Properties

Label 1674.2.q.a.1115.23
Level $1674$
Weight $2$
Character 1674.1115
Analytic conductor $13.367$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1674,2,Mod(557,1674)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1674.557"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1674, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1674 = 2 \cdot 3^{3} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1674.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3669572984\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 558)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1115.23
Character \(\chi\) \(=\) 1674.1115
Dual form 1674.2.q.a.557.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-1.92707 + 1.11259i) q^{5} +(0.556441 - 0.963784i) q^{7} +1.00000i q^{8} -2.22519 q^{10} +(0.510234 - 0.883751i) q^{11} +(2.77056 - 1.59958i) q^{13} +(0.963784 - 0.556441i) q^{14} +(-0.500000 + 0.866025i) q^{16} +4.61929 q^{17} +2.48701 q^{19} +(-1.92707 - 1.11259i) q^{20} +(0.883751 - 0.510234i) q^{22} +(1.93084 + 3.34431i) q^{23} +(-0.0242726 + 0.0420413i) q^{25} +3.19916 q^{26} +1.11288 q^{28} +(2.06180 - 3.57113i) q^{29} +(-4.17770 - 3.68060i) q^{31} +(-0.866025 + 0.500000i) q^{32} +(4.00043 + 2.30965i) q^{34} +2.47637i q^{35} +9.83752i q^{37} +(2.15382 + 1.24351i) q^{38} +(-1.11259 - 1.92707i) q^{40} +(-9.95860 + 5.74960i) q^{41} +(5.89094 + 3.40113i) q^{43} +1.02047 q^{44} +3.86168i q^{46} +(8.88791 + 5.13144i) q^{47} +(2.88075 + 4.98960i) q^{49} +(-0.0420413 + 0.0242726i) q^{50} +(2.77056 + 1.59958i) q^{52} +9.85277 q^{53} +2.27073i q^{55} +(0.963784 + 0.556441i) q^{56} +(3.57113 - 2.06180i) q^{58} +(-5.10909 + 2.94973i) q^{59} +(1.55017 + 0.894989i) q^{61} +(-1.77769 - 5.27635i) q^{62} -1.00000 q^{64} +(-3.55937 + 6.16501i) q^{65} +(-1.63010 - 2.82341i) q^{67} +(2.30965 + 4.00043i) q^{68} +(-1.23818 + 2.14460i) q^{70} +1.19637i q^{71} -6.14833i q^{73} +(-4.91876 + 8.51955i) q^{74} +(1.24351 + 2.15382i) q^{76} +(-0.567830 - 0.983510i) q^{77} +(2.18886 + 1.26374i) q^{79} -2.22519i q^{80} -11.4992 q^{82} +(1.01481 - 1.75771i) q^{83} +(-8.90169 + 5.13940i) q^{85} +(3.40113 + 5.89094i) q^{86} +(0.883751 + 0.510234i) q^{88} +5.33213 q^{89} -3.56029i q^{91} +(-1.93084 + 3.34431i) q^{92} +(5.13144 + 8.88791i) q^{94} +(-4.79264 + 2.76703i) q^{95} +(1.06005 - 1.83605i) q^{97} +5.76149i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{5} - 4 q^{7} - 32 q^{16} - 8 q^{19} - 12 q^{20} + 44 q^{25} - 8 q^{28} + 8 q^{31} - 36 q^{38} - 24 q^{41} + 48 q^{47} - 36 q^{49} + 12 q^{59} - 64 q^{64} + 16 q^{67} - 12 q^{70}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1674\mathbb{Z}\right)^\times\).

\(n\) \(1055\) \(1243\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.92707 + 1.11259i −0.861811 + 0.497567i −0.864618 0.502429i \(-0.832440\pi\)
0.00280731 + 0.999996i \(0.499106\pi\)
\(6\) 0 0
\(7\) 0.556441 0.963784i 0.210315 0.364276i −0.741498 0.670955i \(-0.765884\pi\)
0.951813 + 0.306679i \(0.0992178\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.22519 −0.703666
\(11\) 0.510234 0.883751i 0.153841 0.266461i −0.778795 0.627278i \(-0.784169\pi\)
0.932636 + 0.360817i \(0.117502\pi\)
\(12\) 0 0
\(13\) 2.77056 1.59958i 0.768414 0.443644i −0.0638944 0.997957i \(-0.520352\pi\)
0.832309 + 0.554313i \(0.187019\pi\)
\(14\) 0.963784 0.556441i 0.257582 0.148715i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 4.61929 1.12034 0.560172 0.828377i \(-0.310735\pi\)
0.560172 + 0.828377i \(0.310735\pi\)
\(18\) 0 0
\(19\) 2.48701 0.570560 0.285280 0.958444i \(-0.407913\pi\)
0.285280 + 0.958444i \(0.407913\pi\)
\(20\) −1.92707 1.11259i −0.430906 0.248783i
\(21\) 0 0
\(22\) 0.883751 0.510234i 0.188416 0.108782i
\(23\) 1.93084 + 3.34431i 0.402608 + 0.697338i 0.994040 0.109017i \(-0.0347704\pi\)
−0.591432 + 0.806355i \(0.701437\pi\)
\(24\) 0 0
\(25\) −0.0242726 + 0.0420413i −0.00485451 + 0.00840826i
\(26\) 3.19916 0.627408
\(27\) 0 0
\(28\) 1.11288 0.210315
\(29\) 2.06180 3.57113i 0.382866 0.663143i −0.608605 0.793473i \(-0.708270\pi\)
0.991471 + 0.130330i \(0.0416038\pi\)
\(30\) 0 0
\(31\) −4.17770 3.68060i −0.750337 0.661056i
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 4.00043 + 2.30965i 0.686067 + 0.396101i
\(35\) 2.47637i 0.418583i
\(36\) 0 0
\(37\) 9.83752i 1.61728i 0.588304 + 0.808640i \(0.299796\pi\)
−0.588304 + 0.808640i \(0.700204\pi\)
\(38\) 2.15382 + 1.24351i 0.349395 + 0.201723i
\(39\) 0 0
\(40\) −1.11259 1.92707i −0.175916 0.304696i
\(41\) −9.95860 + 5.74960i −1.55527 + 0.897937i −0.557574 + 0.830127i \(0.688268\pi\)
−0.997698 + 0.0678092i \(0.978399\pi\)
\(42\) 0 0
\(43\) 5.89094 + 3.40113i 0.898360 + 0.518668i 0.876668 0.481097i \(-0.159761\pi\)
0.0216919 + 0.999765i \(0.493095\pi\)
\(44\) 1.02047 0.153841
\(45\) 0 0
\(46\) 3.86168i 0.569374i
\(47\) 8.88791 + 5.13144i 1.29644 + 0.748497i 0.979787 0.200046i \(-0.0641091\pi\)
0.316649 + 0.948543i \(0.397442\pi\)
\(48\) 0 0
\(49\) 2.88075 + 4.98960i 0.411535 + 0.712800i
\(50\) −0.0420413 + 0.0242726i −0.00594554 + 0.00343266i
\(51\) 0 0
\(52\) 2.77056 + 1.59958i 0.384207 + 0.221822i
\(53\) 9.85277 1.35338 0.676691 0.736267i \(-0.263413\pi\)
0.676691 + 0.736267i \(0.263413\pi\)
\(54\) 0 0
\(55\) 2.27073i 0.306185i
\(56\) 0.963784 + 0.556441i 0.128791 + 0.0743575i
\(57\) 0 0
\(58\) 3.57113 2.06180i 0.468913 0.270727i
\(59\) −5.10909 + 2.94973i −0.665146 + 0.384022i −0.794235 0.607611i \(-0.792128\pi\)
0.129089 + 0.991633i \(0.458795\pi\)
\(60\) 0 0
\(61\) 1.55017 + 0.894989i 0.198478 + 0.114592i 0.595946 0.803025i \(-0.296777\pi\)
−0.397467 + 0.917616i \(0.630111\pi\)
\(62\) −1.77769 5.27635i −0.225767 0.670096i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.55937 + 6.16501i −0.441485 + 0.764675i
\(66\) 0 0
\(67\) −1.63010 2.82341i −0.199148 0.344935i 0.749104 0.662452i \(-0.230484\pi\)
−0.948252 + 0.317517i \(0.897151\pi\)
\(68\) 2.30965 + 4.00043i 0.280086 + 0.485123i
\(69\) 0 0
\(70\) −1.23818 + 2.14460i −0.147991 + 0.256329i
\(71\) 1.19637i 0.141983i 0.997477 + 0.0709913i \(0.0226163\pi\)
−0.997477 + 0.0709913i \(0.977384\pi\)
\(72\) 0 0
\(73\) 6.14833i 0.719608i −0.933028 0.359804i \(-0.882844\pi\)
0.933028 0.359804i \(-0.117156\pi\)
\(74\) −4.91876 + 8.51955i −0.571795 + 0.990377i
\(75\) 0 0
\(76\) 1.24351 + 2.15382i 0.142640 + 0.247060i
\(77\) −0.567830 0.983510i −0.0647102 0.112081i
\(78\) 0 0
\(79\) 2.18886 + 1.26374i 0.246266 + 0.142182i 0.618053 0.786136i \(-0.287922\pi\)
−0.371787 + 0.928318i \(0.621255\pi\)
\(80\) 2.22519i 0.248783i
\(81\) 0 0
\(82\) −11.4992 −1.26987
\(83\) 1.01481 1.75771i 0.111390 0.192933i −0.804941 0.593355i \(-0.797803\pi\)
0.916331 + 0.400422i \(0.131136\pi\)
\(84\) 0 0
\(85\) −8.90169 + 5.13940i −0.965524 + 0.557446i
\(86\) 3.40113 + 5.89094i 0.366754 + 0.635236i
\(87\) 0 0
\(88\) 0.883751 + 0.510234i 0.0942081 + 0.0543911i
\(89\) 5.33213 0.565204 0.282602 0.959237i \(-0.408802\pi\)
0.282602 + 0.959237i \(0.408802\pi\)
\(90\) 0 0
\(91\) 3.56029i 0.373220i
\(92\) −1.93084 + 3.34431i −0.201304 + 0.348669i
\(93\) 0 0
\(94\) 5.13144 + 8.88791i 0.529267 + 0.916718i
\(95\) −4.79264 + 2.76703i −0.491715 + 0.283892i
\(96\) 0 0
\(97\) 1.06005 1.83605i 0.107631 0.186423i −0.807179 0.590307i \(-0.799007\pi\)
0.914810 + 0.403884i \(0.132340\pi\)
\(98\) 5.76149i 0.581999i
\(99\) 0 0
\(100\) −0.0485451 −0.00485451
\(101\) −1.98249 1.14459i −0.197265 0.113891i 0.398114 0.917336i \(-0.369665\pi\)
−0.595379 + 0.803445i \(0.702998\pi\)
\(102\) 0 0
\(103\) −0.608600 1.05413i −0.0599671 0.103866i 0.834483 0.551033i \(-0.185766\pi\)
−0.894450 + 0.447167i \(0.852433\pi\)
\(104\) 1.59958 + 2.77056i 0.156852 + 0.271675i
\(105\) 0 0
\(106\) 8.53275 + 4.92639i 0.828774 + 0.478493i
\(107\) 10.3952i 1.00494i −0.864594 0.502472i \(-0.832424\pi\)
0.864594 0.502472i \(-0.167576\pi\)
\(108\) 0 0
\(109\) −11.6174 −1.11275 −0.556373 0.830933i \(-0.687807\pi\)
−0.556373 + 0.830933i \(0.687807\pi\)
\(110\) −1.13536 + 1.96651i −0.108253 + 0.187499i
\(111\) 0 0
\(112\) 0.556441 + 0.963784i 0.0525787 + 0.0910690i
\(113\) 14.5565 8.40422i 1.36936 0.790602i 0.378517 0.925595i \(-0.376434\pi\)
0.990847 + 0.134992i \(0.0431010\pi\)
\(114\) 0 0
\(115\) −7.44172 4.29648i −0.693944 0.400649i
\(116\) 4.12359 0.382866
\(117\) 0 0
\(118\) −5.89947 −0.543090
\(119\) 2.57036 4.45200i 0.235625 0.408114i
\(120\) 0 0
\(121\) 4.97932 + 8.62444i 0.452666 + 0.784040i
\(122\) 0.894989 + 1.55017i 0.0810285 + 0.140345i
\(123\) 0 0
\(124\) 1.09865 5.45829i 0.0986615 0.490169i
\(125\) 11.2340i 1.00480i
\(126\) 0 0
\(127\) 2.30229i 0.204295i −0.994769 0.102147i \(-0.967429\pi\)
0.994769 0.102147i \(-0.0325713\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −6.16501 + 3.55937i −0.540707 + 0.312177i
\(131\) 4.64203 2.68008i 0.405576 0.234159i −0.283311 0.959028i \(-0.591433\pi\)
0.688887 + 0.724869i \(0.258100\pi\)
\(132\) 0 0
\(133\) 1.38388 2.39694i 0.119997 0.207841i
\(134\) 3.26020i 0.281638i
\(135\) 0 0
\(136\) 4.61929i 0.396101i
\(137\) 6.98169 12.0926i 0.596486 1.03314i −0.396849 0.917884i \(-0.629896\pi\)
0.993335 0.115260i \(-0.0367703\pi\)
\(138\) 0 0
\(139\) −6.56075 + 3.78785i −0.556476 + 0.321281i −0.751730 0.659471i \(-0.770780\pi\)
0.195254 + 0.980753i \(0.437447\pi\)
\(140\) −2.14460 + 1.23818i −0.181252 + 0.104646i
\(141\) 0 0
\(142\) −0.598183 + 1.03608i −0.0501984 + 0.0869462i
\(143\) 3.26464i 0.273003i
\(144\) 0 0
\(145\) 9.17576i 0.762005i
\(146\) 3.07417 5.32461i 0.254420 0.440668i
\(147\) 0 0
\(148\) −8.51955 + 4.91876i −0.700302 + 0.404320i
\(149\) −4.53497 + 2.61827i −0.371519 + 0.214497i −0.674122 0.738620i \(-0.735478\pi\)
0.302603 + 0.953117i \(0.402144\pi\)
\(150\) 0 0
\(151\) −8.53103 4.92539i −0.694245 0.400823i 0.110955 0.993825i \(-0.464609\pi\)
−0.805200 + 0.593003i \(0.797942\pi\)
\(152\) 2.48701i 0.201723i
\(153\) 0 0
\(154\) 1.13566i 0.0915140i
\(155\) 12.1457 + 2.44470i 0.975568 + 0.196363i
\(156\) 0 0
\(157\) 6.67621 + 11.5635i 0.532819 + 0.922870i 0.999265 + 0.0383206i \(0.0122008\pi\)
−0.466446 + 0.884550i \(0.654466\pi\)
\(158\) 1.26374 + 2.18886i 0.100538 + 0.174136i
\(159\) 0 0
\(160\) 1.11259 1.92707i 0.0879582 0.152348i
\(161\) 4.29760 0.338698
\(162\) 0 0
\(163\) −13.6554 −1.06957 −0.534787 0.844987i \(-0.679608\pi\)
−0.534787 + 0.844987i \(0.679608\pi\)
\(164\) −9.95860 5.74960i −0.777636 0.448968i
\(165\) 0 0
\(166\) 1.75771 1.01481i 0.136424 0.0787647i
\(167\) −3.02979 5.24776i −0.234453 0.406084i 0.724661 0.689106i \(-0.241996\pi\)
−0.959113 + 0.283022i \(0.908663\pi\)
\(168\) 0 0
\(169\) −1.38268 + 2.39487i −0.106360 + 0.184221i
\(170\) −10.2788 −0.788347
\(171\) 0 0
\(172\) 6.80227i 0.518668i
\(173\) 12.7432 + 7.35730i 0.968849 + 0.559365i 0.898885 0.438184i \(-0.144378\pi\)
0.0699640 + 0.997550i \(0.477712\pi\)
\(174\) 0 0
\(175\) 0.0270125 + 0.0467870i 0.00204195 + 0.00353676i
\(176\) 0.510234 + 0.883751i 0.0384603 + 0.0666152i
\(177\) 0 0
\(178\) 4.61776 + 2.66606i 0.346116 + 0.199830i
\(179\) 13.1686 0.984269 0.492135 0.870519i \(-0.336217\pi\)
0.492135 + 0.870519i \(0.336217\pi\)
\(180\) 0 0
\(181\) 0.183146i 0.0136132i 0.999977 + 0.00680658i \(0.00216662\pi\)
−0.999977 + 0.00680658i \(0.997833\pi\)
\(182\) 1.78014 3.08330i 0.131953 0.228550i
\(183\) 0 0
\(184\) −3.34431 + 1.93084i −0.246546 + 0.142343i
\(185\) −10.9452 18.9576i −0.804704 1.39379i
\(186\) 0 0
\(187\) 2.35692 4.08230i 0.172355 0.298528i
\(188\) 10.2629i 0.748497i
\(189\) 0 0
\(190\) −5.53407 −0.401483
\(191\) −0.0556007 0.0321011i −0.00402313 0.00232275i 0.497987 0.867184i \(-0.334073\pi\)
−0.502010 + 0.864862i \(0.667406\pi\)
\(192\) 0 0
\(193\) −1.25910 2.18083i −0.0906320 0.156979i 0.817145 0.576432i \(-0.195555\pi\)
−0.907777 + 0.419453i \(0.862222\pi\)
\(194\) 1.83605 1.06005i 0.131821 0.0761068i
\(195\) 0 0
\(196\) −2.88075 + 4.98960i −0.205768 + 0.356400i
\(197\) −18.4548 −1.31485 −0.657426 0.753519i \(-0.728355\pi\)
−0.657426 + 0.753519i \(0.728355\pi\)
\(198\) 0 0
\(199\) 26.1593i 1.85439i −0.374583 0.927194i \(-0.622214\pi\)
0.374583 0.927194i \(-0.377786\pi\)
\(200\) −0.0420413 0.0242726i −0.00297277 0.00171633i
\(201\) 0 0
\(202\) −1.14459 1.98249i −0.0805333 0.139488i
\(203\) −2.29453 3.97425i −0.161045 0.278938i
\(204\) 0 0
\(205\) 12.7939 22.1597i 0.893567 1.54770i
\(206\) 1.21720i 0.0848063i
\(207\) 0 0
\(208\) 3.19916i 0.221822i
\(209\) 1.26896 2.19790i 0.0877756 0.152032i
\(210\) 0 0
\(211\) 7.05862 + 12.2259i 0.485936 + 0.841665i 0.999869 0.0161647i \(-0.00514561\pi\)
−0.513934 + 0.857830i \(0.671812\pi\)
\(212\) 4.92639 + 8.53275i 0.338346 + 0.586032i
\(213\) 0 0
\(214\) 5.19761 9.00252i 0.355301 0.615400i
\(215\) −15.1363 −1.03229
\(216\) 0 0
\(217\) −5.87195 + 1.97836i −0.398614 + 0.134300i
\(218\) −10.0610 5.80870i −0.681415 0.393415i
\(219\) 0 0
\(220\) −1.96651 + 1.13536i −0.132582 + 0.0765463i
\(221\) 12.7980 7.38894i 0.860888 0.497034i
\(222\) 0 0
\(223\) −24.9380 14.3979i −1.66997 0.964158i −0.967650 0.252297i \(-0.918814\pi\)
−0.702320 0.711861i \(-0.747853\pi\)
\(224\) 1.11288i 0.0743575i
\(225\) 0 0
\(226\) 16.8084 1.11808
\(227\) 12.7248 + 7.34666i 0.844573 + 0.487615i 0.858816 0.512284i \(-0.171200\pi\)
−0.0142427 + 0.999899i \(0.504534\pi\)
\(228\) 0 0
\(229\) 6.07989 3.51023i 0.401771 0.231962i −0.285477 0.958386i \(-0.592152\pi\)
0.687248 + 0.726423i \(0.258819\pi\)
\(230\) −4.29648 7.44172i −0.283302 0.490693i
\(231\) 0 0
\(232\) 3.57113 + 2.06180i 0.234456 + 0.135364i
\(233\) 2.04882i 0.134223i 0.997745 + 0.0671113i \(0.0213783\pi\)
−0.997745 + 0.0671113i \(0.978622\pi\)
\(234\) 0 0
\(235\) −22.8368 −1.48971
\(236\) −5.10909 2.94973i −0.332573 0.192011i
\(237\) 0 0
\(238\) 4.45200 2.57036i 0.288580 0.166612i
\(239\) −7.43679 12.8809i −0.481046 0.833196i 0.518718 0.854946i \(-0.326410\pi\)
−0.999763 + 0.0217497i \(0.993076\pi\)
\(240\) 0 0
\(241\) 11.0795 + 6.39675i 0.713693 + 0.412051i 0.812427 0.583063i \(-0.198146\pi\)
−0.0987341 + 0.995114i \(0.531479\pi\)
\(242\) 9.95865i 0.640166i
\(243\) 0 0
\(244\) 1.78998i 0.114592i
\(245\) −11.1028 6.41020i −0.709331 0.409533i
\(246\) 0 0
\(247\) 6.89041 3.97818i 0.438426 0.253126i
\(248\) 3.68060 4.17770i 0.233719 0.265284i
\(249\) 0 0
\(250\) 5.61698 9.72889i 0.355249 0.615309i
\(251\) 26.7812 1.69042 0.845208 0.534437i \(-0.179476\pi\)
0.845208 + 0.534437i \(0.179476\pi\)
\(252\) 0 0
\(253\) 3.94072 0.247751
\(254\) 1.15114 1.99384i 0.0722291 0.125104i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.66716 + 3.84929i −0.415886 + 0.240112i −0.693316 0.720634i \(-0.743851\pi\)
0.277430 + 0.960746i \(0.410517\pi\)
\(258\) 0 0
\(259\) 9.48125 + 5.47400i 0.589136 + 0.340138i
\(260\) −7.11873 −0.441485
\(261\) 0 0
\(262\) 5.36015 0.331151
\(263\) −8.91249 + 15.4369i −0.549567 + 0.951879i 0.448737 + 0.893664i \(0.351874\pi\)
−0.998304 + 0.0582147i \(0.981459\pi\)
\(264\) 0 0
\(265\) −18.9870 + 10.9621i −1.16636 + 0.673398i
\(266\) 2.39694 1.38388i 0.146966 0.0848509i
\(267\) 0 0
\(268\) 1.63010 2.82341i 0.0995741 0.172467i
\(269\) −31.1931 −1.90188 −0.950938 0.309383i \(-0.899878\pi\)
−0.950938 + 0.309383i \(0.899878\pi\)
\(270\) 0 0
\(271\) 29.8901i 1.81569i −0.419301 0.907847i \(-0.637725\pi\)
0.419301 0.907847i \(-0.362275\pi\)
\(272\) −2.30965 + 4.00043i −0.140043 + 0.242561i
\(273\) 0 0
\(274\) 12.0926 6.98169i 0.730543 0.421779i
\(275\) 0.0247693 + 0.0429018i 0.00149365 + 0.00258707i
\(276\) 0 0
\(277\) −2.47722 1.43022i −0.148842 0.0859337i 0.423730 0.905789i \(-0.360721\pi\)
−0.572571 + 0.819855i \(0.694054\pi\)
\(278\) −7.57570 −0.454360
\(279\) 0 0
\(280\) −2.47637 −0.147991
\(281\) −18.7340 10.8161i −1.11758 0.645235i −0.176797 0.984247i \(-0.556574\pi\)
−0.940782 + 0.339013i \(0.889907\pi\)
\(282\) 0 0
\(283\) −3.83801 6.64763i −0.228146 0.395161i 0.729113 0.684394i \(-0.239933\pi\)
−0.957259 + 0.289233i \(0.906600\pi\)
\(284\) −1.03608 + 0.598183i −0.0614803 + 0.0354956i
\(285\) 0 0
\(286\) 1.63232 2.82726i 0.0965211 0.167180i
\(287\) 12.7972i 0.755398i
\(288\) 0 0
\(289\) 4.33788 0.255169
\(290\) −4.58788 + 7.94644i −0.269410 + 0.466631i
\(291\) 0 0
\(292\) 5.32461 3.07417i 0.311599 0.179902i
\(293\) −12.5129 + 7.22431i −0.731010 + 0.422049i −0.818792 0.574091i \(-0.805356\pi\)
0.0877814 + 0.996140i \(0.472022\pi\)
\(294\) 0 0
\(295\) 6.56371 11.3687i 0.382154 0.661910i
\(296\) −9.83752 −0.571795
\(297\) 0 0
\(298\) −5.23653 −0.303344
\(299\) 10.6990 + 6.17708i 0.618740 + 0.357230i
\(300\) 0 0
\(301\) 6.55592 3.78506i 0.377877 0.218167i
\(302\) −4.92539 8.53103i −0.283424 0.490905i
\(303\) 0 0
\(304\) −1.24351 + 2.15382i −0.0713200 + 0.123530i
\(305\) −3.98303 −0.228068
\(306\) 0 0
\(307\) 33.7966 1.92887 0.964436 0.264317i \(-0.0851465\pi\)
0.964436 + 0.264317i \(0.0851465\pi\)
\(308\) 0.567830 0.983510i 0.0323551 0.0560407i
\(309\) 0 0
\(310\) 9.29616 + 8.19003i 0.527986 + 0.465162i
\(311\) −12.3453 + 7.12756i −0.700038 + 0.404167i −0.807361 0.590057i \(-0.799105\pi\)
0.107324 + 0.994224i \(0.465772\pi\)
\(312\) 0 0
\(313\) −7.96020 4.59583i −0.449937 0.259771i 0.257866 0.966181i \(-0.416981\pi\)
−0.707804 + 0.706409i \(0.750314\pi\)
\(314\) 13.3524i 0.753520i
\(315\) 0 0
\(316\) 2.52748i 0.142182i
\(317\) −6.43584 3.71574i −0.361473 0.208696i 0.308254 0.951304i \(-0.400255\pi\)
−0.669727 + 0.742608i \(0.733589\pi\)
\(318\) 0 0
\(319\) −2.10399 3.64423i −0.117801 0.204037i
\(320\) 1.92707 1.11259i 0.107726 0.0621959i
\(321\) 0 0
\(322\) 3.72183 + 2.14880i 0.207409 + 0.119748i
\(323\) 11.4882 0.639223
\(324\) 0 0
\(325\) 0.155304i 0.00861470i
\(326\) −11.8259 6.82771i −0.654978 0.378152i
\(327\) 0 0
\(328\) −5.74960 9.95860i −0.317469 0.549872i
\(329\) 9.89119 5.71068i 0.545319 0.314840i
\(330\) 0 0
\(331\) 23.7405 + 13.7066i 1.30489 + 0.753381i 0.981239 0.192794i \(-0.0617549\pi\)
0.323655 + 0.946175i \(0.395088\pi\)
\(332\) 2.02962 0.111390
\(333\) 0 0
\(334\) 6.05959i 0.331566i
\(335\) 6.28262 + 3.62727i 0.343256 + 0.198179i
\(336\) 0 0
\(337\) −2.96074 + 1.70938i −0.161282 + 0.0931160i −0.578468 0.815705i \(-0.696349\pi\)
0.417187 + 0.908821i \(0.363016\pi\)
\(338\) −2.39487 + 1.38268i −0.130264 + 0.0752077i
\(339\) 0 0
\(340\) −8.90169 5.13940i −0.482762 0.278723i
\(341\) −5.38434 + 1.81407i −0.291578 + 0.0982377i
\(342\) 0 0
\(343\) 14.2020 0.766838
\(344\) −3.40113 + 5.89094i −0.183377 + 0.317618i
\(345\) 0 0
\(346\) 7.35730 + 12.7432i 0.395531 + 0.685080i
\(347\) 7.11555 + 12.3245i 0.381983 + 0.661613i 0.991346 0.131278i \(-0.0419081\pi\)
−0.609363 + 0.792891i \(0.708575\pi\)
\(348\) 0 0
\(349\) 12.1759 21.0892i 0.651759 1.12888i −0.330937 0.943653i \(-0.607365\pi\)
0.982696 0.185227i \(-0.0593020\pi\)
\(350\) 0.0540250i 0.00288776i
\(351\) 0 0
\(352\) 1.02047i 0.0543911i
\(353\) −13.1781 + 22.8251i −0.701400 + 1.21486i 0.266576 + 0.963814i \(0.414108\pi\)
−0.967975 + 0.251046i \(0.919226\pi\)
\(354\) 0 0
\(355\) −1.33107 2.30548i −0.0706458 0.122362i
\(356\) 2.66606 + 4.61776i 0.141301 + 0.244741i
\(357\) 0 0
\(358\) 11.4044 + 6.58431i 0.602739 + 0.347992i
\(359\) 16.3382i 0.862297i −0.902281 0.431149i \(-0.858108\pi\)
0.902281 0.431149i \(-0.141892\pi\)
\(360\) 0 0
\(361\) −12.8148 −0.674461
\(362\) −0.0915732 + 0.158609i −0.00481298 + 0.00833633i
\(363\) 0 0
\(364\) 3.08330 1.78014i 0.161609 0.0933049i
\(365\) 6.84059 + 11.8483i 0.358053 + 0.620166i
\(366\) 0 0
\(367\) −8.01274 4.62616i −0.418262 0.241483i 0.276072 0.961137i \(-0.410967\pi\)
−0.694333 + 0.719654i \(0.744301\pi\)
\(368\) −3.86168 −0.201304
\(369\) 0 0
\(370\) 21.8903i 1.13802i
\(371\) 5.48249 9.49594i 0.284636 0.493005i
\(372\) 0 0
\(373\) 4.49388 + 7.78363i 0.232684 + 0.403021i 0.958597 0.284766i \(-0.0919157\pi\)
−0.725913 + 0.687787i \(0.758582\pi\)
\(374\) 4.08230 2.35692i 0.211091 0.121873i
\(375\) 0 0
\(376\) −5.13144 + 8.88791i −0.264634 + 0.458359i
\(377\) 13.1920i 0.679425i
\(378\) 0 0
\(379\) −23.1494 −1.18910 −0.594552 0.804057i \(-0.702670\pi\)
−0.594552 + 0.804057i \(0.702670\pi\)
\(380\) −4.79264 2.76703i −0.245857 0.141946i
\(381\) 0 0
\(382\) −0.0321011 0.0556007i −0.00164244 0.00284478i
\(383\) 3.83913 + 6.64957i 0.196170 + 0.339777i 0.947284 0.320396i \(-0.103816\pi\)
−0.751113 + 0.660174i \(0.770483\pi\)
\(384\) 0 0
\(385\) 2.18849 + 1.26353i 0.111536 + 0.0643953i
\(386\) 2.51820i 0.128173i
\(387\) 0 0
\(388\) 2.12009 0.107631
\(389\) −8.96129 + 15.5214i −0.454355 + 0.786967i −0.998651 0.0519269i \(-0.983464\pi\)
0.544295 + 0.838894i \(0.316797\pi\)
\(390\) 0 0
\(391\) 8.91912 + 15.4484i 0.451059 + 0.781258i
\(392\) −4.98960 + 2.88075i −0.252013 + 0.145500i
\(393\) 0 0
\(394\) −15.9823 9.22741i −0.805179 0.464870i
\(395\) −5.62410 −0.282979
\(396\) 0 0
\(397\) −28.6115 −1.43597 −0.717984 0.696060i \(-0.754935\pi\)
−0.717984 + 0.696060i \(0.754935\pi\)
\(398\) 13.0797 22.6547i 0.655625 1.13558i
\(399\) 0 0
\(400\) −0.0242726 0.0420413i −0.00121363 0.00210207i
\(401\) −7.63116 13.2176i −0.381082 0.660053i 0.610135 0.792297i \(-0.291115\pi\)
−0.991217 + 0.132244i \(0.957782\pi\)
\(402\) 0 0
\(403\) −17.4620 3.51475i −0.869843 0.175082i
\(404\) 2.28919i 0.113891i
\(405\) 0 0
\(406\) 4.58907i 0.227752i
\(407\) 8.69392 + 5.01944i 0.430941 + 0.248804i
\(408\) 0 0
\(409\) −24.7600 + 14.2952i −1.22430 + 0.706852i −0.965832 0.259167i \(-0.916552\pi\)
−0.258471 + 0.966019i \(0.583219\pi\)
\(410\) 22.1597 12.7939i 1.09439 0.631847i
\(411\) 0 0
\(412\) 0.608600 1.05413i 0.0299836 0.0519330i
\(413\) 6.56541i 0.323063i
\(414\) 0 0
\(415\) 4.51629i 0.221696i
\(416\) −1.59958 + 2.77056i −0.0784259 + 0.135838i
\(417\) 0 0
\(418\) 2.19790 1.26896i 0.107503 0.0620667i
\(419\) −7.33646 + 4.23571i −0.358409 + 0.206928i −0.668383 0.743817i \(-0.733013\pi\)
0.309973 + 0.950745i \(0.399680\pi\)
\(420\) 0 0
\(421\) −13.1893 + 22.8445i −0.642807 + 1.11337i 0.341996 + 0.939701i \(0.388897\pi\)
−0.984803 + 0.173673i \(0.944436\pi\)
\(422\) 14.1172i 0.687217i
\(423\) 0 0
\(424\) 9.85277i 0.478493i
\(425\) −0.112122 + 0.194201i −0.00543872 + 0.00942014i
\(426\) 0 0
\(427\) 1.72515 0.996017i 0.0834859 0.0482006i
\(428\) 9.00252 5.19761i 0.435153 0.251236i
\(429\) 0 0
\(430\) −13.1084 7.56816i −0.632145 0.364969i
\(431\) 20.6052i 0.992519i −0.868174 0.496260i \(-0.834706\pi\)
0.868174 0.496260i \(-0.165294\pi\)
\(432\) 0 0
\(433\) 24.4623i 1.17558i −0.809012 0.587792i \(-0.799997\pi\)
0.809012 0.587792i \(-0.200003\pi\)
\(434\) −6.07443 1.22266i −0.291582 0.0586898i
\(435\) 0 0
\(436\) −5.80870 10.0610i −0.278186 0.481833i
\(437\) 4.80203 + 8.31736i 0.229712 + 0.397873i
\(438\) 0 0
\(439\) 7.15542 12.3935i 0.341509 0.591512i −0.643204 0.765695i \(-0.722395\pi\)
0.984713 + 0.174183i \(0.0557285\pi\)
\(440\) −2.27073 −0.108253
\(441\) 0 0
\(442\) 14.7779 0.702912
\(443\) −4.39636 2.53824i −0.208877 0.120595i 0.391912 0.920003i \(-0.371814\pi\)
−0.600789 + 0.799407i \(0.705147\pi\)
\(444\) 0 0
\(445\) −10.2754 + 5.93249i −0.487099 + 0.281227i
\(446\) −14.3979 24.9380i −0.681762 1.18085i
\(447\) 0 0
\(448\) −0.556441 + 0.963784i −0.0262894 + 0.0455345i
\(449\) −34.1185 −1.61015 −0.805076 0.593172i \(-0.797875\pi\)
−0.805076 + 0.593172i \(0.797875\pi\)
\(450\) 0 0
\(451\) 11.7346i 0.552559i
\(452\) 14.5565 + 8.40422i 0.684682 + 0.395301i
\(453\) 0 0
\(454\) 7.34666 + 12.7248i 0.344796 + 0.597204i
\(455\) 3.96115 + 6.86092i 0.185702 + 0.321645i
\(456\) 0 0
\(457\) 5.09131 + 2.93947i 0.238161 + 0.137503i 0.614331 0.789048i \(-0.289426\pi\)
−0.376170 + 0.926551i \(0.622759\pi\)
\(458\) 7.02046 0.328044
\(459\) 0 0
\(460\) 8.59296i 0.400649i
\(461\) 19.7473 34.2032i 0.919721 1.59300i 0.119883 0.992788i \(-0.461748\pi\)
0.799838 0.600216i \(-0.204919\pi\)
\(462\) 0 0
\(463\) 20.0463 11.5738i 0.931633 0.537878i 0.0443051 0.999018i \(-0.485893\pi\)
0.887328 + 0.461140i \(0.152559\pi\)
\(464\) 2.06180 + 3.57113i 0.0957164 + 0.165786i
\(465\) 0 0
\(466\) −1.02441 + 1.77433i −0.0474549 + 0.0821943i
\(467\) 6.12670i 0.283510i −0.989902 0.141755i \(-0.954725\pi\)
0.989902 0.141755i \(-0.0452745\pi\)
\(468\) 0 0
\(469\) −3.62821 −0.167535
\(470\) −19.7773 11.4184i −0.912257 0.526692i
\(471\) 0 0
\(472\) −2.94973 5.10909i −0.135772 0.235165i
\(473\) 6.01151 3.47075i 0.276409 0.159585i
\(474\) 0 0
\(475\) −0.0603662 + 0.104557i −0.00276979 + 0.00479742i
\(476\) 5.14073 0.235625
\(477\) 0 0
\(478\) 14.8736i 0.680302i
\(479\) 6.48652 + 3.74499i 0.296377 + 0.171113i 0.640814 0.767696i \(-0.278597\pi\)
−0.344437 + 0.938809i \(0.611930\pi\)
\(480\) 0 0
\(481\) 15.7359 + 27.2554i 0.717496 + 1.24274i
\(482\) 6.39675 + 11.0795i 0.291364 + 0.504657i
\(483\) 0 0
\(484\) −4.97932 + 8.62444i −0.226333 + 0.392020i
\(485\) 4.71760i 0.214215i
\(486\) 0 0
\(487\) 9.68519i 0.438878i −0.975626 0.219439i \(-0.929577\pi\)
0.975626 0.219439i \(-0.0704227\pi\)
\(488\) −0.894989 + 1.55017i −0.0405142 + 0.0701727i
\(489\) 0 0
\(490\) −6.41020 11.1028i −0.289583 0.501573i
\(491\) 8.25821 + 14.3036i 0.372688 + 0.645514i 0.989978 0.141221i \(-0.0451029\pi\)
−0.617290 + 0.786736i \(0.711770\pi\)
\(492\) 0 0
\(493\) 9.52404 16.4961i 0.428941 0.742948i
\(494\) 7.95636 0.357974
\(495\) 0 0
\(496\) 5.27635 1.77769i 0.236915 0.0798207i
\(497\) 1.15304 + 0.665707i 0.0517208 + 0.0298610i
\(498\) 0 0
\(499\) 16.5265 9.54159i 0.739829 0.427140i −0.0821782 0.996618i \(-0.526188\pi\)
0.822007 + 0.569477i \(0.192854\pi\)
\(500\) 9.72889 5.61698i 0.435089 0.251199i
\(501\) 0 0
\(502\) 23.1932 + 13.3906i 1.03516 + 0.597652i
\(503\) 7.99974i 0.356691i 0.983968 + 0.178345i \(0.0570744\pi\)
−0.983968 + 0.178345i \(0.942926\pi\)
\(504\) 0 0
\(505\) 5.09386 0.226674
\(506\) 3.41276 + 1.97036i 0.151716 + 0.0875932i
\(507\) 0 0
\(508\) 1.99384 1.15114i 0.0884622 0.0510737i
\(509\) −8.01549 13.8832i −0.355280 0.615363i 0.631886 0.775062i \(-0.282281\pi\)
−0.987166 + 0.159698i \(0.948948\pi\)
\(510\) 0 0
\(511\) −5.92566 3.42118i −0.262136 0.151344i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −7.69857 −0.339569
\(515\) 2.34563 + 1.35425i 0.103361 + 0.0596753i
\(516\) 0 0
\(517\) 9.06982 5.23646i 0.398890 0.230299i
\(518\) 5.47400 + 9.48125i 0.240514 + 0.416582i
\(519\) 0 0
\(520\) −6.16501 3.55937i −0.270353 0.156089i
\(521\) 33.5039i 1.46783i −0.679241 0.733915i \(-0.737691\pi\)
0.679241 0.733915i \(-0.262309\pi\)
\(522\) 0 0
\(523\) 37.4112i 1.63588i −0.575304 0.817940i \(-0.695116\pi\)
0.575304 0.817940i \(-0.304884\pi\)
\(524\) 4.64203 + 2.68008i 0.202788 + 0.117080i
\(525\) 0 0
\(526\) −15.4369 + 8.91249i −0.673080 + 0.388603i
\(527\) −19.2980 17.0018i −0.840635 0.740610i
\(528\) 0 0
\(529\) 4.04370 7.00390i 0.175813 0.304517i
\(530\) −21.9243 −0.952329
\(531\) 0 0
\(532\) 2.76775 0.119997
\(533\) −18.3939 + 31.8592i −0.796729 + 1.37997i
\(534\) 0 0
\(535\) 11.5656 + 20.0323i 0.500026 + 0.866071i
\(536\) 2.82341 1.63010i 0.121953 0.0704095i
\(537\) 0 0
\(538\) −27.0140 15.5965i −1.16466 0.672414i
\(539\) 5.87942 0.253244
\(540\) 0 0
\(541\) 30.6235 1.31661 0.658303 0.752753i \(-0.271275\pi\)
0.658303 + 0.752753i \(0.271275\pi\)
\(542\) 14.9451 25.8856i 0.641945 1.11188i
\(543\) 0 0
\(544\) −4.00043 + 2.30965i −0.171517 + 0.0990253i
\(545\) 22.3875 12.9255i 0.958977 0.553665i
\(546\) 0 0
\(547\) 1.58488 2.74509i 0.0677645 0.117372i −0.830152 0.557536i \(-0.811747\pi\)
0.897917 + 0.440165i \(0.145080\pi\)
\(548\) 13.9634 0.596486
\(549\) 0 0
\(550\) 0.0495387i 0.00211234i
\(551\) 5.12771 8.88146i 0.218448 0.378363i
\(552\) 0 0
\(553\) 2.43594 1.40639i 0.103587 0.0598058i
\(554\) −1.43022 2.47722i −0.0607643 0.105247i
\(555\) 0 0
\(556\) −6.56075 3.78785i −0.278238 0.160641i
\(557\) −2.07470 −0.0879079 −0.0439539 0.999034i \(-0.513995\pi\)
−0.0439539 + 0.999034i \(0.513995\pi\)
\(558\) 0 0
\(559\) 21.7616 0.920416
\(560\) −2.14460 1.23818i −0.0906258 0.0523228i
\(561\) 0 0
\(562\) −10.8161 18.7340i −0.456250 0.790248i
\(563\) −37.5837 + 21.6990i −1.58397 + 0.914503i −0.589693 + 0.807627i \(0.700751\pi\)
−0.994272 + 0.106876i \(0.965915\pi\)
\(564\) 0 0
\(565\) −18.7009 + 32.3910i −0.786755 + 1.36270i
\(566\) 7.67602i 0.322647i
\(567\) 0 0
\(568\) −1.19637 −0.0501984
\(569\) −17.6206 + 30.5197i −0.738693 + 1.27945i 0.214391 + 0.976748i \(0.431223\pi\)
−0.953084 + 0.302706i \(0.902110\pi\)
\(570\) 0 0
\(571\) 31.1820 18.0029i 1.30492 0.753399i 0.323680 0.946167i \(-0.395080\pi\)
0.981244 + 0.192768i \(0.0617465\pi\)
\(572\) 2.82726 1.63232i 0.118214 0.0682508i
\(573\) 0 0
\(574\) −6.39862 + 11.0827i −0.267073 + 0.462585i
\(575\) −0.187466 −0.00781786
\(576\) 0 0
\(577\) −32.1410 −1.33805 −0.669023 0.743242i \(-0.733287\pi\)
−0.669023 + 0.743242i \(0.733287\pi\)
\(578\) 3.75671 + 2.16894i 0.156259 + 0.0902160i
\(579\) 0 0
\(580\) −7.94644 + 4.58788i −0.329958 + 0.190501i
\(581\) −1.12937 1.95612i −0.0468540 0.0811534i
\(582\) 0 0
\(583\) 5.02722 8.70740i 0.208206 0.360623i
\(584\) 6.14833 0.254420
\(585\) 0 0
\(586\) −14.4486 −0.596867
\(587\) 6.41401 11.1094i 0.264734 0.458533i −0.702760 0.711427i \(-0.748049\pi\)
0.967494 + 0.252894i \(0.0813824\pi\)
\(588\) 0 0
\(589\) −10.3900 9.15371i −0.428112 0.377172i
\(590\) 11.3687 6.56371i 0.468041 0.270223i
\(591\) 0 0
\(592\) −8.51955 4.91876i −0.350151 0.202160i
\(593\) 23.3171i 0.957519i −0.877946 0.478760i \(-0.841087\pi\)
0.877946 0.478760i \(-0.158913\pi\)
\(594\) 0 0
\(595\) 11.4391i 0.468956i
\(596\) −4.53497 2.61827i −0.185760 0.107248i
\(597\) 0 0
\(598\) 6.17708 + 10.6990i 0.252599 + 0.437515i
\(599\) 22.1736 12.8019i 0.905988 0.523073i 0.0268500 0.999639i \(-0.491452\pi\)
0.879138 + 0.476567i \(0.158119\pi\)
\(600\) 0 0
\(601\) 5.37109 + 3.10100i 0.219091 + 0.126492i 0.605529 0.795823i \(-0.292961\pi\)
−0.386438 + 0.922315i \(0.626295\pi\)
\(602\) 7.57012 0.308535
\(603\) 0 0
\(604\) 9.85078i 0.400823i
\(605\) −19.1910 11.0799i −0.780225 0.450463i
\(606\) 0 0
\(607\) −15.6728 27.1461i −0.636141 1.10183i −0.986272 0.165127i \(-0.947197\pi\)
0.350132 0.936700i \(-0.386137\pi\)
\(608\) −2.15382 + 1.24351i −0.0873488 + 0.0504308i
\(609\) 0 0
\(610\) −3.44941 1.99152i −0.139663 0.0806342i
\(611\) 32.8326 1.32827
\(612\) 0 0
\(613\) 40.9491i 1.65392i 0.562261 + 0.826960i \(0.309932\pi\)
−0.562261 + 0.826960i \(0.690068\pi\)
\(614\) 29.2687 + 16.8983i 1.18119 + 0.681959i
\(615\) 0 0
\(616\) 0.983510 0.567830i 0.0396267 0.0228785i
\(617\) −34.9638 + 20.1863i −1.40759 + 0.812671i −0.995155 0.0983164i \(-0.968654\pi\)
−0.412433 + 0.910988i \(0.635321\pi\)
\(618\) 0 0
\(619\) 17.5241 + 10.1175i 0.704353 + 0.406659i 0.808967 0.587854i \(-0.200027\pi\)
−0.104614 + 0.994513i \(0.533361\pi\)
\(620\) 3.95569 + 11.7409i 0.158864 + 0.471524i
\(621\) 0 0
\(622\) −14.2551 −0.571578
\(623\) 2.96701 5.13902i 0.118871 0.205890i
\(624\) 0 0
\(625\) 12.3775 + 21.4384i 0.495098 + 0.857536i
\(626\) −4.59583 7.96020i −0.183686 0.318154i
\(627\) 0 0
\(628\) −6.67621 + 11.5635i −0.266410 + 0.461435i
\(629\) 45.4424i 1.81191i
\(630\) 0 0
\(631\) 32.7799i 1.30495i 0.757811 + 0.652475i \(0.226269\pi\)
−0.757811 + 0.652475i \(0.773731\pi\)
\(632\) −1.26374 + 2.18886i −0.0502688 + 0.0870681i
\(633\) 0 0
\(634\) −3.71574 6.43584i −0.147571 0.255600i
\(635\) 2.56151 + 4.43666i 0.101650 + 0.176063i
\(636\) 0 0
\(637\) 15.9625 + 9.21598i 0.632459 + 0.365150i
\(638\) 4.20799i 0.166596i
\(639\) 0 0
\(640\) 2.22519 0.0879582
\(641\) −10.6439 + 18.4357i −0.420408 + 0.728167i −0.995979 0.0895841i \(-0.971446\pi\)
0.575572 + 0.817751i \(0.304780\pi\)
\(642\) 0 0
\(643\) 40.7748 23.5413i 1.60800 0.928379i 0.618182 0.786035i \(-0.287869\pi\)
0.989817 0.142344i \(-0.0454639\pi\)
\(644\) 2.14880 + 3.72183i 0.0846745 + 0.146661i
\(645\) 0 0
\(646\) 9.94911 + 5.74412i 0.391443 + 0.225999i
\(647\) 29.5056 1.15998 0.579992 0.814622i \(-0.303055\pi\)
0.579992 + 0.814622i \(0.303055\pi\)
\(648\) 0 0
\(649\) 6.02021i 0.236314i
\(650\) −0.0776519 + 0.134497i −0.00304576 + 0.00527541i
\(651\) 0 0
\(652\) −6.82771 11.8259i −0.267394 0.463139i
\(653\) −9.32930 + 5.38627i −0.365084 + 0.210781i −0.671308 0.741178i \(-0.734267\pi\)
0.306225 + 0.951959i \(0.400934\pi\)
\(654\) 0 0
\(655\) −5.96367 + 10.3294i −0.233020 + 0.403602i
\(656\) 11.4992i 0.448968i
\(657\) 0 0
\(658\) 11.4214 0.445251
\(659\) 1.37174 + 0.791977i 0.0534356 + 0.0308510i 0.526480 0.850188i \(-0.323512\pi\)
−0.473044 + 0.881039i \(0.656845\pi\)
\(660\) 0 0
\(661\) −16.1220 27.9242i −0.627075 1.08613i −0.988136 0.153583i \(-0.950919\pi\)
0.361061 0.932542i \(-0.382415\pi\)
\(662\) 13.7066 + 23.7405i 0.532721 + 0.922700i
\(663\) 0 0
\(664\) 1.75771 + 1.01481i 0.0682122 + 0.0393823i
\(665\) 6.15876i 0.238827i
\(666\) 0 0
\(667\) 15.9240 0.616580
\(668\) 3.02979 5.24776i 0.117226 0.203042i
\(669\) 0 0
\(670\) 3.62727 + 6.28262i 0.140134 + 0.242719i
\(671\) 1.58189 0.913307i 0.0610683 0.0352578i
\(672\) 0 0
\(673\) −7.10562 4.10243i −0.273902 0.158137i 0.356758 0.934197i \(-0.383882\pi\)
−0.630659 + 0.776060i \(0.717215\pi\)
\(674\) −3.41877 −0.131686
\(675\) 0 0
\(676\) −2.76535 −0.106360
\(677\) −3.99517 + 6.91983i −0.153547 + 0.265951i −0.932529 0.361095i \(-0.882403\pi\)
0.778982 + 0.627046i \(0.215736\pi\)
\(678\) 0 0
\(679\) −1.17971 2.04331i −0.0452729 0.0784150i
\(680\) −5.13940 8.90169i −0.197087 0.341364i
\(681\) 0 0
\(682\) −5.57001 1.12113i −0.213287 0.0429304i
\(683\) 19.0681i 0.729619i 0.931082 + 0.364809i \(0.118866\pi\)
−0.931082 + 0.364809i \(0.881134\pi\)
\(684\) 0 0
\(685\) 31.0711i 1.18717i
\(686\) 12.2993 + 7.10102i 0.469590 + 0.271118i
\(687\) 0 0
\(688\) −5.89094 + 3.40113i −0.224590 + 0.129667i
\(689\) 27.2977 15.7603i 1.03996 0.600420i
\(690\) 0 0
\(691\) −12.0546 + 20.8792i −0.458580 + 0.794284i −0.998886 0.0471845i \(-0.984975\pi\)
0.540306 + 0.841469i \(0.318308\pi\)
\(692\) 14.7146i 0.559365i
\(693\) 0 0
\(694\) 14.2311i 0.540205i
\(695\) 8.42867 14.5989i 0.319718 0.553768i
\(696\) 0 0
\(697\) −46.0017 + 26.5591i −1.74244 + 1.00600i
\(698\) 21.0892 12.1759i 0.798239 0.460863i
\(699\) 0 0
\(700\) −0.0270125 + 0.0467870i −0.00102098 + 0.00176838i
\(701\) 24.8694i 0.939303i 0.882852 + 0.469651i \(0.155620\pi\)
−0.882852 + 0.469651i \(0.844380\pi\)
\(702\) 0 0
\(703\) 24.4661i 0.922755i
\(704\) −0.510234 + 0.883751i −0.0192302 + 0.0333076i
\(705\) 0 0
\(706\) −22.8251 + 13.1781i −0.859036 + 0.495964i
\(707\) −2.20628 + 1.27380i −0.0829757 + 0.0479060i
\(708\) 0 0
\(709\) 11.2903 + 6.51847i 0.424017 + 0.244806i 0.696794 0.717271i \(-0.254609\pi\)
−0.272778 + 0.962077i \(0.587942\pi\)
\(710\) 2.66214i 0.0999083i
\(711\) 0 0
\(712\) 5.33213i 0.199830i
\(713\) 4.24263 21.0782i 0.158888 0.789385i
\(714\) 0 0
\(715\) 3.63222 + 6.29119i 0.135837 + 0.235277i
\(716\) 6.58431 + 11.4044i 0.246067 + 0.426201i
\(717\) 0 0
\(718\) 8.16910 14.1493i 0.304868 0.528047i
\(719\) −15.1422 −0.564708 −0.282354 0.959310i \(-0.591115\pi\)
−0.282354 + 0.959310i \(0.591115\pi\)
\(720\) 0 0
\(721\) −1.35460 −0.0504479
\(722\) −11.0979 6.40738i −0.413022 0.238458i
\(723\) 0 0
\(724\) −0.158609 + 0.0915732i −0.00589467 + 0.00340329i
\(725\) 0.100090 + 0.173361i 0.00371725 + 0.00643847i
\(726\) 0 0
\(727\) −13.4296 + 23.2608i −0.498077 + 0.862695i −0.999998 0.00221912i \(-0.999294\pi\)
0.501921 + 0.864914i \(0.332627\pi\)
\(728\) 3.56029 0.131953
\(729\) 0 0
\(730\) 13.6812i 0.506364i
\(731\) 27.2120 + 15.7108i 1.00647 + 0.581086i
\(732\) 0 0
\(733\) −16.7337 28.9836i −0.618073 1.07053i −0.989837 0.142207i \(-0.954580\pi\)
0.371764 0.928327i \(-0.378753\pi\)
\(734\) −4.62616 8.01274i −0.170755 0.295756i
\(735\) 0 0
\(736\) −3.34431 1.93084i −0.123273 0.0711717i
\(737\) −3.32692 −0.122549
\(738\) 0 0
\(739\) 18.4729i 0.679537i 0.940509 + 0.339769i \(0.110349\pi\)
−0.940509 + 0.339769i \(0.889651\pi\)
\(740\) 10.9452 18.9576i 0.402352 0.696894i
\(741\) 0 0
\(742\) 9.49594 5.48249i 0.348607 0.201268i
\(743\) −17.6305 30.5369i −0.646799 1.12029i −0.983883 0.178814i \(-0.942774\pi\)
0.337084 0.941475i \(-0.390559\pi\)
\(744\) 0 0
\(745\) 5.82613 10.0912i 0.213453 0.369711i
\(746\) 8.98776i 0.329065i
\(747\) 0 0
\(748\) 4.71384 0.172355
\(749\) −10.0187 5.78432i −0.366077 0.211355i
\(750\) 0 0
\(751\) −0.496728 0.860358i −0.0181259 0.0313949i 0.856820 0.515615i \(-0.172437\pi\)
−0.874946 + 0.484220i \(0.839103\pi\)
\(752\) −8.88791 + 5.13144i −0.324109 + 0.187124i
\(753\) 0 0
\(754\) 6.59602 11.4246i 0.240213 0.416061i
\(755\) 21.9198 0.797744
\(756\) 0 0
\(757\) 11.9119i 0.432946i −0.976289 0.216473i \(-0.930545\pi\)
0.976289 0.216473i \(-0.0694553\pi\)
\(758\) −20.0479 11.5747i −0.728174 0.420412i
\(759\) 0 0
\(760\) −2.76703 4.79264i −0.100371 0.173847i
\(761\) 26.4497 + 45.8122i 0.958800 + 1.66069i 0.725422 + 0.688305i \(0.241645\pi\)
0.233378 + 0.972386i \(0.425022\pi\)
\(762\) 0 0
\(763\) −6.46440 + 11.1967i −0.234027 + 0.405347i
\(764\) 0.0642022i 0.00232275i
\(765\) 0 0
\(766\) 7.67826i 0.277427i
\(767\) −9.43668 + 16.3448i −0.340739 + 0.590177i
\(768\) 0 0
\(769\) −13.1731 22.8165i −0.475036 0.822786i 0.524556 0.851376i \(-0.324231\pi\)
−0.999591 + 0.0285904i \(0.990898\pi\)
\(770\) 1.26353 + 2.18849i 0.0455343 + 0.0788678i
\(771\) 0 0
\(772\) 1.25910 2.18083i 0.0453160 0.0784896i
\(773\) −41.3321 −1.48661 −0.743305 0.668952i \(-0.766743\pi\)
−0.743305 + 0.668952i \(0.766743\pi\)
\(774\) 0 0
\(775\) 0.256141 0.0862982i 0.00920085 0.00309992i
\(776\) 1.83605 + 1.06005i 0.0659105 + 0.0380534i
\(777\) 0 0
\(778\) −15.5214 + 8.96129i −0.556469 + 0.321278i
\(779\) −24.7672 + 14.2993i −0.887376 + 0.512327i
\(780\) 0 0
\(781\) 1.05729 + 0.610426i 0.0378328 + 0.0218428i
\(782\) 17.8382i 0.637894i
\(783\) 0 0
\(784\) −5.76149 −0.205768
\(785\) −25.7310 14.8558i −0.918379 0.530226i
\(786\) 0 0
\(787\) 1.17396 0.677787i 0.0418472 0.0241605i −0.478930 0.877853i \(-0.658975\pi\)
0.520778 + 0.853692i \(0.325642\pi\)
\(788\) −9.22741 15.9823i −0.328713 0.569347i
\(789\) 0 0
\(790\) −4.87062 2.81205i −0.173289 0.100048i
\(791\) 18.7058i 0.665102i
\(792\) 0 0
\(793\) 5.72643 0.203352
\(794\) −24.7782 14.3057i −0.879347 0.507691i
\(795\) 0 0
\(796\) 22.6547 13.0797i 0.802973 0.463597i
\(797\) 4.91284 + 8.50928i 0.174022 + 0.301414i 0.939822 0.341664i \(-0.110990\pi\)
−0.765801 + 0.643078i \(0.777657\pi\)
\(798\) 0 0
\(799\) 41.0559 + 23.7036i 1.45245 + 0.838574i
\(800\) 0.0485451i 0.00171633i
\(801\) 0 0
\(802\) 15.2623i 0.538931i
\(803\) −5.43359 3.13709i −0.191747 0.110705i
\(804\) 0 0
\(805\) −8.28176 + 4.78148i −0.291894 + 0.168525i
\(806\) −13.3651 11.7749i −0.470767 0.414751i
\(807\) 0 0
\(808\) 1.14459 1.98249i 0.0402666 0.0697438i
\(809\) 32.6168 1.14674 0.573372 0.819295i \(-0.305635\pi\)
0.573372 + 0.819295i \(0.305635\pi\)
\(810\) 0 0
\(811\) 50.1843 1.76221 0.881105 0.472921i \(-0.156800\pi\)
0.881105 + 0.472921i \(0.156800\pi\)
\(812\) 2.29453 3.97425i 0.0805224 0.139469i
\(813\) 0 0
\(814\) 5.01944 + 8.69392i 0.175931 + 0.304722i
\(815\) 26.3149 15.1929i 0.921771 0.532185i
\(816\) 0 0
\(817\) 14.6508 + 8.45867i 0.512568 + 0.295931i
\(818\) −28.5904 −0.999640
\(819\) 0 0
\(820\) 25.5879 0.893567
\(821\) −11.0576 + 19.1523i −0.385912 + 0.668420i −0.991895 0.127058i \(-0.959447\pi\)
0.605983 + 0.795478i \(0.292780\pi\)
\(822\) 0 0
\(823\) −28.0176 + 16.1759i −0.976631 + 0.563858i −0.901251 0.433297i \(-0.857350\pi\)
−0.0753796 + 0.997155i \(0.524017\pi\)
\(824\) 1.05413 0.608600i 0.0367222 0.0212016i
\(825\) 0 0
\(826\) −3.28270 + 5.68581i −0.114220 + 0.197835i
\(827\) 15.7673 0.548282 0.274141 0.961690i \(-0.411607\pi\)
0.274141 + 0.961690i \(0.411607\pi\)
\(828\) 0 0
\(829\) 8.39199i 0.291466i 0.989324 + 0.145733i \(0.0465540\pi\)
−0.989324 + 0.145733i \(0.953446\pi\)
\(830\) −2.25814 + 3.91122i −0.0783814 + 0.135760i
\(831\) 0 0
\(832\) −2.77056 + 1.59958i −0.0960518 + 0.0554555i
\(833\) 13.3070 + 23.0484i 0.461061 + 0.798581i
\(834\) 0 0
\(835\) 11.6772 + 6.74186i 0.404107 + 0.233312i
\(836\) 2.53792 0.0877756
\(837\) 0 0
\(838\) −8.47141 −0.292640
\(839\) −27.8508 16.0797i −0.961516 0.555131i −0.0648765 0.997893i \(-0.520665\pi\)
−0.896639 + 0.442762i \(0.853999\pi\)
\(840\) 0 0
\(841\) 5.99800 + 10.3888i 0.206828 + 0.358236i
\(842\) −22.8445 + 13.1893i −0.787275 + 0.454533i
\(843\) 0 0
\(844\) −7.05862 + 12.2259i −0.242968 + 0.420833i
\(845\) 6.15343i 0.211684i
\(846\) 0 0
\(847\) 11.0828 0.380809
\(848\) −4.92639 + 8.53275i −0.169173 + 0.293016i
\(849\) 0 0
\(850\) −0.194201 + 0.112122i −0.00666104 + 0.00384576i
\(851\) −32.8998 + 18.9947i −1.12779 + 0.651130i
\(852\) 0 0
\(853\) 3.42036 5.92425i 0.117111 0.202842i −0.801511 0.597981i \(-0.795970\pi\)
0.918622 + 0.395138i \(0.129303\pi\)
\(854\) 1.99203 0.0681660
\(855\) 0 0
\(856\) 10.3952 0.355301
\(857\) 33.3784 + 19.2710i 1.14018 + 0.658285i 0.946476 0.322774i \(-0.104615\pi\)
0.193707 + 0.981059i \(0.437949\pi\)
\(858\) 0 0
\(859\) −16.4040 + 9.47085i −0.559697 + 0.323141i −0.753024 0.657993i \(-0.771406\pi\)
0.193327 + 0.981134i \(0.438072\pi\)
\(860\) −7.56816 13.1084i −0.258072 0.446994i
\(861\) 0 0
\(862\) 10.3026 17.8447i 0.350909 0.607792i
\(863\) 1.15240 0.0392282 0.0196141 0.999808i \(-0.493756\pi\)
0.0196141 + 0.999808i \(0.493756\pi\)
\(864\) 0 0
\(865\) −32.7427 −1.11329
\(866\) 12.2312 21.1850i 0.415631 0.719895i
\(867\) 0 0
\(868\) −4.64928 4.09608i −0.157807 0.139030i
\(869\) 2.23366 1.28960i 0.0757716 0.0437468i
\(870\) 0 0
\(871\) −9.03256 5.21495i −0.306057 0.176702i
\(872\) 11.6174i 0.393415i
\(873\) 0 0
\(874\) 9.60405i 0.324862i
\(875\) −10.8271 6.25103i −0.366023 0.211323i
\(876\) 0 0
\(877\) −28.7645 49.8216i −0.971309 1.68236i −0.691613 0.722268i \(-0.743100\pi\)
−0.279696 0.960089i \(-0.590234\pi\)
\(878\) 12.3935 7.15542i 0.418262 0.241484i
\(879\) 0 0
\(880\) −1.96651 1.13536i −0.0662910 0.0382731i
\(881\) 1.62120 0.0546197 0.0273098 0.999627i \(-0.491306\pi\)
0.0273098 + 0.999627i \(0.491306\pi\)
\(882\) 0 0
\(883\) 23.7417i 0.798971i 0.916739 + 0.399486i \(0.130811\pi\)
−0.916739 + 0.399486i \(0.869189\pi\)
\(884\) 12.7980 + 7.38894i 0.430444 + 0.248517i
\(885\) 0 0
\(886\) −2.53824 4.39636i −0.0852738 0.147698i
\(887\) −3.06497 + 1.76956i −0.102912 + 0.0594160i −0.550572 0.834787i \(-0.685591\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(888\) 0 0
\(889\) −2.21890 1.28109i −0.0744197 0.0429662i
\(890\) −11.8650 −0.397715
\(891\) 0 0
\(892\) 28.7959i 0.964158i
\(893\) 22.1044 + 12.7620i 0.739694 + 0.427063i
\(894\) 0 0
\(895\) −25.3768 + 14.6513i −0.848254 + 0.489740i
\(896\) −0.963784 + 0.556441i −0.0321978 + 0.0185894i
\(897\) 0 0
\(898\) −29.5475 17.0592i −0.986012 0.569274i
\(899\) −21.7575 + 7.33047i −0.725653 + 0.244485i
\(900\) 0 0
\(901\) 45.5129 1.51625
\(902\) −5.86728 + 10.1624i −0.195359 + 0.338372i
\(903\) 0 0
\(904\) 8.40422 + 14.5565i 0.279520 + 0.484143i
\(905\) −0.203767 0.352936i −0.00677346 0.0117320i
\(906\) 0 0
\(907\) −18.0502 + 31.2639i −0.599347 + 1.03810i 0.393570 + 0.919295i \(0.371240\pi\)
−0.992918 + 0.118805i \(0.962094\pi\)
\(908\) 14.6933i 0.487615i
\(909\) 0 0
\(910\) 7.92231i 0.262622i
\(911\) 23.2080 40.1975i 0.768916 1.33180i −0.169235 0.985576i \(-0.554130\pi\)
0.938151 0.346226i \(-0.112537\pi\)
\(912\) 0 0
\(913\) −1.03558 1.79368i −0.0342728 0.0593622i
\(914\) 2.93947 + 5.09131i 0.0972290 + 0.168406i
\(915\) 0 0
\(916\) 6.07989 + 3.51023i 0.200885 + 0.115981i
\(917\) 5.96522i 0.196989i
\(918\) 0 0
\(919\) −56.6374 −1.86829 −0.934147 0.356888i \(-0.883838\pi\)
−0.934147 + 0.356888i \(0.883838\pi\)
\(920\) 4.29648 7.44172i 0.141651 0.245346i
\(921\) 0 0
\(922\) 34.2032 19.7473i 1.12642 0.650341i
\(923\) 1.91369 + 3.31460i 0.0629897 + 0.109101i
\(924\) 0 0
\(925\) −0.413582 0.238782i −0.0135985 0.00785110i
\(926\) 23.1475 0.760675
\(927\) 0 0
\(928\) 4.12359i 0.135364i
\(929\) 24.5733 42.5622i 0.806224 1.39642i −0.109237 0.994016i \(-0.534841\pi\)
0.915461 0.402406i \(-0.131826\pi\)
\(930\) 0 0
\(931\) 7.16446 + 12.4092i 0.234806 + 0.406695i
\(932\) −1.77433 + 1.02441i −0.0581201 + 0.0335557i
\(933\) 0 0
\(934\) 3.06335 5.30588i 0.100236 0.173614i
\(935\) 10.4892i 0.343033i
\(936\) 0 0
\(937\) 3.03674 0.0992059 0.0496029 0.998769i \(-0.484204\pi\)
0.0496029 + 0.998769i \(0.484204\pi\)
\(938\) −3.14212 1.81411i −0.102594 0.0592327i
\(939\) 0 0
\(940\) −11.4184 19.7773i −0.372427 0.645063i
\(941\) 11.1294 + 19.2767i 0.362809 + 0.628404i 0.988422 0.151730i \(-0.0484843\pi\)
−0.625613 + 0.780134i \(0.715151\pi\)
\(942\) 0 0
\(943\) −38.4569 22.2031i −1.25233 0.723033i
\(944\) 5.89947i 0.192011i
\(945\) 0 0
\(946\) 6.94149 0.225687
\(947\) −25.6560 + 44.4375i −0.833708 + 1.44403i 0.0613692 + 0.998115i \(0.480453\pi\)
−0.895078 + 0.445910i \(0.852880\pi\)
\(948\) 0 0
\(949\) −9.83476 17.0343i −0.319250 0.552957i
\(950\) −0.104557 + 0.0603662i −0.00339229 + 0.00195854i
\(951\) 0 0
\(952\) 4.45200 + 2.57036i 0.144290 + 0.0833060i
\(953\) −28.3831 −0.919417 −0.459709 0.888070i \(-0.652046\pi\)
−0.459709 + 0.888070i \(0.652046\pi\)
\(954\) 0 0
\(955\) 0.142862 0.00462290
\(956\) 7.43679 12.8809i 0.240523 0.416598i
\(957\) 0 0
\(958\) 3.74499 + 6.48652i 0.120995 + 0.209570i
\(959\) −7.76980 13.4577i −0.250900 0.434571i
\(960\) 0 0
\(961\) 3.90631 + 30.7529i 0.126010 + 0.992029i
\(962\) 31.4718i 1.01469i
\(963\) 0 0
\(964\) 12.7935i 0.412051i
\(965\) 4.85274 + 2.80173i 0.156215 + 0.0901910i
\(966\) 0 0
\(967\) 5.33559 3.08050i 0.171581 0.0990624i −0.411750 0.911297i \(-0.635082\pi\)
0.583331 + 0.812234i \(0.301749\pi\)
\(968\) −8.62444 + 4.97932i −0.277200 + 0.160042i
\(969\) 0 0
\(970\) −2.35880 + 4.08556i −0.0757365 + 0.131179i
\(971\) 25.5833i 0.821007i −0.911859 0.410504i \(-0.865353\pi\)
0.911859 0.410504i \(-0.134647\pi\)
\(972\) 0 0
\(973\) 8.43086i 0.270281i
\(974\) 4.84260 8.38762i 0.155167 0.268757i
\(975\) 0 0
\(976\) −1.55017 + 0.894989i −0.0496196 + 0.0286479i
\(977\) 27.8940 16.1046i 0.892408 0.515232i 0.0176784 0.999844i \(-0.494373\pi\)
0.874729 + 0.484612i \(0.161039\pi\)
\(978\) 0 0
\(979\) 2.72063 4.71227i 0.0869517 0.150605i
\(980\) 12.8204i 0.409533i
\(981\) 0 0
\(982\) 16.5164i 0.527060i
\(983\) −7.45474 + 12.9120i −0.237769 + 0.411829i −0.960074 0.279747i \(-0.909750\pi\)
0.722305 + 0.691575i \(0.243083\pi\)
\(984\) 0 0
\(985\) 35.5637 20.5327i 1.13315 0.654227i
\(986\) 16.4961 9.52404i 0.525344 0.303307i
\(987\) 0 0
\(988\) 6.89041 + 3.97818i 0.219213 + 0.126563i
\(989\) 26.2682i 0.835280i
\(990\) 0 0
\(991\) 45.0132i 1.42989i −0.699181 0.714945i \(-0.746452\pi\)
0.699181 0.714945i \(-0.253548\pi\)
\(992\) 5.45829 + 1.09865i 0.173301 + 0.0348821i
\(993\) 0 0
\(994\) 0.665707 + 1.15304i 0.0211149 + 0.0365722i
\(995\) 29.1047 + 50.4108i 0.922681 + 1.59813i
\(996\) 0 0
\(997\) 7.75035 13.4240i 0.245456 0.425142i −0.716804 0.697275i \(-0.754396\pi\)
0.962260 + 0.272133i \(0.0877290\pi\)
\(998\) 19.0832 0.604068
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1674.2.q.a.1115.23 64
3.2 odd 2 558.2.q.a.371.15 yes 64
9.4 even 3 558.2.q.a.185.2 64
9.5 odd 6 inner 1674.2.q.a.557.26 64
31.30 odd 2 inner 1674.2.q.a.1115.26 64
93.92 even 2 558.2.q.a.371.2 yes 64
279.185 even 6 inner 1674.2.q.a.557.23 64
279.247 odd 6 558.2.q.a.185.15 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.q.a.185.2 64 9.4 even 3
558.2.q.a.185.15 yes 64 279.247 odd 6
558.2.q.a.371.2 yes 64 93.92 even 2
558.2.q.a.371.15 yes 64 3.2 odd 2
1674.2.q.a.557.23 64 279.185 even 6 inner
1674.2.q.a.557.26 64 9.5 odd 6 inner
1674.2.q.a.1115.23 64 1.1 even 1 trivial
1674.2.q.a.1115.26 64 31.30 odd 2 inner