Properties

Label 552.2.n.b.91.19
Level $552$
Weight $2$
Character 552.91
Analytic conductor $4.408$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,2,Mod(91,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.19
Character \(\chi\) \(=\) 552.91
Dual form 552.2.n.b.91.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.07870 + 0.914558i) q^{2} -1.00000 q^{3} +(0.327167 + 1.97306i) q^{4} -0.969269 q^{5} +(-1.07870 - 0.914558i) q^{6} -4.55308 q^{7} +(-1.45156 + 2.42754i) q^{8} +1.00000 q^{9} +(-1.04555 - 0.886452i) q^{10} +0.915699i q^{11} +(-0.327167 - 1.97306i) q^{12} -4.49735i q^{13} +(-4.91139 - 4.16406i) q^{14} +0.969269 q^{15} +(-3.78592 + 1.29104i) q^{16} -5.37023i q^{17} +(1.07870 + 0.914558i) q^{18} +0.688174i q^{19} +(-0.317112 - 1.91242i) q^{20} +4.55308 q^{21} +(-0.837460 + 0.987761i) q^{22} +(-4.70330 - 0.937530i) q^{23} +(1.45156 - 2.42754i) q^{24} -4.06052 q^{25} +(4.11309 - 4.85127i) q^{26} -1.00000 q^{27} +(-1.48962 - 8.98350i) q^{28} +6.35610i q^{29} +(1.04555 + 0.886452i) q^{30} +5.64064i q^{31} +(-5.26459 - 2.06981i) q^{32} -0.915699i q^{33} +(4.91139 - 5.79284i) q^{34} +4.41316 q^{35} +(0.327167 + 1.97306i) q^{36} -3.25973 q^{37} +(-0.629375 + 0.742330i) q^{38} +4.49735i q^{39} +(1.40696 - 2.35294i) q^{40} -8.87354 q^{41} +(4.91139 + 4.16406i) q^{42} +9.54349i q^{43} +(-1.80673 + 0.299586i) q^{44} -0.969269 q^{45} +(-4.21600 - 5.31275i) q^{46} +0.156006i q^{47} +(3.78592 - 1.29104i) q^{48} +13.7305 q^{49} +(-4.38006 - 3.71358i) q^{50} +5.37023i q^{51} +(8.87354 - 1.47138i) q^{52} +2.42613 q^{53} +(-1.07870 - 0.914558i) q^{54} -0.887559i q^{55} +(6.60909 - 11.0528i) q^{56} -0.688174i q^{57} +(-5.81302 + 6.85630i) q^{58} +3.81302 q^{59} +(0.317112 + 1.91242i) q^{60} +12.2676 q^{61} +(-5.15869 + 6.08453i) q^{62} -4.55308 q^{63} +(-3.78592 - 7.04747i) q^{64} +4.35914i q^{65} +(0.837460 - 0.987761i) q^{66} +10.6451i q^{67} +(10.5958 - 1.75696i) q^{68} +(4.70330 + 0.937530i) q^{69} +(4.76045 + 4.03609i) q^{70} -14.9045i q^{71} +(-1.45156 + 2.42754i) q^{72} -8.18221 q^{73} +(-3.51625 - 2.98121i) q^{74} +4.06052 q^{75} +(-1.35781 + 0.225148i) q^{76} -4.16925i q^{77} +(-4.11309 + 4.85127i) q^{78} -12.0667 q^{79} +(3.66958 - 1.25136i) q^{80} +1.00000 q^{81} +(-9.57185 - 8.11537i) q^{82} -11.1608i q^{83} +(1.48962 + 8.98350i) q^{84} +5.20519i q^{85} +(-8.72808 + 10.2945i) q^{86} -6.35610i q^{87} +(-2.22290 - 1.32920i) q^{88} +10.9680i q^{89} +(-1.04555 - 0.886452i) q^{90} +20.4768i q^{91} +(0.311039 - 9.58662i) q^{92} -5.64064i q^{93} +(-0.142676 + 0.168283i) q^{94} -0.667026i q^{95} +(5.26459 + 2.06981i) q^{96} +17.8948i q^{97} +(14.8111 + 12.5574i) q^{98} +0.915699i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{3} + 4 q^{4} + 24 q^{9} - 4 q^{12} + 4 q^{16} + 24 q^{25} - 24 q^{27} + 4 q^{36} - 44 q^{46} - 4 q^{48} + 56 q^{49} - 40 q^{50} - 48 q^{58} - 40 q^{62} + 4 q^{64} + 32 q^{73} - 24 q^{75} + 24 q^{81}+ \cdots - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.07870 + 0.914558i 0.762753 + 0.646690i
\(3\) −1.00000 −0.577350
\(4\) 0.327167 + 1.97306i 0.163583 + 0.986530i
\(5\) −0.969269 −0.433470 −0.216735 0.976230i \(-0.569541\pi\)
−0.216735 + 0.976230i \(0.569541\pi\)
\(6\) −1.07870 0.914558i −0.440375 0.373367i
\(7\) −4.55308 −1.72090 −0.860451 0.509533i \(-0.829818\pi\)
−0.860451 + 0.509533i \(0.829818\pi\)
\(8\) −1.45156 + 2.42754i −0.513205 + 0.858266i
\(9\) 1.00000 0.333333
\(10\) −1.04555 0.886452i −0.330630 0.280321i
\(11\) 0.915699i 0.276094i 0.990426 + 0.138047i \(0.0440825\pi\)
−0.990426 + 0.138047i \(0.955918\pi\)
\(12\) −0.327167 1.97306i −0.0944449 0.569573i
\(13\) 4.49735i 1.24734i −0.781687 0.623671i \(-0.785641\pi\)
0.781687 0.623671i \(-0.214359\pi\)
\(14\) −4.91139 4.16406i −1.31262 1.11289i
\(15\) 0.969269 0.250264
\(16\) −3.78592 + 1.29104i −0.946481 + 0.322760i
\(17\) 5.37023i 1.30247i −0.758875 0.651236i \(-0.774251\pi\)
0.758875 0.651236i \(-0.225749\pi\)
\(18\) 1.07870 + 0.914558i 0.254251 + 0.215563i
\(19\) 0.688174i 0.157878i 0.996879 + 0.0789390i \(0.0251532\pi\)
−0.996879 + 0.0789390i \(0.974847\pi\)
\(20\) −0.317112 1.91242i −0.0709085 0.427631i
\(21\) 4.55308 0.993564
\(22\) −0.837460 + 0.987761i −0.178547 + 0.210591i
\(23\) −4.70330 0.937530i −0.980706 0.195489i
\(24\) 1.45156 2.42754i 0.296299 0.495520i
\(25\) −4.06052 −0.812104
\(26\) 4.11309 4.85127i 0.806643 0.951413i
\(27\) −1.00000 −0.192450
\(28\) −1.48962 8.98350i −0.281511 1.69772i
\(29\) 6.35610i 1.18030i 0.807294 + 0.590149i \(0.200931\pi\)
−0.807294 + 0.590149i \(0.799069\pi\)
\(30\) 1.04555 + 0.886452i 0.190890 + 0.161843i
\(31\) 5.64064i 1.01309i 0.862214 + 0.506544i \(0.169077\pi\)
−0.862214 + 0.506544i \(0.830923\pi\)
\(32\) −5.26459 2.06981i −0.930656 0.365894i
\(33\) 0.915699i 0.159403i
\(34\) 4.91139 5.79284i 0.842296 0.993464i
\(35\) 4.41316 0.745960
\(36\) 0.327167 + 1.97306i 0.0545278 + 0.328843i
\(37\) −3.25973 −0.535896 −0.267948 0.963433i \(-0.586346\pi\)
−0.267948 + 0.963433i \(0.586346\pi\)
\(38\) −0.629375 + 0.742330i −0.102098 + 0.120422i
\(39\) 4.49735i 0.720153i
\(40\) 1.40696 2.35294i 0.222459 0.372033i
\(41\) −8.87354 −1.38581 −0.692907 0.721027i \(-0.743670\pi\)
−0.692907 + 0.721027i \(0.743670\pi\)
\(42\) 4.91139 + 4.16406i 0.757843 + 0.642528i
\(43\) 9.54349i 1.45537i 0.685912 + 0.727684i \(0.259403\pi\)
−0.685912 + 0.727684i \(0.740597\pi\)
\(44\) −1.80673 + 0.299586i −0.272375 + 0.0451643i
\(45\) −0.969269 −0.144490
\(46\) −4.21600 5.31275i −0.621616 0.783322i
\(47\) 0.156006i 0.0227558i 0.999935 + 0.0113779i \(0.00362177\pi\)
−0.999935 + 0.0113779i \(0.996378\pi\)
\(48\) 3.78592 1.29104i 0.546451 0.186345i
\(49\) 13.7305 1.96151
\(50\) −4.38006 3.71358i −0.619434 0.525180i
\(51\) 5.37023i 0.751982i
\(52\) 8.87354 1.47138i 1.23054 0.204044i
\(53\) 2.42613 0.333255 0.166628 0.986020i \(-0.446712\pi\)
0.166628 + 0.986020i \(0.446712\pi\)
\(54\) −1.07870 0.914558i −0.146792 0.124456i
\(55\) 0.887559i 0.119678i
\(56\) 6.60909 11.0528i 0.883176 1.47699i
\(57\) 0.688174i 0.0911509i
\(58\) −5.81302 + 6.85630i −0.763287 + 0.900276i
\(59\) 3.81302 0.496413 0.248207 0.968707i \(-0.420159\pi\)
0.248207 + 0.968707i \(0.420159\pi\)
\(60\) 0.317112 + 1.91242i 0.0409390 + 0.246893i
\(61\) 12.2676 1.57070 0.785352 0.619049i \(-0.212482\pi\)
0.785352 + 0.619049i \(0.212482\pi\)
\(62\) −5.15869 + 6.08453i −0.655154 + 0.772736i
\(63\) −4.55308 −0.573634
\(64\) −3.78592 7.04747i −0.473240 0.880933i
\(65\) 4.35914i 0.540685i
\(66\) 0.837460 0.987761i 0.103084 0.121585i
\(67\) 10.6451i 1.30050i 0.759719 + 0.650251i \(0.225336\pi\)
−0.759719 + 0.650251i \(0.774664\pi\)
\(68\) 10.5958 1.75696i 1.28493 0.213063i
\(69\) 4.70330 + 0.937530i 0.566211 + 0.112865i
\(70\) 4.76045 + 4.03609i 0.568983 + 0.482405i
\(71\) 14.9045i 1.76884i −0.466689 0.884422i \(-0.654553\pi\)
0.466689 0.884422i \(-0.345447\pi\)
\(72\) −1.45156 + 2.42754i −0.171068 + 0.286089i
\(73\) −8.18221 −0.957655 −0.478828 0.877909i \(-0.658938\pi\)
−0.478828 + 0.877909i \(0.658938\pi\)
\(74\) −3.51625 2.98121i −0.408756 0.346559i
\(75\) 4.06052 0.468868
\(76\) −1.35781 + 0.225148i −0.155751 + 0.0258262i
\(77\) 4.16925i 0.475130i
\(78\) −4.11309 + 4.85127i −0.465716 + 0.549298i
\(79\) −12.0667 −1.35761 −0.678805 0.734318i \(-0.737502\pi\)
−0.678805 + 0.734318i \(0.737502\pi\)
\(80\) 3.66958 1.25136i 0.410271 0.139907i
\(81\) 1.00000 0.111111
\(82\) −9.57185 8.11537i −1.05703 0.896193i
\(83\) 11.1608i 1.22506i −0.790447 0.612531i \(-0.790152\pi\)
0.790447 0.612531i \(-0.209848\pi\)
\(84\) 1.48962 + 8.98350i 0.162530 + 0.980180i
\(85\) 5.20519i 0.564582i
\(86\) −8.72808 + 10.2945i −0.941173 + 1.11009i
\(87\) 6.35610i 0.681446i
\(88\) −2.22290 1.32920i −0.236962 0.141693i
\(89\) 10.9680i 1.16260i 0.813688 + 0.581302i \(0.197456\pi\)
−0.813688 + 0.581302i \(0.802544\pi\)
\(90\) −1.04555 0.886452i −0.110210 0.0934403i
\(91\) 20.4768i 2.14655i
\(92\) 0.311039 9.58662i 0.0324281 0.999474i
\(93\) 5.64064i 0.584907i
\(94\) −0.142676 + 0.168283i −0.0147159 + 0.0173570i
\(95\) 0.667026i 0.0684354i
\(96\) 5.26459 + 2.06981i 0.537315 + 0.211249i
\(97\) 17.8948i 1.81695i 0.417944 + 0.908473i \(0.362751\pi\)
−0.417944 + 0.908473i \(0.637249\pi\)
\(98\) 14.8111 + 12.5574i 1.49614 + 1.26849i
\(99\) 0.915699i 0.0920312i
\(100\) −1.32847 8.01164i −0.132847 0.801164i
\(101\) 2.18685i 0.217600i −0.994064 0.108800i \(-0.965299\pi\)
0.994064 0.108800i \(-0.0347007\pi\)
\(102\) −4.91139 + 5.79284i −0.486300 + 0.573577i
\(103\) −1.82776 −0.180095 −0.0900475 0.995937i \(-0.528702\pi\)
−0.0900475 + 0.995937i \(0.528702\pi\)
\(104\) 10.9175 + 6.52820i 1.07055 + 0.640142i
\(105\) −4.41316 −0.430680
\(106\) 2.61706 + 2.21884i 0.254191 + 0.215513i
\(107\) 2.63011i 0.254262i 0.991886 + 0.127131i \(0.0405769\pi\)
−0.991886 + 0.127131i \(0.959423\pi\)
\(108\) −0.327167 1.97306i −0.0314816 0.189858i
\(109\) 6.14687 0.588764 0.294382 0.955688i \(-0.404886\pi\)
0.294382 + 0.955688i \(0.404886\pi\)
\(110\) 0.811724 0.957405i 0.0773948 0.0912850i
\(111\) 3.25973 0.309400
\(112\) 17.2376 5.87820i 1.62880 0.555438i
\(113\) 18.8052i 1.76905i −0.466495 0.884524i \(-0.654483\pi\)
0.466495 0.884524i \(-0.345517\pi\)
\(114\) 0.629375 0.742330i 0.0589464 0.0695256i
\(115\) 4.55876 + 0.908719i 0.425107 + 0.0847385i
\(116\) −12.5410 + 2.07950i −1.16440 + 0.193077i
\(117\) 4.49735i 0.415780i
\(118\) 4.11309 + 3.48723i 0.378641 + 0.321026i
\(119\) 24.4511i 2.24143i
\(120\) −1.40696 + 2.35294i −0.128437 + 0.214793i
\(121\) 10.1615 0.923772
\(122\) 13.2330 + 11.2194i 1.19806 + 1.01576i
\(123\) 8.87354 0.800100
\(124\) −11.1293 + 1.84543i −0.999441 + 0.165724i
\(125\) 8.78208 0.785493
\(126\) −4.91139 4.16406i −0.437541 0.370964i
\(127\) 0.261572i 0.0232107i −0.999933 0.0116054i \(-0.996306\pi\)
0.999933 0.0116054i \(-0.00369418\pi\)
\(128\) 2.36146 11.0645i 0.208726 0.977974i
\(129\) 9.54349i 0.840258i
\(130\) −3.98669 + 4.70219i −0.349656 + 0.412409i
\(131\) −8.22618 −0.718725 −0.359362 0.933198i \(-0.617006\pi\)
−0.359362 + 0.933198i \(0.617006\pi\)
\(132\) 1.80673 0.299586i 0.157256 0.0260756i
\(133\) 3.13331i 0.271693i
\(134\) −9.73554 + 11.4828i −0.841022 + 0.991962i
\(135\) 0.969269 0.0834214
\(136\) 13.0365 + 7.79523i 1.11787 + 0.668435i
\(137\) 6.70631i 0.572959i −0.958086 0.286479i \(-0.907515\pi\)
0.958086 0.286479i \(-0.0924850\pi\)
\(138\) 4.21600 + 5.31275i 0.358890 + 0.452251i
\(139\) −7.42604 −0.629868 −0.314934 0.949114i \(-0.601982\pi\)
−0.314934 + 0.949114i \(0.601982\pi\)
\(140\) 1.44384 + 8.70742i 0.122027 + 0.735911i
\(141\) 0.156006i 0.0131381i
\(142\) 13.6311 16.0775i 1.14389 1.34919i
\(143\) 4.11822 0.344383
\(144\) −3.78592 + 1.29104i −0.315494 + 0.107587i
\(145\) 6.16077i 0.511624i
\(146\) −8.82611 7.48311i −0.730454 0.619306i
\(147\) −13.7305 −1.13248
\(148\) −1.06647 6.43163i −0.0876636 0.528677i
\(149\) −16.0149 −1.31199 −0.655997 0.754764i \(-0.727751\pi\)
−0.655997 + 0.754764i \(0.727751\pi\)
\(150\) 4.38006 + 3.71358i 0.357631 + 0.303213i
\(151\) 8.36872i 0.681037i 0.940238 + 0.340518i \(0.110603\pi\)
−0.940238 + 0.340518i \(0.889397\pi\)
\(152\) −1.67057 0.998929i −0.135501 0.0810238i
\(153\) 5.37023i 0.434157i
\(154\) 3.81302 4.49735i 0.307262 0.362407i
\(155\) 5.46729i 0.439143i
\(156\) −8.87354 + 1.47138i −0.710452 + 0.117805i
\(157\) 0.188409 0.0150366 0.00751832 0.999972i \(-0.497607\pi\)
0.00751832 + 0.999972i \(0.497607\pi\)
\(158\) −13.0163 11.0357i −1.03552 0.877953i
\(159\) −2.42613 −0.192405
\(160\) 5.10280 + 2.00620i 0.403412 + 0.158604i
\(161\) 21.4145 + 4.26865i 1.68770 + 0.336417i
\(162\) 1.07870 + 0.914558i 0.0847503 + 0.0718545i
\(163\) 6.04337 0.473354 0.236677 0.971588i \(-0.423942\pi\)
0.236677 + 0.971588i \(0.423942\pi\)
\(164\) −2.90313 17.5080i −0.226696 1.36715i
\(165\) 0.887559i 0.0690963i
\(166\) 10.2072 12.0391i 0.792235 0.934419i
\(167\) 3.28126i 0.253912i 0.991908 + 0.126956i \(0.0405207\pi\)
−0.991908 + 0.126956i \(0.959479\pi\)
\(168\) −6.60909 + 11.0528i −0.509902 + 0.852742i
\(169\) −7.22618 −0.555860
\(170\) −4.76045 + 5.61482i −0.365110 + 0.430637i
\(171\) 0.688174i 0.0526260i
\(172\) −18.8299 + 3.12231i −1.43576 + 0.238074i
\(173\) 4.28422i 0.325723i 0.986649 + 0.162862i \(0.0520724\pi\)
−0.986649 + 0.162862i \(0.947928\pi\)
\(174\) 5.81302 6.85630i 0.440684 0.519774i
\(175\) 18.4879 1.39755
\(176\) −1.18220 3.46677i −0.0891119 0.261317i
\(177\) −3.81302 −0.286604
\(178\) −10.0309 + 11.8311i −0.751844 + 0.886779i
\(179\) −21.7569 −1.62618 −0.813092 0.582135i \(-0.802217\pi\)
−0.813092 + 0.582135i \(0.802217\pi\)
\(180\) −0.317112 1.91242i −0.0236362 0.142544i
\(181\) −2.42739 −0.180426 −0.0902131 0.995922i \(-0.528755\pi\)
−0.0902131 + 0.995922i \(0.528755\pi\)
\(182\) −18.7272 + 22.0882i −1.38815 + 1.63729i
\(183\) −12.2676 −0.906847
\(184\) 9.10304 10.0566i 0.671085 0.741381i
\(185\) 3.15955 0.232295
\(186\) 5.15869 6.08453i 0.378254 0.446139i
\(187\) 4.91751 0.359604
\(188\) −0.307809 + 0.0510399i −0.0224492 + 0.00372247i
\(189\) 4.55308 0.331188
\(190\) 0.610034 0.719517i 0.0442565 0.0521993i
\(191\) 8.94391 0.647158 0.323579 0.946201i \(-0.395114\pi\)
0.323579 + 0.946201i \(0.395114\pi\)
\(192\) 3.78592 + 7.04747i 0.273226 + 0.508607i
\(193\) −12.2220 −0.879760 −0.439880 0.898057i \(-0.644979\pi\)
−0.439880 + 0.898057i \(0.644979\pi\)
\(194\) −16.3659 + 19.3031i −1.17500 + 1.38588i
\(195\) 4.35914i 0.312165i
\(196\) 4.49218 + 27.0912i 0.320870 + 1.93508i
\(197\) 10.5254i 0.749900i −0.927045 0.374950i \(-0.877660\pi\)
0.927045 0.374950i \(-0.122340\pi\)
\(198\) −0.837460 + 0.987761i −0.0595157 + 0.0701971i
\(199\) −16.2033 −1.14862 −0.574312 0.818637i \(-0.694730\pi\)
−0.574312 + 0.818637i \(0.694730\pi\)
\(200\) 5.89410 9.85708i 0.416776 0.697001i
\(201\) 10.6451i 0.750845i
\(202\) 2.00000 2.35894i 0.140720 0.165975i
\(203\) 28.9398i 2.03118i
\(204\) −10.5958 + 1.75696i −0.741853 + 0.123012i
\(205\) 8.60085 0.600709
\(206\) −1.97160 1.67160i −0.137368 0.116466i
\(207\) −4.70330 0.937530i −0.326902 0.0651629i
\(208\) 5.80626 + 17.0266i 0.402591 + 1.18058i
\(209\) −0.630161 −0.0435891
\(210\) −4.76045 4.03609i −0.328502 0.278517i
\(211\) 6.20898 0.427444 0.213722 0.976895i \(-0.431441\pi\)
0.213722 + 0.976895i \(0.431441\pi\)
\(212\) 0.793751 + 4.78691i 0.0545150 + 0.328766i
\(213\) 14.9045i 1.02124i
\(214\) −2.40539 + 2.83709i −0.164429 + 0.193939i
\(215\) 9.25021i 0.630859i
\(216\) 1.45156 2.42754i 0.0987664 0.165173i
\(217\) 25.6823i 1.74343i
\(218\) 6.63060 + 5.62167i 0.449081 + 0.380748i
\(219\) 8.18221 0.552902
\(220\) 1.75121 0.290380i 0.118066 0.0195774i
\(221\) −24.1518 −1.62463
\(222\) 3.51625 + 2.98121i 0.235995 + 0.200086i
\(223\) 22.7592i 1.52407i −0.647538 0.762033i \(-0.724201\pi\)
0.647538 0.762033i \(-0.275799\pi\)
\(224\) 23.9701 + 9.42401i 1.60157 + 0.629668i
\(225\) −4.06052 −0.270701
\(226\) 17.1985 20.2851i 1.14403 1.34935i
\(227\) 5.19084i 0.344528i 0.985051 + 0.172264i \(0.0551083\pi\)
−0.985051 + 0.172264i \(0.944892\pi\)
\(228\) 1.35781 0.225148i 0.0899230 0.0149108i
\(229\) 16.5481 1.09353 0.546764 0.837287i \(-0.315860\pi\)
0.546764 + 0.837287i \(0.315860\pi\)
\(230\) 4.08644 + 5.14948i 0.269452 + 0.339547i
\(231\) 4.16925i 0.274317i
\(232\) −15.4297 9.22629i −1.01301 0.605735i
\(233\) −15.1175 −0.990382 −0.495191 0.868784i \(-0.664902\pi\)
−0.495191 + 0.868784i \(0.664902\pi\)
\(234\) 4.11309 4.85127i 0.268881 0.317138i
\(235\) 0.151211i 0.00986395i
\(236\) 1.24749 + 7.52332i 0.0812050 + 0.489726i
\(237\) 12.0667 0.783817
\(238\) −22.3619 + 26.3753i −1.44951 + 1.70965i
\(239\) 4.20687i 0.272120i 0.990701 + 0.136060i \(0.0434439\pi\)
−0.990701 + 0.136060i \(0.956556\pi\)
\(240\) −3.66958 + 1.25136i −0.236870 + 0.0807751i
\(241\) 11.2163i 0.722503i 0.932469 + 0.361251i \(0.117650\pi\)
−0.932469 + 0.361251i \(0.882350\pi\)
\(242\) 10.9612 + 9.29328i 0.704610 + 0.597395i
\(243\) −1.00000 −0.0641500
\(244\) 4.01355 + 24.2047i 0.256941 + 1.54955i
\(245\) −13.3086 −0.850254
\(246\) 9.57185 + 8.11537i 0.610279 + 0.517417i
\(247\) 3.09496 0.196928
\(248\) −13.6929 8.18775i −0.869499 0.519922i
\(249\) 11.1608i 0.707289i
\(250\) 9.47318 + 8.03172i 0.599137 + 0.507971i
\(251\) 19.6483i 1.24019i −0.784526 0.620096i \(-0.787094\pi\)
0.784526 0.620096i \(-0.212906\pi\)
\(252\) −1.48962 8.98350i −0.0938370 0.565907i
\(253\) 0.858496 4.30681i 0.0539732 0.270767i
\(254\) 0.239222 0.282156i 0.0150101 0.0177040i
\(255\) 5.20519i 0.325962i
\(256\) 12.6664 9.77555i 0.791652 0.610972i
\(257\) 12.3772 0.772071 0.386036 0.922484i \(-0.373844\pi\)
0.386036 + 0.922484i \(0.373844\pi\)
\(258\) 8.72808 10.2945i 0.543386 0.640909i
\(259\) 14.8418 0.922224
\(260\) −8.60085 + 1.42617i −0.533402 + 0.0884471i
\(261\) 6.35610i 0.393433i
\(262\) −8.87354 7.52332i −0.548209 0.464792i
\(263\) −0.300441 −0.0185260 −0.00926300 0.999957i \(-0.502949\pi\)
−0.00926300 + 0.999957i \(0.502949\pi\)
\(264\) 2.22290 + 1.32920i 0.136810 + 0.0818064i
\(265\) −2.35158 −0.144456
\(266\) 2.86560 3.37989i 0.175701 0.207234i
\(267\) 10.9680i 0.671230i
\(268\) −21.0034 + 3.48271i −1.28298 + 0.212741i
\(269\) 1.53065i 0.0933252i −0.998911 0.0466626i \(-0.985141\pi\)
0.998911 0.0466626i \(-0.0148586\pi\)
\(270\) 1.04555 + 0.886452i 0.0636299 + 0.0539478i
\(271\) 6.52820i 0.396560i −0.980145 0.198280i \(-0.936465\pi\)
0.980145 0.198280i \(-0.0635355\pi\)
\(272\) 6.93317 + 20.3313i 0.420385 + 1.23276i
\(273\) 20.4768i 1.23931i
\(274\) 6.13331 7.23407i 0.370527 0.437026i
\(275\) 3.71821i 0.224217i
\(276\) −0.311039 + 9.58662i −0.0187223 + 0.577047i
\(277\) 7.38599i 0.443781i 0.975072 + 0.221891i \(0.0712228\pi\)
−0.975072 + 0.221891i \(0.928777\pi\)
\(278\) −8.01043 6.79154i −0.480434 0.407330i
\(279\) 5.64064i 0.337696i
\(280\) −6.40598 + 10.7131i −0.382831 + 0.640232i
\(281\) 7.79441i 0.464976i 0.972599 + 0.232488i \(0.0746866\pi\)
−0.972599 + 0.232488i \(0.925313\pi\)
\(282\) 0.142676 0.168283i 0.00849625 0.0100211i
\(283\) 27.8464i 1.65530i −0.561246 0.827649i \(-0.689678\pi\)
0.561246 0.827649i \(-0.310322\pi\)
\(284\) 29.4075 4.87627i 1.74502 0.289353i
\(285\) 0.667026i 0.0395112i
\(286\) 4.44231 + 3.76635i 0.262679 + 0.222709i
\(287\) 40.4019 2.38485
\(288\) −5.26459 2.06981i −0.310219 0.121965i
\(289\) −11.8393 −0.696432
\(290\) 5.63438 6.64559i 0.330862 0.390243i
\(291\) 17.8948i 1.04901i
\(292\) −2.67695 16.1440i −0.156656 0.944755i
\(293\) 12.2770 0.717232 0.358616 0.933485i \(-0.383249\pi\)
0.358616 + 0.933485i \(0.383249\pi\)
\(294\) −14.8111 12.5574i −0.863799 0.732361i
\(295\) −3.69584 −0.215180
\(296\) 4.73170 7.91313i 0.275025 0.459941i
\(297\) 0.915699i 0.0531343i
\(298\) −17.2752 14.6466i −1.00073 0.848453i
\(299\) −4.21640 + 21.1524i −0.243841 + 1.22327i
\(300\) 1.32847 + 8.01164i 0.0766991 + 0.462552i
\(301\) 43.4523i 2.50455i
\(302\) −7.65368 + 9.02730i −0.440420 + 0.519463i
\(303\) 2.18685i 0.125631i
\(304\) −0.888459 2.60537i −0.0509566 0.149428i
\(305\) −11.8906 −0.680853
\(306\) 4.91139 5.79284i 0.280765 0.331155i
\(307\) −0.0911995 −0.00520503 −0.00260251 0.999997i \(-0.500828\pi\)
−0.00260251 + 0.999997i \(0.500828\pi\)
\(308\) 8.22618 1.36404i 0.468730 0.0777234i
\(309\) 1.82776 0.103978
\(310\) 5.00016 5.89754i 0.283990 0.334958i
\(311\) 2.75985i 0.156497i −0.996934 0.0782483i \(-0.975067\pi\)
0.996934 0.0782483i \(-0.0249327\pi\)
\(312\) −10.9175 6.52820i −0.618083 0.369586i
\(313\) 11.2930i 0.638317i 0.947701 + 0.319158i \(0.103400\pi\)
−0.947701 + 0.319158i \(0.896600\pi\)
\(314\) 0.203235 + 0.172311i 0.0114692 + 0.00972405i
\(315\) 4.41316 0.248653
\(316\) −3.94783 23.8083i −0.222083 1.33932i
\(317\) 23.3082i 1.30912i 0.756010 + 0.654560i \(0.227146\pi\)
−0.756010 + 0.654560i \(0.772854\pi\)
\(318\) −2.61706 2.21884i −0.146757 0.124426i
\(319\) −5.82028 −0.325873
\(320\) 3.66958 + 6.83089i 0.205136 + 0.381858i
\(321\) 2.63011i 0.146798i
\(322\) 19.1958 + 24.1894i 1.06974 + 1.34802i
\(323\) 3.69565 0.205632
\(324\) 0.327167 + 1.97306i 0.0181759 + 0.109614i
\(325\) 18.2616i 1.01297i
\(326\) 6.51896 + 5.52702i 0.361052 + 0.306113i
\(327\) −6.14687 −0.339923
\(328\) 12.8805 21.5409i 0.711207 1.18940i
\(329\) 0.710307i 0.0391605i
\(330\) −0.811724 + 0.957405i −0.0446839 + 0.0527034i
\(331\) −14.7506 −0.810766 −0.405383 0.914147i \(-0.632862\pi\)
−0.405383 + 0.914147i \(0.632862\pi\)
\(332\) 22.0210 3.65146i 1.20856 0.200400i
\(333\) −3.25973 −0.178632
\(334\) −3.00091 + 3.53948i −0.164202 + 0.193672i
\(335\) 10.3179i 0.563729i
\(336\) −17.2376 + 5.87820i −0.940389 + 0.320682i
\(337\) 22.4118i 1.22085i −0.792075 0.610423i \(-0.790999\pi\)
0.792075 0.610423i \(-0.209001\pi\)
\(338\) −7.79485 6.60876i −0.423984 0.359469i
\(339\) 18.8052i 1.02136i
\(340\) −10.2702 + 1.70297i −0.556977 + 0.0923563i
\(341\) −5.16513 −0.279707
\(342\) −0.629375 + 0.742330i −0.0340327 + 0.0401406i
\(343\) −30.6447 −1.65466
\(344\) −23.1672 13.8530i −1.24909 0.746903i
\(345\) −4.55876 0.908719i −0.245435 0.0489238i
\(346\) −3.91817 + 4.62137i −0.210642 + 0.248446i
\(347\) 8.93888 0.479864 0.239932 0.970790i \(-0.422875\pi\)
0.239932 + 0.970790i \(0.422875\pi\)
\(348\) 12.5410 2.07950i 0.672266 0.111473i
\(349\) 33.9944i 1.81968i 0.414960 + 0.909840i \(0.363796\pi\)
−0.414960 + 0.909840i \(0.636204\pi\)
\(350\) 19.9428 + 16.9082i 1.06599 + 0.903783i
\(351\) 4.49735i 0.240051i
\(352\) 1.89532 4.82078i 0.101021 0.256948i
\(353\) −14.3436 −0.763430 −0.381715 0.924280i \(-0.624666\pi\)
−0.381715 + 0.924280i \(0.624666\pi\)
\(354\) −4.11309 3.48723i −0.218608 0.185344i
\(355\) 14.4465i 0.766741i
\(356\) −21.6405 + 3.58836i −1.14694 + 0.190183i
\(357\) 24.4511i 1.29409i
\(358\) −23.4690 19.8979i −1.24038 1.05164i
\(359\) 17.4705 0.922059 0.461029 0.887385i \(-0.347480\pi\)
0.461029 + 0.887385i \(0.347480\pi\)
\(360\) 1.40696 2.35294i 0.0741531 0.124011i
\(361\) 18.5264 0.975075
\(362\) −2.61841 2.21999i −0.137621 0.116680i
\(363\) −10.1615 −0.533340
\(364\) −40.4019 + 6.69933i −2.11764 + 0.351140i
\(365\) 7.93076 0.415115
\(366\) −13.2330 11.2194i −0.691700 0.586449i
\(367\) 4.20241 0.219364 0.109682 0.993967i \(-0.465017\pi\)
0.109682 + 0.993967i \(0.465017\pi\)
\(368\) 19.0167 2.52272i 0.991315 0.131506i
\(369\) −8.87354 −0.461938
\(370\) 3.40819 + 2.88959i 0.177183 + 0.150223i
\(371\) −11.0464 −0.573500
\(372\) 11.1293 1.84543i 0.577028 0.0956810i
\(373\) −37.2998 −1.93131 −0.965655 0.259826i \(-0.916335\pi\)
−0.965655 + 0.259826i \(0.916335\pi\)
\(374\) 5.30450 + 4.49735i 0.274289 + 0.232553i
\(375\) −8.78208 −0.453504
\(376\) −0.378711 0.226452i −0.0195305 0.0116784i
\(377\) 28.5856 1.47223
\(378\) 4.91139 + 4.16406i 0.252614 + 0.214176i
\(379\) 12.0640i 0.619684i −0.950788 0.309842i \(-0.899724\pi\)
0.950788 0.309842i \(-0.100276\pi\)
\(380\) 1.31608 0.218229i 0.0675135 0.0111949i
\(381\) 0.261572i 0.0134007i
\(382\) 9.64775 + 8.17972i 0.493622 + 0.418511i
\(383\) 15.8402 0.809395 0.404698 0.914451i \(-0.367377\pi\)
0.404698 + 0.914451i \(0.367377\pi\)
\(384\) −2.36146 + 11.0645i −0.120508 + 0.564634i
\(385\) 4.04113i 0.205955i
\(386\) −13.1838 11.1777i −0.671039 0.568932i
\(387\) 9.54349i 0.485123i
\(388\) −35.3076 + 5.85460i −1.79247 + 0.297222i
\(389\) −2.04276 −0.103572 −0.0517860 0.998658i \(-0.516491\pi\)
−0.0517860 + 0.998658i \(0.516491\pi\)
\(390\) 3.98669 4.70219i 0.201874 0.238104i
\(391\) −5.03475 + 25.2578i −0.254618 + 1.27734i
\(392\) −19.9308 + 33.3315i −1.00666 + 1.68349i
\(393\) 8.22618 0.414956
\(394\) 9.62605 11.3536i 0.484953 0.571989i
\(395\) 11.6959 0.588484
\(396\) −1.80673 + 0.299586i −0.0907915 + 0.0150548i
\(397\) 34.7911i 1.74612i 0.487617 + 0.873058i \(0.337866\pi\)
−0.487617 + 0.873058i \(0.662134\pi\)
\(398\) −17.4784 14.8189i −0.876116 0.742804i
\(399\) 3.13331i 0.156862i
\(400\) 15.3728 5.24229i 0.768641 0.262114i
\(401\) 27.9532i 1.39592i 0.716138 + 0.697958i \(0.245908\pi\)
−0.716138 + 0.697958i \(0.754092\pi\)
\(402\) 9.73554 11.4828i 0.485564 0.572709i
\(403\) 25.3679 1.26367
\(404\) 4.31478 0.715464i 0.214668 0.0355957i
\(405\) −0.969269 −0.0481633
\(406\) 26.4672 31.2173i 1.31354 1.54929i
\(407\) 2.98493i 0.147957i
\(408\) −13.0365 7.79523i −0.645401 0.385921i
\(409\) −10.4393 −0.516192 −0.258096 0.966119i \(-0.583095\pi\)
−0.258096 + 0.966119i \(0.583095\pi\)
\(410\) 9.27769 + 7.86597i 0.458192 + 0.388473i
\(411\) 6.70631i 0.330798i
\(412\) −0.597984 3.60629i −0.0294605 0.177669i
\(413\) −17.3610 −0.854279
\(414\) −4.21600 5.31275i −0.207205 0.261107i
\(415\) 10.8179i 0.531027i
\(416\) −9.30867 + 23.6767i −0.456395 + 1.16085i
\(417\) 7.42604 0.363655
\(418\) −0.679751 0.576319i −0.0332477 0.0281887i
\(419\) 27.9406i 1.36499i −0.730891 0.682494i \(-0.760895\pi\)
0.730891 0.682494i \(-0.239105\pi\)
\(420\) −1.44384 8.70742i −0.0704521 0.424879i
\(421\) −32.6815 −1.59280 −0.796400 0.604770i \(-0.793265\pi\)
−0.796400 + 0.604770i \(0.793265\pi\)
\(422\) 6.69760 + 5.67847i 0.326034 + 0.276424i
\(423\) 0.156006i 0.00758526i
\(424\) −3.52169 + 5.88954i −0.171028 + 0.286022i
\(425\) 21.8059i 1.05774i
\(426\) −13.6311 + 16.0775i −0.660427 + 0.778955i
\(427\) −55.8553 −2.70303
\(428\) −5.18936 + 0.860485i −0.250837 + 0.0415931i
\(429\) −4.11822 −0.198830
\(430\) 8.45985 9.97815i 0.407970 0.481189i
\(431\) −16.1528 −0.778055 −0.389028 0.921226i \(-0.627189\pi\)
−0.389028 + 0.921226i \(0.627189\pi\)
\(432\) 3.78592 1.29104i 0.182150 0.0621151i
\(433\) 19.9138i 0.956996i −0.878089 0.478498i \(-0.841181\pi\)
0.878089 0.478498i \(-0.158819\pi\)
\(434\) 23.4879 27.7033i 1.12746 1.32980i
\(435\) 6.16077i 0.295386i
\(436\) 2.01105 + 12.1281i 0.0963120 + 0.580833i
\(437\) 0.645184 3.23669i 0.0308633 0.154832i
\(438\) 8.82611 + 7.48311i 0.421728 + 0.357557i
\(439\) 29.3002i 1.39842i −0.714915 0.699211i \(-0.753535\pi\)
0.714915 0.699211i \(-0.246465\pi\)
\(440\) 2.15459 + 1.28835i 0.102716 + 0.0614196i
\(441\) 13.7305 0.653835
\(442\) −26.0524 22.0882i −1.23919 1.05063i
\(443\) 32.9596 1.56596 0.782978 0.622049i \(-0.213699\pi\)
0.782978 + 0.622049i \(0.213699\pi\)
\(444\) 1.06647 + 6.43163i 0.0506126 + 0.305232i
\(445\) 10.6309i 0.503954i
\(446\) 20.8146 24.5502i 0.985599 1.16249i
\(447\) 16.0149 0.757480
\(448\) 17.2376 + 32.0877i 0.814401 + 1.51600i
\(449\) 16.6963 0.787949 0.393975 0.919121i \(-0.371100\pi\)
0.393975 + 0.919121i \(0.371100\pi\)
\(450\) −4.38006 3.71358i −0.206478 0.175060i
\(451\) 8.12550i 0.382615i
\(452\) 37.1038 6.15245i 1.74522 0.289387i
\(453\) 8.36872i 0.393197i
\(454\) −4.74733 + 5.59934i −0.222803 + 0.262790i
\(455\) 19.8475i 0.930466i
\(456\) 1.67057 + 0.998929i 0.0782317 + 0.0467791i
\(457\) 7.54667i 0.353018i −0.984299 0.176509i \(-0.943519\pi\)
0.984299 0.176509i \(-0.0564805\pi\)
\(458\) 17.8503 + 15.1342i 0.834091 + 0.707173i
\(459\) 5.37023i 0.250661i
\(460\) −0.301480 + 9.29201i −0.0140566 + 0.433242i
\(461\) 22.0330i 1.02618i −0.858335 0.513090i \(-0.828501\pi\)
0.858335 0.513090i \(-0.171499\pi\)
\(462\) −3.81302 + 4.49735i −0.177398 + 0.209236i
\(463\) 10.5899i 0.492153i 0.969250 + 0.246077i \(0.0791415\pi\)
−0.969250 + 0.246077i \(0.920858\pi\)
\(464\) −8.20597 24.0637i −0.380953 1.11713i
\(465\) 5.46729i 0.253540i
\(466\) −16.3072 13.8259i −0.755416 0.640470i
\(467\) 23.8323i 1.10283i 0.834231 + 0.551414i \(0.185912\pi\)
−0.834231 + 0.551414i \(0.814088\pi\)
\(468\) 8.87354 1.47138i 0.410180 0.0680148i
\(469\) 48.4679i 2.23804i
\(470\) 0.138292 0.163111i 0.00637892 0.00752375i
\(471\) −0.188409 −0.00868141
\(472\) −5.53485 + 9.25628i −0.254762 + 0.426055i
\(473\) −8.73897 −0.401818
\(474\) 13.0163 + 11.0357i 0.597858 + 0.506887i
\(475\) 2.79434i 0.128213i
\(476\) −48.2434 + 7.99958i −2.21123 + 0.366660i
\(477\) 2.42613 0.111085
\(478\) −3.84742 + 4.53793i −0.175977 + 0.207560i
\(479\) 18.4098 0.841165 0.420583 0.907254i \(-0.361826\pi\)
0.420583 + 0.907254i \(0.361826\pi\)
\(480\) −5.10280 2.00620i −0.232910 0.0915702i
\(481\) 14.6601i 0.668445i
\(482\) −10.2579 + 12.0989i −0.467235 + 0.551091i
\(483\) −21.4145 4.26865i −0.974394 0.194230i
\(484\) 3.32450 + 20.0492i 0.151114 + 0.911329i
\(485\) 17.3449i 0.787591i
\(486\) −1.07870 0.914558i −0.0489306 0.0414852i
\(487\) 39.6459i 1.79653i 0.439458 + 0.898263i \(0.355171\pi\)
−0.439458 + 0.898263i \(0.644829\pi\)
\(488\) −17.8072 + 29.7801i −0.806094 + 1.34808i
\(489\) −6.04337 −0.273291
\(490\) −14.3559 12.1715i −0.648533 0.549851i
\(491\) −30.1004 −1.35841 −0.679206 0.733947i \(-0.737676\pi\)
−0.679206 + 0.733947i \(0.737676\pi\)
\(492\) 2.90313 + 17.5080i 0.130883 + 0.789323i
\(493\) 34.1337 1.53730
\(494\) 3.33852 + 2.83052i 0.150207 + 0.127351i
\(495\) 0.887559i 0.0398928i
\(496\) −7.28228 21.3550i −0.326984 0.958869i
\(497\) 67.8616i 3.04401i
\(498\) −10.2072 + 12.0391i −0.457397 + 0.539487i
\(499\) −21.5335 −0.963974 −0.481987 0.876178i \(-0.660085\pi\)
−0.481987 + 0.876178i \(0.660085\pi\)
\(500\) 2.87320 + 17.3276i 0.128494 + 0.774912i
\(501\) 3.28126i 0.146596i
\(502\) 17.9695 21.1946i 0.802020 0.945959i
\(503\) −22.2489 −0.992030 −0.496015 0.868314i \(-0.665204\pi\)
−0.496015 + 0.868314i \(0.665204\pi\)
\(504\) 6.60909 11.0528i 0.294392 0.492331i
\(505\) 2.11964i 0.0943229i
\(506\) 4.86488 3.86059i 0.216270 0.171624i
\(507\) 7.22618 0.320926
\(508\) 0.516096 0.0855775i 0.0228981 0.00379689i
\(509\) 30.3648i 1.34590i −0.739689 0.672949i \(-0.765028\pi\)
0.739689 0.672949i \(-0.234972\pi\)
\(510\) 4.76045 5.61482i 0.210796 0.248628i
\(511\) 37.2543 1.64803
\(512\) 22.6035 + 1.03936i 0.998944 + 0.0459336i
\(513\) 0.688174i 0.0303836i
\(514\) 13.3513 + 11.3197i 0.588900 + 0.499291i
\(515\) 1.77159 0.0780658
\(516\) 18.8299 3.12231i 0.828939 0.137452i
\(517\) −0.142854 −0.00628273
\(518\) 16.0098 + 13.5737i 0.703429 + 0.596394i
\(519\) 4.28422i 0.188056i
\(520\) −10.5820 6.32757i −0.464052 0.277482i
\(521\) 35.7402i 1.56580i 0.622145 + 0.782902i \(0.286262\pi\)
−0.622145 + 0.782902i \(0.713738\pi\)
\(522\) −5.81302 + 6.85630i −0.254429 + 0.300092i
\(523\) 9.30899i 0.407054i 0.979069 + 0.203527i \(0.0652404\pi\)
−0.979069 + 0.203527i \(0.934760\pi\)
\(524\) −2.69133 16.2307i −0.117571 0.709043i
\(525\) −18.4879 −0.806877
\(526\) −0.324084 0.274771i −0.0141308 0.0119806i
\(527\) 30.2915 1.31952
\(528\) 1.18220 + 3.46677i 0.0514488 + 0.150872i
\(529\) 21.2421 + 8.81897i 0.923568 + 0.383434i
\(530\) −2.53663 2.15065i −0.110184 0.0934184i
\(531\) 3.81302 0.165471
\(532\) 6.18221 1.02512i 0.268033 0.0444444i
\(533\) 39.9074i 1.72858i
\(534\) 10.0309 11.8311i 0.434078 0.511982i
\(535\) 2.54928i 0.110215i
\(536\) −25.8414 15.4520i −1.11618 0.667425i
\(537\) 21.7569 0.938878
\(538\) 1.39987 1.65110i 0.0603525 0.0711841i
\(539\) 12.5730i 0.541559i
\(540\) 0.317112 + 1.91242i 0.0136463 + 0.0822976i
\(541\) 20.3348i 0.874263i 0.899398 + 0.437131i \(0.144006\pi\)
−0.899398 + 0.437131i \(0.855994\pi\)
\(542\) 5.97041 7.04193i 0.256451 0.302477i
\(543\) 2.42739 0.104169
\(544\) −11.1154 + 28.2720i −0.476567 + 1.21215i
\(545\) −5.95797 −0.255211
\(546\) 18.7272 22.0882i 0.801451 0.945289i
\(547\) 39.4942 1.68865 0.844324 0.535832i \(-0.180002\pi\)
0.844324 + 0.535832i \(0.180002\pi\)
\(548\) 13.2319 2.19408i 0.565241 0.0937265i
\(549\) 12.2676 0.523568
\(550\) 3.40052 4.01082i 0.144999 0.171022i
\(551\) −4.37410 −0.186343
\(552\) −9.10304 + 10.0566i −0.387451 + 0.428036i
\(553\) 54.9407 2.33632
\(554\) −6.75492 + 7.96723i −0.286989 + 0.338495i
\(555\) −3.15955 −0.134115
\(556\) −2.42955 14.6520i −0.103036 0.621384i
\(557\) −0.909976 −0.0385569 −0.0192785 0.999814i \(-0.506137\pi\)
−0.0192785 + 0.999814i \(0.506137\pi\)
\(558\) −5.15869 + 6.08453i −0.218385 + 0.257579i
\(559\) 42.9205 1.81534
\(560\) −16.7079 + 5.69756i −0.706037 + 0.240766i
\(561\) −4.91751 −0.207618
\(562\) −7.12845 + 8.40780i −0.300695 + 0.354662i
\(563\) 24.7038i 1.04114i −0.853819 0.520571i \(-0.825719\pi\)
0.853819 0.520571i \(-0.174281\pi\)
\(564\) 0.307809 0.0510399i 0.0129611 0.00214917i
\(565\) 18.2273i 0.766829i
\(566\) 25.4672 30.0378i 1.07047 1.26258i
\(567\) −4.55308 −0.191211
\(568\) 36.1814 + 21.6349i 1.51814 + 0.907780i
\(569\) 4.12434i 0.172901i −0.996256 0.0864507i \(-0.972448\pi\)
0.996256 0.0864507i \(-0.0275525\pi\)
\(570\) −0.610034 + 0.719517i −0.0255515 + 0.0301373i
\(571\) 27.5717i 1.15384i 0.816801 + 0.576919i \(0.195745\pi\)
−0.816801 + 0.576919i \(0.804255\pi\)
\(572\) 1.34735 + 8.12550i 0.0563354 + 0.339744i
\(573\) −8.94391 −0.373637
\(574\) 43.5814 + 36.9499i 1.81905 + 1.54226i
\(575\) 19.0978 + 3.80686i 0.796435 + 0.158757i
\(576\) −3.78592 7.04747i −0.157747 0.293644i
\(577\) −30.3113 −1.26188 −0.630938 0.775833i \(-0.717330\pi\)
−0.630938 + 0.775833i \(0.717330\pi\)
\(578\) −12.7710 10.8278i −0.531206 0.450376i
\(579\) 12.2220 0.507930
\(580\) 12.1556 2.01560i 0.504732 0.0836932i
\(581\) 50.8162i 2.10821i
\(582\) 16.3659 19.3031i 0.678387 0.800138i
\(583\) 2.22161i 0.0920097i
\(584\) 11.8770 19.8627i 0.491474 0.821923i
\(585\) 4.35914i 0.180228i
\(586\) 13.2432 + 11.2281i 0.547071 + 0.463827i
\(587\) 14.3608 0.592732 0.296366 0.955074i \(-0.404225\pi\)
0.296366 + 0.955074i \(0.404225\pi\)
\(588\) −4.49218 27.0912i −0.185254 1.11722i
\(589\) −3.88174 −0.159944
\(590\) −3.98669 3.38006i −0.164129 0.139155i
\(591\) 10.5254i 0.432955i
\(592\) 12.3411 4.20843i 0.507215 0.172966i
\(593\) −25.1240 −1.03172 −0.515859 0.856674i \(-0.672527\pi\)
−0.515859 + 0.856674i \(0.672527\pi\)
\(594\) 0.837460 0.987761i 0.0343614 0.0405283i
\(595\) 23.6997i 0.971591i
\(596\) −5.23955 31.5984i −0.214620 1.29432i
\(597\) 16.2033 0.663158
\(598\) −23.8933 + 18.9608i −0.977070 + 0.775367i
\(599\) 3.10960i 0.127055i 0.997980 + 0.0635274i \(0.0202350\pi\)
−0.997980 + 0.0635274i \(0.979765\pi\)
\(600\) −5.89410 + 9.85708i −0.240626 + 0.402414i
\(601\) −14.1864 −0.578674 −0.289337 0.957227i \(-0.593435\pi\)
−0.289337 + 0.957227i \(0.593435\pi\)
\(602\) 39.7396 46.8718i 1.61967 1.91035i
\(603\) 10.6451i 0.433501i
\(604\) −16.5120 + 2.73797i −0.671863 + 0.111406i
\(605\) −9.84922 −0.400428
\(606\) −2.00000 + 2.35894i −0.0812444 + 0.0958255i
\(607\) 6.65785i 0.270234i 0.990830 + 0.135117i \(0.0431410\pi\)
−0.990830 + 0.135117i \(0.956859\pi\)
\(608\) 1.42439 3.62295i 0.0577666 0.146930i
\(609\) 28.9398i 1.17270i
\(610\) −12.8263 10.8746i −0.519323 0.440301i
\(611\) 0.701613 0.0283842
\(612\) 10.5958 1.75696i 0.428309 0.0710209i
\(613\) 8.35314 0.337380 0.168690 0.985669i \(-0.446046\pi\)
0.168690 + 0.985669i \(0.446046\pi\)
\(614\) −0.0983765 0.0834072i −0.00397015 0.00336604i
\(615\) −8.60085 −0.346820
\(616\) 10.1210 + 6.05194i 0.407788 + 0.243839i
\(617\) 8.98374i 0.361672i −0.983513 0.180836i \(-0.942120\pi\)
0.983513 0.180836i \(-0.0578803\pi\)
\(618\) 1.97160 + 1.67160i 0.0793094 + 0.0672415i
\(619\) 25.1148i 1.00945i 0.863280 + 0.504725i \(0.168406\pi\)
−0.863280 + 0.504725i \(0.831594\pi\)
\(620\) 10.7873 1.78872i 0.433228 0.0718366i
\(621\) 4.70330 + 0.937530i 0.188737 + 0.0376218i
\(622\) 2.52404 2.97704i 0.101205 0.119368i
\(623\) 49.9381i 2.00073i
\(624\) −5.80626 17.0266i −0.232436 0.681611i
\(625\) 11.7904 0.471616
\(626\) −10.3281 + 12.1817i −0.412793 + 0.486878i
\(627\) 0.630161 0.0251662
\(628\) 0.0616410 + 0.371741i 0.00245974 + 0.0148341i
\(629\) 17.5055i 0.697989i
\(630\) 4.76045 + 4.03609i 0.189661 + 0.160802i
\(631\) −16.1347 −0.642312 −0.321156 0.947026i \(-0.604071\pi\)
−0.321156 + 0.947026i \(0.604071\pi\)
\(632\) 17.5156 29.2924i 0.696733 1.16519i
\(633\) −6.20898 −0.246785
\(634\) −21.3167 + 25.1425i −0.846595 + 0.998535i
\(635\) 0.253533i 0.0100612i
\(636\) −0.793751 4.78691i −0.0314743 0.189813i
\(637\) 61.7511i 2.44667i
\(638\) −6.27831 5.32298i −0.248560 0.210739i
\(639\) 14.9045i 0.589614i
\(640\) −2.28889 + 10.7245i −0.0904763 + 0.423923i
\(641\) 17.9723i 0.709865i 0.934892 + 0.354932i \(0.115496\pi\)
−0.934892 + 0.354932i \(0.884504\pi\)
\(642\) 2.40539 2.83709i 0.0949331 0.111971i
\(643\) 37.3857i 1.47435i −0.675704 0.737173i \(-0.736160\pi\)
0.675704 0.737173i \(-0.263840\pi\)
\(644\) −1.41619 + 43.6486i −0.0558055 + 1.72000i
\(645\) 9.25021i 0.364227i
\(646\) 3.98648 + 3.37989i 0.156846 + 0.132980i
\(647\) 0.412854i 0.0162310i −0.999967 0.00811548i \(-0.997417\pi\)
0.999967 0.00811548i \(-0.00258327\pi\)
\(648\) −1.45156 + 2.42754i −0.0570228 + 0.0953629i
\(649\) 3.49158i 0.137057i
\(650\) −16.7013 + 19.6987i −0.655078 + 0.772646i
\(651\) 25.6823i 1.00657i
\(652\) 1.97719 + 11.9239i 0.0774328 + 0.466977i
\(653\) 47.0964i 1.84302i 0.388350 + 0.921512i \(0.373045\pi\)
−0.388350 + 0.921512i \(0.626955\pi\)
\(654\) −6.63060 5.62167i −0.259277 0.219825i
\(655\) 7.97338 0.311546
\(656\) 33.5946 11.4561i 1.31165 0.447285i
\(657\) −8.18221 −0.319218
\(658\) 0.649617 0.766204i 0.0253247 0.0298698i
\(659\) 35.5752i 1.38581i 0.721027 + 0.692907i \(0.243670\pi\)
−0.721027 + 0.692907i \(0.756330\pi\)
\(660\) −1.75121 + 0.290380i −0.0681656 + 0.0113030i
\(661\) −24.5240 −0.953872 −0.476936 0.878938i \(-0.658253\pi\)
−0.476936 + 0.878938i \(0.658253\pi\)
\(662\) −15.9114 13.4903i −0.618414 0.524315i
\(663\) 24.1518 0.937979
\(664\) 27.0934 + 16.2007i 1.05143 + 0.628708i
\(665\) 3.03702i 0.117771i
\(666\) −3.51625 2.98121i −0.136252 0.115520i
\(667\) 5.95904 29.8947i 0.230735 1.15753i
\(668\) −6.47413 + 1.07352i −0.250491 + 0.0415357i
\(669\) 22.7592i 0.879920i
\(670\) 9.43635 11.1299i 0.364558 0.429986i
\(671\) 11.2334i 0.433662i
\(672\) −23.9701 9.42401i −0.924666 0.363539i
\(673\) −49.3893 −1.90382 −0.951910 0.306379i \(-0.900882\pi\)
−0.951910 + 0.306379i \(0.900882\pi\)
\(674\) 20.4969 24.1755i 0.789510 0.931204i
\(675\) 4.06052 0.156289
\(676\) −2.36417 14.2577i −0.0909295 0.548372i
\(677\) −38.7298 −1.48851 −0.744254 0.667896i \(-0.767195\pi\)
−0.744254 + 0.667896i \(0.767195\pi\)
\(678\) −17.1985 + 20.2851i −0.660504 + 0.779045i
\(679\) 81.4766i 3.12679i
\(680\) −12.6358 7.55567i −0.484562 0.289747i
\(681\) 5.19084i 0.198914i
\(682\) −5.57160 4.72381i −0.213348 0.180884i
\(683\) −11.5331 −0.441303 −0.220651 0.975353i \(-0.570818\pi\)
−0.220651 + 0.975353i \(0.570818\pi\)
\(684\) −1.35781 + 0.225148i −0.0519171 + 0.00860874i
\(685\) 6.50022i 0.248361i
\(686\) −33.0563 28.0263i −1.26209 1.07005i
\(687\) −16.5481 −0.631348
\(688\) −12.3210 36.1309i −0.469734 1.37748i
\(689\) 10.9112i 0.415683i
\(690\) −4.08644 5.14948i −0.155568 0.196037i
\(691\) −19.3937 −0.737771 −0.368885 0.929475i \(-0.620261\pi\)
−0.368885 + 0.929475i \(0.620261\pi\)
\(692\) −8.45302 + 1.40165i −0.321336 + 0.0532829i
\(693\) 4.16925i 0.158377i
\(694\) 9.64233 + 8.17513i 0.366018 + 0.310324i
\(695\) 7.19783 0.273029
\(696\) 15.4297 + 9.22629i 0.584861 + 0.349722i
\(697\) 47.6529i 1.80498i
\(698\) −31.0899 + 36.6696i −1.17677 + 1.38797i
\(699\) 15.1175 0.571797
\(700\) 6.04861 + 36.4777i 0.228616 + 1.37873i
\(701\) −42.0341 −1.58761 −0.793803 0.608174i \(-0.791902\pi\)
−0.793803 + 0.608174i \(0.791902\pi\)
\(702\) −4.11309 + 4.85127i −0.155239 + 0.183099i
\(703\) 2.24326i 0.0846061i
\(704\) 6.45336 3.46677i 0.243220 0.130659i
\(705\) 0.151211i 0.00569495i
\(706\) −15.4723 13.1180i −0.582309 0.493703i
\(707\) 9.95690i 0.374468i
\(708\) −1.24749 7.52332i −0.0468837 0.282744i
\(709\) 7.00113 0.262933 0.131467 0.991321i \(-0.458031\pi\)
0.131467 + 0.991321i \(0.458031\pi\)
\(710\) −13.2122 + 15.5834i −0.495844 + 0.584833i
\(711\) −12.0667 −0.452537
\(712\) −26.6252 15.9207i −0.997823 0.596654i
\(713\) 5.28827 26.5296i 0.198047 0.993542i
\(714\) 22.3619 26.3753i 0.836874 0.987069i
\(715\) −3.99166 −0.149280
\(716\) −7.11812 42.9276i −0.266017 1.60428i
\(717\) 4.20687i 0.157108i
\(718\) 18.8454 + 15.9778i 0.703303 + 0.596287i
\(719\) 32.5628i 1.21439i 0.794554 + 0.607193i \(0.207705\pi\)
−0.794554 + 0.607193i \(0.792295\pi\)
\(720\) 3.66958 1.25136i 0.136757 0.0466356i
\(721\) 8.32196 0.309926
\(722\) 19.9844 + 16.9435i 0.743741 + 0.630571i
\(723\) 11.2163i 0.417137i
\(724\) −0.794160 4.78938i −0.0295147 0.177996i
\(725\) 25.8091i 0.958525i
\(726\) −10.9612 9.29328i −0.406807 0.344906i
\(727\) −8.30822 −0.308135 −0.154067 0.988060i \(-0.549237\pi\)
−0.154067 + 0.988060i \(0.549237\pi\)
\(728\) −49.7083 29.7234i −1.84231 1.10162i
\(729\) 1.00000 0.0370370
\(730\) 8.55487 + 7.25314i 0.316630 + 0.268451i
\(731\) 51.2507 1.89558
\(732\) −4.01355 24.2047i −0.148345 0.894631i
\(733\) −5.54133 −0.204674 −0.102337 0.994750i \(-0.532632\pi\)
−0.102337 + 0.994750i \(0.532632\pi\)
\(734\) 4.53312 + 3.84335i 0.167321 + 0.141861i
\(735\) 13.3086 0.490894
\(736\) 22.8204 + 14.6707i 0.841172 + 0.540767i
\(737\) −9.74768 −0.359061
\(738\) −9.57185 8.11537i −0.352345 0.298731i
\(739\) 16.1333 0.593472 0.296736 0.954960i \(-0.404102\pi\)
0.296736 + 0.954960i \(0.404102\pi\)
\(740\) 1.03370 + 6.23398i 0.0379996 + 0.229166i
\(741\) −3.09496 −0.113696
\(742\) −11.9157 10.1026i −0.437438 0.370877i
\(743\) −46.0973 −1.69115 −0.845574 0.533859i \(-0.820741\pi\)
−0.845574 + 0.533859i \(0.820741\pi\)
\(744\) 13.6929 + 8.18775i 0.502006 + 0.300177i
\(745\) 15.5228 0.568710
\(746\) −40.2351 34.1128i −1.47311 1.24896i
\(747\) 11.1608i 0.408354i
\(748\) 1.60885 + 9.70255i 0.0588253 + 0.354760i
\(749\) 11.9751i 0.437561i
\(750\) −9.47318 8.03172i −0.345912 0.293277i
\(751\) 2.29470 0.0837349 0.0418675 0.999123i \(-0.486669\pi\)
0.0418675 + 0.999123i \(0.486669\pi\)
\(752\) −0.201409 0.590626i −0.00734465 0.0215379i
\(753\) 19.6483i 0.716025i
\(754\) 30.8352 + 26.1432i 1.12295 + 0.952080i
\(755\) 8.11154i 0.295209i
\(756\) 1.48962 + 8.98350i 0.0541768 + 0.326727i
\(757\) 25.5612 0.929037 0.464518 0.885563i \(-0.346227\pi\)
0.464518 + 0.885563i \(0.346227\pi\)
\(758\) 11.0332 13.0133i 0.400744 0.472666i
\(759\) −0.858496 + 4.30681i −0.0311614 + 0.156327i
\(760\) 1.61923 + 0.968230i 0.0587357 + 0.0351214i
\(761\) 16.0610 0.582210 0.291105 0.956691i \(-0.405977\pi\)
0.291105 + 0.956691i \(0.405977\pi\)
\(762\) −0.239222 + 0.282156i −0.00866611 + 0.0102214i
\(763\) −27.9872 −1.01321
\(764\) 2.92615 + 17.6469i 0.105864 + 0.638441i
\(765\) 5.20519i 0.188194i
\(766\) 17.0867 + 14.4868i 0.617368 + 0.523428i
\(767\) 17.1485i 0.619197i
\(768\) −12.6664 + 9.77555i −0.457061 + 0.352745i
\(769\) 28.1563i 1.01534i −0.861551 0.507671i \(-0.830507\pi\)
0.861551 0.507671i \(-0.169493\pi\)
\(770\) −3.69584 + 4.35914i −0.133189 + 0.157093i
\(771\) −12.3772 −0.445756
\(772\) −3.99864 24.1148i −0.143914 0.867909i
\(773\) 24.8284 0.893015 0.446508 0.894780i \(-0.352668\pi\)
0.446508 + 0.894780i \(0.352668\pi\)
\(774\) −8.72808 + 10.2945i −0.313724 + 0.370029i
\(775\) 22.9039i 0.822733i
\(776\) −43.4405 25.9755i −1.55942 0.932466i
\(777\) −14.8418 −0.532447
\(778\) −2.20351 1.86822i −0.0789998 0.0669789i
\(779\) 6.10654i 0.218790i
\(780\) 8.60085 1.42617i 0.307960 0.0510650i
\(781\) 13.6481 0.488367
\(782\) −28.5307 + 22.6409i −1.02026 + 0.809637i
\(783\) 6.35610i 0.227149i
\(784\) −51.9828 + 17.7267i −1.85653 + 0.633095i
\(785\) −0.182618 −0.00651793
\(786\) 8.87354 + 7.52332i 0.316509 + 0.268348i
\(787\) 30.2006i 1.07653i −0.842774 0.538267i \(-0.819079\pi\)
0.842774 0.538267i \(-0.180921\pi\)
\(788\) 20.7671 3.44355i 0.739799 0.122671i
\(789\) 0.300441 0.0106960
\(790\) 12.6163 + 10.6966i 0.448867 + 0.380567i
\(791\) 85.6217i 3.04436i
\(792\) −2.22290 1.32920i −0.0789873 0.0472309i
\(793\) 55.1717i 1.95920i
\(794\) −31.8185 + 37.5290i −1.12920 + 1.33185i
\(795\) 2.35158 0.0834018
\(796\) −5.30119 31.9701i −0.187896 1.13315i
\(797\) 0.413948 0.0146628 0.00733139 0.999973i \(-0.497666\pi\)
0.00733139 + 0.999973i \(0.497666\pi\)
\(798\) −2.86560 + 3.37989i −0.101441 + 0.119647i
\(799\) 0.837786 0.0296387
\(800\) 21.3770 + 8.40450i 0.755790 + 0.297144i
\(801\) 10.9680i 0.387535i
\(802\) −25.5648 + 30.1530i −0.902726 + 1.06474i
\(803\) 7.49244i 0.264403i
\(804\) 21.0034 3.48271i 0.740731 0.122826i
\(805\) −20.7564 4.13747i −0.731567 0.145827i
\(806\) 27.3643 + 23.2004i 0.963865 + 0.817201i
\(807\) 1.53065i 0.0538814i
\(808\) 5.30867 + 3.17435i 0.186758 + 0.111673i
\(809\) 3.27386 0.115103 0.0575513 0.998343i \(-0.481671\pi\)
0.0575513 + 0.998343i \(0.481671\pi\)
\(810\) −1.04555 0.886452i −0.0367367 0.0311468i
\(811\) 5.52427 0.193983 0.0969916 0.995285i \(-0.469078\pi\)
0.0969916 + 0.995285i \(0.469078\pi\)
\(812\) 57.1000 9.46815i 2.00382 0.332267i
\(813\) 6.52820i 0.228954i
\(814\) 2.72989 3.21983i 0.0956827 0.112855i
\(815\) −5.85765 −0.205185
\(816\) −6.93317 20.3313i −0.242710 0.711737i
\(817\) −6.56758 −0.229771
\(818\) −11.2609 9.54737i −0.393727 0.333816i
\(819\) 20.4768i 0.715518i
\(820\) 2.81391 + 16.9700i 0.0982660 + 0.592617i
\(821\) 40.6786i 1.41969i −0.704356 0.709847i \(-0.748764\pi\)
0.704356 0.709847i \(-0.251236\pi\)
\(822\) −6.13331 + 7.23407i −0.213924 + 0.252317i
\(823\) 31.2641i 1.08980i 0.838502 + 0.544898i \(0.183432\pi\)
−0.838502 + 0.544898i \(0.816568\pi\)
\(824\) 2.65312 4.43698i 0.0924257 0.154569i
\(825\) 3.71821i 0.129452i
\(826\) −18.7272 15.8776i −0.651604 0.552454i
\(827\) 20.8630i 0.725478i −0.931891 0.362739i \(-0.881842\pi\)
0.931891 0.362739i \(-0.118158\pi\)
\(828\) 0.311039 9.58662i 0.0108094 0.333158i
\(829\) 11.6152i 0.403414i −0.979446 0.201707i \(-0.935351\pi\)
0.979446 0.201707i \(-0.0646489\pi\)
\(830\) −9.89355 + 11.6692i −0.343410 + 0.405043i
\(831\) 7.38599i 0.256217i
\(832\) −31.6949 + 17.0266i −1.09882 + 0.590292i
\(833\) 73.7361i 2.55481i
\(834\) 8.01043 + 6.79154i 0.277379 + 0.235172i
\(835\) 3.18042i 0.110063i
\(836\) −0.206168 1.24334i −0.00713046 0.0430020i
\(837\) 5.64064i 0.194969i
\(838\) 25.5533 30.1394i 0.882725 1.04115i
\(839\) −35.2227 −1.21602 −0.608011 0.793929i \(-0.708032\pi\)
−0.608011 + 0.793929i \(0.708032\pi\)
\(840\) 6.40598 10.7131i 0.221027 0.369638i
\(841\) −11.4000 −0.393104
\(842\) −35.2534 29.8891i −1.21491 1.03005i
\(843\) 7.79441i 0.268454i
\(844\) 2.03137 + 12.2507i 0.0699227 + 0.421686i
\(845\) 7.00411 0.240949
\(846\) −0.142676 + 0.168283i −0.00490531 + 0.00578568i
\(847\) −46.2661 −1.58972
\(848\) −9.18516 + 3.13223i −0.315420 + 0.107561i
\(849\) 27.8464i 0.955687i
\(850\) −19.9428 + 23.5219i −0.684031 + 0.806796i
\(851\) 15.3315 + 3.05609i 0.525556 + 0.104762i
\(852\) −29.4075 + 4.87627i −1.00749 + 0.167058i
\(853\) 11.0149i 0.377145i 0.982059 + 0.188572i \(0.0603860\pi\)
−0.982059 + 0.188572i \(0.939614\pi\)
\(854\) −60.2509 51.0829i −2.06174 1.74802i
\(855\) 0.667026i 0.0228118i
\(856\) −6.38470 3.81777i −0.218225 0.130489i
\(857\) 4.44133 0.151713 0.0758565 0.997119i \(-0.475831\pi\)
0.0758565 + 0.997119i \(0.475831\pi\)
\(858\) −4.44231 3.76635i −0.151658 0.128581i
\(859\) 55.9465 1.90887 0.954436 0.298417i \(-0.0964587\pi\)
0.954436 + 0.298417i \(0.0964587\pi\)
\(860\) 18.2512 3.02636i 0.622361 0.103198i
\(861\) −40.4019 −1.37689
\(862\) −17.4240 14.7727i −0.593464 0.503161i
\(863\) 19.0075i 0.647022i −0.946224 0.323511i \(-0.895137\pi\)
0.946224 0.323511i \(-0.104863\pi\)
\(864\) 5.26459 + 2.06981i 0.179105 + 0.0704164i
\(865\) 4.15256i 0.141191i
\(866\) 18.2123 21.4809i 0.618880 0.729951i
\(867\) 11.8393 0.402085
\(868\) 50.6726 8.40239i 1.71994 0.285196i
\(869\) 11.0495i 0.374828i
\(870\) −5.63438 + 6.64559i −0.191023 + 0.225307i
\(871\) 47.8746 1.62217
\(872\) −8.92258 + 14.9218i −0.302157 + 0.505316i
\(873\) 17.8948i 0.605648i
\(874\) 3.65610 2.90134i 0.123669 0.0981394i
\(875\) −39.9855 −1.35176
\(876\) 2.67695 + 16.1440i 0.0904457 + 0.545455i
\(877\) 39.4573i 1.33238i 0.745782 + 0.666190i \(0.232076\pi\)
−0.745782 + 0.666190i \(0.767924\pi\)
\(878\) 26.7967 31.6060i 0.904346 1.06665i
\(879\) −12.2770 −0.414094
\(880\) 1.14587 + 3.36023i 0.0386274 + 0.113273i
\(881\) 17.9584i 0.605035i −0.953144 0.302517i \(-0.902173\pi\)
0.953144 0.302517i \(-0.0978270\pi\)
\(882\) 14.8111 + 12.5574i 0.498715 + 0.422829i
\(883\) −39.4681 −1.32821 −0.664104 0.747640i \(-0.731187\pi\)
−0.664104 + 0.747640i \(0.731187\pi\)
\(884\) −7.90167 47.6529i −0.265762 1.60274i
\(885\) 3.69584 0.124234
\(886\) 35.5533 + 30.1435i 1.19444 + 1.01269i
\(887\) 15.0370i 0.504892i −0.967611 0.252446i \(-0.918765\pi\)
0.967611 0.252446i \(-0.0812350\pi\)
\(888\) −4.73170 + 7.91313i −0.158786 + 0.265547i
\(889\) 1.19096i 0.0399434i
\(890\) 9.72259 11.4675i 0.325902 0.384392i
\(891\) 0.915699i 0.0306771i
\(892\) 44.9052 7.44604i 1.50354 0.249312i
\(893\) −0.107359 −0.00359264
\(894\) 17.2752 + 14.6466i 0.577770 + 0.489855i
\(895\) 21.0882 0.704902
\(896\) −10.7519 + 50.3776i −0.359196 + 1.68300i
\(897\) 4.21640 21.1524i 0.140782 0.706258i
\(898\) 18.0103 + 15.2698i 0.601010 + 0.509559i
\(899\) −35.8525 −1.19575
\(900\) −1.32847 8.01164i −0.0442822 0.267055i
\(901\) 13.0289i 0.434055i
\(902\) 7.43124 8.76493i 0.247433 0.291840i
\(903\) 43.4523i 1.44600i
\(904\) 45.6505 + 27.2970i 1.51831 + 0.907885i
\(905\) 2.35279 0.0782094
\(906\) 7.65368 9.02730i 0.254276 0.299912i
\(907\) 9.18521i 0.304990i −0.988304 0.152495i \(-0.951269\pi\)
0.988304 0.152495i \(-0.0487308\pi\)
\(908\) −10.2418 + 1.69827i −0.339887 + 0.0563591i
\(909\) 2.18685i 0.0725332i
\(910\) 18.1517 21.4094i 0.601724 0.709716i
\(911\) −20.7570 −0.687710 −0.343855 0.939023i \(-0.611733\pi\)
−0.343855 + 0.939023i \(0.611733\pi\)
\(912\) 0.888459 + 2.60537i 0.0294198 + 0.0862726i
\(913\) 10.2200 0.338232
\(914\) 6.90187 8.14056i 0.228294 0.269266i
\(915\) 11.8906 0.393091
\(916\) 5.41398 + 32.6503i 0.178883 + 1.07880i
\(917\) 37.4545 1.23686
\(918\) −4.91139 + 5.79284i −0.162100 + 0.191192i
\(919\) −51.6210 −1.70282 −0.851409 0.524502i \(-0.824251\pi\)
−0.851409 + 0.524502i \(0.824251\pi\)
\(920\) −8.82329 + 9.74752i −0.290895 + 0.321366i
\(921\) 0.0911995 0.00300513
\(922\) 20.1505 23.7669i 0.663620 0.782721i
\(923\) −67.0310 −2.20635
\(924\) −8.22618 + 1.36404i −0.270621 + 0.0448736i
\(925\) 13.2362 0.435203
\(926\) −9.68506 + 11.4233i −0.318271 + 0.375391i
\(927\) −1.82776 −0.0600317
\(928\) 13.1559 33.4623i 0.431864 1.09845i
\(929\) 36.6120 1.20120 0.600600 0.799549i \(-0.294928\pi\)
0.600600 + 0.799549i \(0.294928\pi\)
\(930\) −5.00016 + 5.89754i −0.163962 + 0.193388i
\(931\) 9.44900i 0.309679i
\(932\) −4.94595 29.8278i −0.162010 0.977041i
\(933\) 2.75985i 0.0903534i
\(934\) −21.7961 + 25.7078i −0.713189 + 0.841186i
\(935\) −4.76639 −0.155878
\(936\) 10.9175 + 6.52820i 0.356850 + 0.213381i
\(937\) 6.16375i 0.201361i 0.994919 + 0.100680i \(0.0321020\pi\)
−0.994919 + 0.100680i \(0.967898\pi\)
\(938\) 44.3267 52.2820i 1.44732 1.70707i
\(939\) 11.2930i 0.368532i
\(940\) 0.298349 0.0494714i 0.00973107 0.00161358i
\(941\) −12.0779 −0.393729 −0.196865 0.980431i \(-0.563076\pi\)
−0.196865 + 0.980431i \(0.563076\pi\)
\(942\) −0.203235 0.172311i −0.00662177 0.00561418i
\(943\) 41.7349 + 8.31921i 1.35908 + 0.270911i
\(944\) −14.4358 + 4.92276i −0.469846 + 0.160222i
\(945\) −4.41316 −0.143560
\(946\) −9.42668 7.99230i −0.306488 0.259852i
\(947\) −51.7679 −1.68223 −0.841115 0.540856i \(-0.818100\pi\)
−0.841115 + 0.540856i \(0.818100\pi\)
\(948\) 3.94783 + 23.8083i 0.128219 + 0.773258i
\(949\) 36.7983i 1.19452i
\(950\) 2.55559 3.01425i 0.0829143 0.0977950i
\(951\) 23.3082i 0.755821i
\(952\) −59.3560 35.4923i −1.92374 1.15031i
\(953\) 18.0036i 0.583193i −0.956541 0.291597i \(-0.905813\pi\)
0.956541 0.291597i \(-0.0941865\pi\)
\(954\) 2.61706 + 2.21884i 0.0847304 + 0.0718376i
\(955\) −8.66905 −0.280524
\(956\) −8.30039 + 1.37635i −0.268454 + 0.0445142i
\(957\) 5.82028 0.188143
\(958\) 19.8586 + 16.8368i 0.641601 + 0.543973i
\(959\) 30.5344i 0.986006i
\(960\) −3.66958 6.83089i −0.118435 0.220466i
\(961\) −0.816783 −0.0263478
\(962\) −13.4076 + 15.8138i −0.432277 + 0.509858i
\(963\) 2.63011i 0.0847541i
\(964\) −22.1303 + 3.66959i −0.712770 + 0.118189i
\(965\) 11.8464 0.381350
\(966\) −19.1958 24.1894i −0.617615 0.778281i
\(967\) 51.6314i 1.66035i 0.557500 + 0.830177i \(0.311760\pi\)
−0.557500 + 0.830177i \(0.688240\pi\)
\(968\) −14.7501 + 24.6675i −0.474085 + 0.792842i
\(969\) −3.69565 −0.118721
\(970\) 15.8629 18.7099i 0.509328 0.600738i
\(971\) 6.84543i 0.219680i 0.993949 + 0.109840i \(0.0350339\pi\)
−0.993949 + 0.109840i \(0.964966\pi\)
\(972\) −0.327167 1.97306i −0.0104939 0.0632859i
\(973\) 33.8113 1.08394
\(974\) −36.2585 + 42.7658i −1.16180 + 1.37031i
\(975\) 18.2616i 0.584839i
\(976\) −46.4442 + 15.8379i −1.48664 + 0.506960i
\(977\) 18.2136i 0.582706i −0.956616 0.291353i \(-0.905895\pi\)
0.956616 0.291353i \(-0.0941054\pi\)
\(978\) −6.51896 5.52702i −0.208453 0.176734i
\(979\) −10.0434 −0.320988
\(980\) −4.35412 26.2586i −0.139087 0.838801i
\(981\) 6.14687 0.196255
\(982\) −32.4692 27.5286i −1.03613 0.878472i
\(983\) 9.93131 0.316760 0.158380 0.987378i \(-0.449373\pi\)
0.158380 + 0.987378i \(0.449373\pi\)
\(984\) −12.8805 + 21.5409i −0.410616 + 0.686699i
\(985\) 10.2019i 0.325059i
\(986\) 36.8199 + 31.2173i 1.17258 + 0.994160i
\(987\) 0.710307i 0.0226093i
\(988\) 1.01257 + 6.10654i 0.0322141 + 0.194275i
\(989\) 8.94731 44.8859i 0.284508 1.42729i
\(990\) 0.811724 0.957405i 0.0257983 0.0304283i
\(991\) 26.5845i 0.844485i −0.906483 0.422242i \(-0.861243\pi\)
0.906483 0.422242i \(-0.138757\pi\)
\(992\) 11.6750 29.6956i 0.370683 0.942837i
\(993\) 14.7506 0.468096
\(994\) −62.0633 + 73.2019i −1.96853 + 2.32182i
\(995\) 15.7054 0.497894
\(996\) −22.0210 + 3.65146i −0.697762 + 0.115701i
\(997\) 9.89264i 0.313303i 0.987654 + 0.156652i \(0.0500700\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(998\) −23.2281 19.6937i −0.735274 0.623392i
\(999\) 3.25973 0.103133
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.2.n.b.91.19 yes 24
4.3 odd 2 2208.2.n.b.367.9 24
8.3 odd 2 inner 552.2.n.b.91.18 yes 24
8.5 even 2 2208.2.n.b.367.15 24
23.22 odd 2 inner 552.2.n.b.91.20 yes 24
92.91 even 2 2208.2.n.b.367.16 24
184.45 odd 2 2208.2.n.b.367.10 24
184.91 even 2 inner 552.2.n.b.91.17 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.n.b.91.17 24 184.91 even 2 inner
552.2.n.b.91.18 yes 24 8.3 odd 2 inner
552.2.n.b.91.19 yes 24 1.1 even 1 trivial
552.2.n.b.91.20 yes 24 23.22 odd 2 inner
2208.2.n.b.367.9 24 4.3 odd 2
2208.2.n.b.367.10 24 184.45 odd 2
2208.2.n.b.367.15 24 8.5 even 2
2208.2.n.b.367.16 24 92.91 even 2