L(s) = 1 | + (1.07 + 0.914i)2-s − 3-s + (0.327 + 1.97i)4-s − 0.969·5-s + (−1.07 − 0.914i)6-s − 4.55·7-s + (−1.45 + 2.42i)8-s + 9-s + (−1.04 − 0.886i)10-s + 0.915i·11-s + (−0.327 − 1.97i)12-s − 4.49i·13-s + (−4.91 − 4.16i)14-s + 0.969·15-s + (−3.78 + 1.29i)16-s − 5.37i·17-s + ⋯ |
L(s) = 1 | + (0.762 + 0.646i)2-s − 0.577·3-s + (0.163 + 0.986i)4-s − 0.433·5-s + (−0.440 − 0.373i)6-s − 1.72·7-s + (−0.513 + 0.858i)8-s + 0.333·9-s + (−0.330 − 0.280i)10-s + 0.276i·11-s + (−0.0944 − 0.569i)12-s − 1.24i·13-s + (−1.31 − 1.11i)14-s + 0.250·15-s + (−0.946 + 0.322i)16-s − 1.30i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.671 + 0.741i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.671 + 0.741i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0621792 - 0.140153i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0621792 - 0.140153i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.07 - 0.914i)T \) |
| 3 | \( 1 + T \) |
| 23 | \( 1 + (4.70 + 0.937i)T \) |
good | 5 | \( 1 + 0.969T + 5T^{2} \) |
| 7 | \( 1 + 4.55T + 7T^{2} \) |
| 11 | \( 1 - 0.915iT - 11T^{2} \) |
| 13 | \( 1 + 4.49iT - 13T^{2} \) |
| 17 | \( 1 + 5.37iT - 17T^{2} \) |
| 19 | \( 1 - 0.688iT - 19T^{2} \) |
| 29 | \( 1 - 6.35iT - 29T^{2} \) |
| 31 | \( 1 - 5.64iT - 31T^{2} \) |
| 37 | \( 1 + 3.25T + 37T^{2} \) |
| 41 | \( 1 + 8.87T + 41T^{2} \) |
| 43 | \( 1 - 9.54iT - 43T^{2} \) |
| 47 | \( 1 - 0.156iT - 47T^{2} \) |
| 53 | \( 1 - 2.42T + 53T^{2} \) |
| 59 | \( 1 - 3.81T + 59T^{2} \) |
| 61 | \( 1 - 12.2T + 61T^{2} \) |
| 67 | \( 1 - 10.6iT - 67T^{2} \) |
| 71 | \( 1 + 14.9iT - 71T^{2} \) |
| 73 | \( 1 + 8.18T + 73T^{2} \) |
| 79 | \( 1 + 12.0T + 79T^{2} \) |
| 83 | \( 1 + 11.1iT - 83T^{2} \) |
| 89 | \( 1 - 10.9iT - 89T^{2} \) |
| 97 | \( 1 - 17.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70522054646743946832015014801, −10.43762278239501163721275907971, −9.681520543439866217910711471086, −8.500505192891498032079234988904, −7.38727852122236537647447055084, −6.75292239689017545915939838465, −5.85143368833109001720095051148, −5.00110684085351676760051838302, −3.69986882581179484746944978630, −2.92282765691012620284705023854,
0.06848537248699147321091933917, 2.10839425107440686801618350123, 3.69092725431107479778728921852, 4.10112039341612885203346602403, 5.70818899970461555594782237408, 6.29271622399503691699743462945, 7.09430579992294037668686515315, 8.679558815089091574975784012154, 9.875203441286347490667638357938, 10.13024023359520921425916753439