Properties

Label 552.2.n
Level $552$
Weight $2$
Character orbit 552.n
Rep. character $\chi_{552}(91,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $2$
Sturm bound $192$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.n (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 184 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(552, [\chi])\).

Total New Old
Modular forms 100 48 52
Cusp forms 92 48 44
Eisenstein series 8 0 8

Trace form

\( 48 q - 4 q^{2} + 8 q^{4} - 4 q^{6} - 4 q^{8} + 48 q^{9} + 8 q^{16} - 4 q^{18} - 4 q^{24} + 48 q^{25} - 4 q^{32} + 8 q^{36} - 40 q^{46} + 48 q^{49} - 84 q^{50} - 4 q^{54} - 80 q^{62} + 8 q^{64} - 4 q^{72}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(552, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
552.2.n.a 552.n 184.h $24$ $4.408$ None 552.2.n.a \(-4\) \(24\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
552.2.n.b 552.n 184.h $24$ $4.408$ None 552.2.n.b \(0\) \(-24\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(552, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(552, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)