −16.9654 + 13.0403i −0.566458 + 0.435404i
\(898\) −29.5475 + 17.0592i −0.986012 + 0.569274i
\(899\) 21.7575 + 7.33047i 0.725653 + 0.244485i
\(900\) −0.140610 + 0.0379259i −0.00468701 + 0.00126420i
\(901\) 45.5129 1.51625
\(902\) 5.86728 + 10.1624i 0.195359 + 0.338372i
\(903\) 12.1179 + 5.00766i 0.403258 + 0.166644i
\(904\) 8.40422 14.5565i 0.279520 0.484143i
\(905\) 0.203767 0.352936i 0.00677346 0.0117320i
\(906\) 6.51632 15.7687i 0.216490 0.523879i
\(907\) −18.0502 31.2639i −0.599347 1.03810i −0.992918 0.118805i \(-0.962094\pi\)
0.393570 0.919295i \(-0.371240\pi\)
\(908\) 14.6933i 0.487615i
\(909\) 4.84805 4.86412i 0.160800 0.161333i
\(910\) 7.92231i 0.262622i
\(911\) −23.2080 40.1975i −0.768916 1.33180i −0.938151 0.346226i \(-0.887463\pi\)
0.169235 0.985576i \(-0.445870\pi\)
\(912\) −2.62515 3.41530i −0.0869273 0.113092i
\(913\) −1.03558 + 1.79368i −0.0342728 + 0.0593622i
\(914\) −2.93947 + 5.09131i −0.0972290 + 0.168406i
\(915\) 6.83905 0.906135i 0.226092 0.0299559i
\(916\) 6.07989 3.51023i 0.200885 0.115981i
\(917\) 5.96522i 0.196989i
\(918\) 14.5645 19.0787i 0.480701 0.629691i
\(919\) −56.6374 −1.86829 −0.934147 0.356888i \(-0.883838\pi\)
−0.934147 + 0.356888i \(0.883838\pi\)
\(920\) −4.29648 7.44172i −0.141651 0.245346i
\(921\) 58.0302 7.68867i 1.91216 0.253350i
\(922\) 34.2032 + 19.7473i 1.12642 + 0.650341i
\(923\) −1.91369 + 3.31460i −0.0629897 + 0.109101i
\(924\) −1.19874 1.55955i −0.0394355 0.0513054i
\(925\) −0.413582 + 0.238782i −0.0135985 + 0.00785110i
\(926\) −23.1475 −0.760675
\(927\) −0.939266 + 3.52873i −0.0308495 + 0.115899i
\(928\) 4.12359i 0.135364i
\(929\) −24.5733 42.5622i −0.806224 1.39642i −0.915461 0.402406i \(-0.868174\pi\)
0.109237 0.994016i \(-0.465159\pi\)
\(930\) 14.0987 16.1775i 0.462315 0.530482i
\(931\) 7.16446 12.4092i 0.234806 0.406695i
\(932\) 1.77433 + 1.02441i 0.0581201 + 0.0335557i
\(933\) 22.8189 + 9.42981i 0.747059 + 0.308718i
\(934\) 3.06335 + 5.30588i 0.100236 + 0.173614i
\(935\) 10.4892i 0.343033i
\(936\) −2.46867 + 9.27456i −0.0806910 + 0.303148i
\(937\) 3.03674 0.0992059 0.0496029 0.998769i \(-0.484204\pi\)
0.0496029 + 0.998769i \(0.484204\pi\)
\(938\) 3.14212 1.81411i 0.102594 0.0592327i
\(939\) −12.6225 + 9.70218i −0.411919 + 0.316619i
\(940\) −11.4184 + 19.7773i −0.372427 + 0.645063i
\(941\) −11.1294 + 19.2767i −0.362809 + 0.628404i −0.988422 0.151730i \(-0.951516\pi\)
0.625613 + 0.780134i \(0.284849\pi\)
\(942\) 3.03766 + 22.9267i 0.0989722 + 0.746992i
\(943\) −38.4569 + 22.2031i −1.25233 + 0.723033i
\(944\) 5.89947i 0.192011i
\(945\) 4.95370 + 11.8758i 0.161144 + 0.386321i
\(946\) 6.94149 0.225687
\(947\) 25.6560 + 44.4375i 0.833708 + 1.44403i 0.895078 + 0.445910i \(0.147120\pi\)
−0.0613692 + 0.998115i \(0.519547\pi\)
\(948\) −0.574997 4.33979i −0.0186750 0.140950i
\(949\) −9.83476 + 17.0343i −0.319250 + 0.552957i
\(950\) 0.104557 + 0.0603662i 0.00339229 + 0.00195854i
\(951\) 10.2053 7.84423i 0.330930 0.254367i
\(952\) 4.45200 2.57036i 0.144290 0.0833060i
\(953\) 28.3831 0.919417 0.459709 0.888070i \(-0.347954\pi\)
0.459709 + 0.888070i \(0.347954\pi\)
\(954\) 20.8663 20.9354i 0.675571 0.677810i
\(955\) 0.142862 0.00462290
\(956\) −7.43679 12.8809i −0.240523 0.416598i
\(957\) −2.78360 + 6.73596i −0.0899809 + 0.217743i
\(958\) 3.74499 6.48652i 0.120995 0.209570i
\(959\) 7.76980 13.4577i 0.250900 0.434571i
\(960\) −3.56198 1.47197i −0.114962 0.0475076i
\(961\) 3.90631 30.7529i 0.126010 0.992029i
\(962\) 31.4718i 1.01469i
\(963\) −8.12127 30.1096i −0.261704 0.970269i
\(964\) 12.7935i 0.412051i
\(965\) −4.85274 + 2.80173i −0.156215 + 0.0901910i
\(966\) 5.90170 4.53629i 0.189884 0.145953i
\(967\) 5.33559 + 3.08050i 0.171581 + 0.0990624i 0.583331 0.812234i \(-0.301749\pi\)
−0.411750 + 0.911297i \(0.635082\pi\)
\(968\) 8.62444 + 4.97932i 0.277200 + 0.160042i
\(969\) −19.7258 + 2.61356i −0.633685 + 0.0839596i
\(970\) −2.35880 4.08556i −0.0757365 0.131179i
\(971\) 25.5833i 0.821007i −0.911859 0.410504i \(-0.865353\pi\)
0.911859 0.410504i \(-0.134647\pi\)
\(972\) −2.09861 15.4465i −0.0673131 0.495448i
\(973\) 8.43086i 0.270281i
\(974\) −4.84260 8.38762i −0.155167 0.268757i
\(975\) −0.0353314 0.266664i −0.00113151 0.00854007i
\(976\) −1.55017 0.894989i −0.0496196 0.0286479i
\(977\) −27.8940 16.1046i −0.892408 0.515232i −0.0176784 0.999844i \(-0.505627\pi\)
−0.874729 + 0.484612i \(0.838961\pi\)
\(978\) 18.7524 14.4139i 0.599635 0.460905i
\(979\) 2.72063 + 4.71227i 0.0869517 + 0.150605i
\(980\) 12.8204i 0.409533i
\(981\) −33.6497 + 9.07611i −1.07435 + 0.289778i
\(982\) 16.5164i 0.527060i
\(983\) 7.45474 + 12.9120i 0.237769 + 0.411829i 0.960074 0.279747i \(-0.0902504\pi\)
−0.722305 + 0.691575i \(0.756917\pi\)
\(984\) −7.60676 + 18.4074i −0.242495 + 0.586806i
\(985\) 35.5637 + 20.5327i 1.13315 + 0.654227i
\(986\) −16.4961 9.52404i −0.525344 0.303307i
\(987\) −18.2828 7.55527i −0.581948 0.240487i
\(988\) 6.89041 3.97818i 0.219213 0.126563i
\(989\) 26.2682i 0.835280i
\(990\) 4.82491 + 4.80897i 0.153346 + 0.152839i
\(991\) 45.0132i 1.42989i 0.699181 + 0.714945i \(0.253548\pi\)
−0.699181 + 0.714945i \(0.746452\pi\)
\(992\) −5.45829 + 1.09865i −0.173301 + 0.0348821i
\(993\) 37.6452 28.9357i 1.19464 0.918247i
\(994\) 0.665707 1.15304i 0.0211149 0.0365722i
\(995\) −29.1047 + 50.4108i −0.922681 + 1.59813i
\(996\) −3.48495 + 0.461736i −0.110425 + 0.0146307i
\(997\) 7.75035 + 13.4240i 0.245456 + 0.425142i 0.962260 0.272133i \(-0.0877290\pi\)
−0.716804 + 0.697275i \(0.754396\pi\)
\(998\) −19.0832 −0.604068
\(999\) −19.6789 47.1775i −0.622612 1.49263i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.q.a.185.15 yes 64
3.2 odd 2 1674.2.q.a.557.23 64
9.2 odd 6 inner 558.2.q.a.371.2 yes 64
9.7 even 3 1674.2.q.a.1115.26 64
31.30 odd 2 inner 558.2.q.a.185.2 64
93.92 even 2 1674.2.q.a.557.26 64
279.61 odd 6 1674.2.q.a.1115.23 64
279.92 even 6 inner 558.2.q.a.371.15 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.q.a.185.2 64 31.30 odd 2 inner
558.2.q.a.185.15 yes 64 1.1 even 1 trivial
558.2.q.a.371.2 yes 64 9.2 odd 6 inner
558.2.q.a.371.15 yes 64 279.92 even 6 inner
1674.2.q.a.557.23 64 3.2 odd 2
1674.2.q.a.557.26 64 93.92 even 2
1674.2.q.a.1115.23 64 279.61 odd 6
1674.2.q.a.1115.26 64 9.7 even 3