Properties

Label 550.2.b.f.199.1
Level $550$
Weight $2$
Character 550.199
Analytic conductor $4.392$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(199,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,2,0,0,-22,0,-4,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{33})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 17x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(-3.37228i\) of defining polynomial
Character \(\chi\) \(=\) 550.199
Dual form 550.2.b.f.199.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -2.37228i q^{3} -1.00000 q^{4} -2.37228 q^{6} -2.37228i q^{7} +1.00000i q^{8} -2.62772 q^{9} -1.00000 q^{11} +2.37228i q^{12} -2.00000i q^{13} -2.37228 q^{14} +1.00000 q^{16} -4.37228i q^{17} +2.62772i q^{18} -6.37228 q^{19} -5.62772 q^{21} +1.00000i q^{22} +8.74456i q^{23} +2.37228 q^{24} -2.00000 q^{26} -0.883156i q^{27} +2.37228i q^{28} +4.37228 q^{29} -2.37228 q^{31} -1.00000i q^{32} +2.37228i q^{33} -4.37228 q^{34} +2.62772 q^{36} +3.62772i q^{37} +6.37228i q^{38} -4.74456 q^{39} +11.4891 q^{41} +5.62772i q^{42} +4.00000i q^{43} +1.00000 q^{44} +8.74456 q^{46} -8.74456i q^{47} -2.37228i q^{48} +1.37228 q^{49} -10.3723 q^{51} +2.00000i q^{52} -13.1168i q^{53} -0.883156 q^{54} +2.37228 q^{56} +15.1168i q^{57} -4.37228i q^{58} -8.74456 q^{59} +0.372281 q^{61} +2.37228i q^{62} +6.23369i q^{63} -1.00000 q^{64} +2.37228 q^{66} +8.00000i q^{67} +4.37228i q^{68} +20.7446 q^{69} -7.11684 q^{71} -2.62772i q^{72} -7.48913i q^{73} +3.62772 q^{74} +6.37228 q^{76} +2.37228i q^{77} +4.74456i q^{78} +12.7446 q^{79} -9.97825 q^{81} -11.4891i q^{82} -8.74456i q^{83} +5.62772 q^{84} +4.00000 q^{86} -10.3723i q^{87} -1.00000i q^{88} -4.37228 q^{89} -4.74456 q^{91} -8.74456i q^{92} +5.62772i q^{93} -8.74456 q^{94} -2.37228 q^{96} -1.25544i q^{97} -1.37228i q^{98} +2.62772 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 2 q^{6} - 22 q^{9} - 4 q^{11} + 2 q^{14} + 4 q^{16} - 14 q^{19} - 34 q^{21} - 2 q^{24} - 8 q^{26} + 6 q^{29} + 2 q^{31} - 6 q^{34} + 22 q^{36} + 4 q^{39} + 4 q^{44} + 12 q^{46} - 6 q^{49}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 2.37228i − 1.36964i −0.728714 0.684819i \(-0.759881\pi\)
0.728714 0.684819i \(-0.240119\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −2.37228 −0.968480
\(7\) − 2.37228i − 0.896638i −0.893874 0.448319i \(-0.852023\pi\)
0.893874 0.448319i \(-0.147977\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.62772 −0.875906
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 2.37228i 0.684819i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) −2.37228 −0.634019
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 4.37228i − 1.06043i −0.847862 0.530217i \(-0.822110\pi\)
0.847862 0.530217i \(-0.177890\pi\)
\(18\) 2.62772i 0.619359i
\(19\) −6.37228 −1.46190 −0.730951 0.682430i \(-0.760923\pi\)
−0.730951 + 0.682430i \(0.760923\pi\)
\(20\) 0 0
\(21\) −5.62772 −1.22807
\(22\) 1.00000i 0.213201i
\(23\) 8.74456i 1.82337i 0.410893 + 0.911684i \(0.365217\pi\)
−0.410893 + 0.911684i \(0.634783\pi\)
\(24\) 2.37228 0.484240
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) − 0.883156i − 0.169963i
\(28\) 2.37228i 0.448319i
\(29\) 4.37228 0.811912 0.405956 0.913893i \(-0.366939\pi\)
0.405956 + 0.913893i \(0.366939\pi\)
\(30\) 0 0
\(31\) −2.37228 −0.426074 −0.213037 0.977044i \(-0.568336\pi\)
−0.213037 + 0.977044i \(0.568336\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 2.37228i 0.412961i
\(34\) −4.37228 −0.749840
\(35\) 0 0
\(36\) 2.62772 0.437953
\(37\) 3.62772i 0.596393i 0.954504 + 0.298197i \(0.0963851\pi\)
−0.954504 + 0.298197i \(0.903615\pi\)
\(38\) 6.37228i 1.03372i
\(39\) −4.74456 −0.759738
\(40\) 0 0
\(41\) 11.4891 1.79430 0.897150 0.441726i \(-0.145634\pi\)
0.897150 + 0.441726i \(0.145634\pi\)
\(42\) 5.62772i 0.868376i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 8.74456 1.28932
\(47\) − 8.74456i − 1.27553i −0.770233 0.637763i \(-0.779860\pi\)
0.770233 0.637763i \(-0.220140\pi\)
\(48\) − 2.37228i − 0.342409i
\(49\) 1.37228 0.196040
\(50\) 0 0
\(51\) −10.3723 −1.45241
\(52\) 2.00000i 0.277350i
\(53\) − 13.1168i − 1.80174i −0.434092 0.900869i \(-0.642931\pi\)
0.434092 0.900869i \(-0.357069\pi\)
\(54\) −0.883156 −0.120182
\(55\) 0 0
\(56\) 2.37228 0.317009
\(57\) 15.1168i 2.00227i
\(58\) − 4.37228i − 0.574109i
\(59\) −8.74456 −1.13845 −0.569223 0.822183i \(-0.692756\pi\)
−0.569223 + 0.822183i \(0.692756\pi\)
\(60\) 0 0
\(61\) 0.372281 0.0476657 0.0238329 0.999716i \(-0.492413\pi\)
0.0238329 + 0.999716i \(0.492413\pi\)
\(62\) 2.37228i 0.301280i
\(63\) 6.23369i 0.785371i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 2.37228 0.292008
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 4.37228i 0.530217i
\(69\) 20.7446 2.49735
\(70\) 0 0
\(71\) −7.11684 −0.844614 −0.422307 0.906453i \(-0.638780\pi\)
−0.422307 + 0.906453i \(0.638780\pi\)
\(72\) − 2.62772i − 0.309680i
\(73\) − 7.48913i − 0.876536i −0.898844 0.438268i \(-0.855592\pi\)
0.898844 0.438268i \(-0.144408\pi\)
\(74\) 3.62772 0.421714
\(75\) 0 0
\(76\) 6.37228 0.730951
\(77\) 2.37228i 0.270347i
\(78\) 4.74456i 0.537216i
\(79\) 12.7446 1.43388 0.716938 0.697137i \(-0.245543\pi\)
0.716938 + 0.697137i \(0.245543\pi\)
\(80\) 0 0
\(81\) −9.97825 −1.10869
\(82\) − 11.4891i − 1.26876i
\(83\) − 8.74456i − 0.959840i −0.877312 0.479920i \(-0.840666\pi\)
0.877312 0.479920i \(-0.159334\pi\)
\(84\) 5.62772 0.614034
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) − 10.3723i − 1.11203i
\(88\) − 1.00000i − 0.106600i
\(89\) −4.37228 −0.463461 −0.231730 0.972780i \(-0.574439\pi\)
−0.231730 + 0.972780i \(0.574439\pi\)
\(90\) 0 0
\(91\) −4.74456 −0.497365
\(92\) − 8.74456i − 0.911684i
\(93\) 5.62772i 0.583567i
\(94\) −8.74456 −0.901933
\(95\) 0 0
\(96\) −2.37228 −0.242120
\(97\) − 1.25544i − 0.127470i −0.997967 0.0637352i \(-0.979699\pi\)
0.997967 0.0637352i \(-0.0203013\pi\)
\(98\) − 1.37228i − 0.138621i
\(99\) 2.62772 0.264096
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 10.3723i 1.02701i
\(103\) − 13.4891i − 1.32912i −0.747234 0.664562i \(-0.768618\pi\)
0.747234 0.664562i \(-0.231382\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −13.1168 −1.27402
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0.883156i 0.0849817i
\(109\) −7.48913 −0.717328 −0.358664 0.933467i \(-0.616768\pi\)
−0.358664 + 0.933467i \(0.616768\pi\)
\(110\) 0 0
\(111\) 8.60597 0.816842
\(112\) − 2.37228i − 0.224160i
\(113\) − 14.7446i − 1.38705i −0.720432 0.693526i \(-0.756056\pi\)
0.720432 0.693526i \(-0.243944\pi\)
\(114\) 15.1168 1.41582
\(115\) 0 0
\(116\) −4.37228 −0.405956
\(117\) 5.25544i 0.485865i
\(118\) 8.74456i 0.805002i
\(119\) −10.3723 −0.950825
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) − 0.372281i − 0.0337048i
\(123\) − 27.2554i − 2.45754i
\(124\) 2.37228 0.213037
\(125\) 0 0
\(126\) 6.23369 0.555341
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 9.48913 0.835471
\(130\) 0 0
\(131\) 4.88316 0.426643 0.213322 0.976982i \(-0.431572\pi\)
0.213322 + 0.976982i \(0.431572\pi\)
\(132\) − 2.37228i − 0.206481i
\(133\) 15.1168i 1.31080i
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) 4.37228 0.374920
\(137\) − 2.74456i − 0.234484i −0.993103 0.117242i \(-0.962595\pi\)
0.993103 0.117242i \(-0.0374053\pi\)
\(138\) − 20.7446i − 1.76589i
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) −20.7446 −1.74701
\(142\) 7.11684i 0.597232i
\(143\) 2.00000i 0.167248i
\(144\) −2.62772 −0.218977
\(145\) 0 0
\(146\) −7.48913 −0.619804
\(147\) − 3.25544i − 0.268504i
\(148\) − 3.62772i − 0.298197i
\(149\) 18.6060 1.52426 0.762130 0.647424i \(-0.224154\pi\)
0.762130 + 0.647424i \(0.224154\pi\)
\(150\) 0 0
\(151\) 22.2337 1.80935 0.904676 0.426100i \(-0.140113\pi\)
0.904676 + 0.426100i \(0.140113\pi\)
\(152\) − 6.37228i − 0.516860i
\(153\) 11.4891i 0.928841i
\(154\) 2.37228 0.191164
\(155\) 0 0
\(156\) 4.74456 0.379869
\(157\) 3.62772i 0.289523i 0.989467 + 0.144762i \(0.0462416\pi\)
−0.989467 + 0.144762i \(0.953758\pi\)
\(158\) − 12.7446i − 1.01390i
\(159\) −31.1168 −2.46773
\(160\) 0 0
\(161\) 20.7446 1.63490
\(162\) 9.97825i 0.783965i
\(163\) 23.1168i 1.81065i 0.424718 + 0.905325i \(0.360373\pi\)
−0.424718 + 0.905325i \(0.639627\pi\)
\(164\) −11.4891 −0.897150
\(165\) 0 0
\(166\) −8.74456 −0.678710
\(167\) − 10.3723i − 0.802631i −0.915940 0.401316i \(-0.868553\pi\)
0.915940 0.401316i \(-0.131447\pi\)
\(168\) − 5.62772i − 0.434188i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 16.7446 1.28049
\(172\) − 4.00000i − 0.304997i
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) −10.3723 −0.786321
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 20.7446i 1.55926i
\(178\) 4.37228i 0.327716i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 4.74456i 0.351690i
\(183\) − 0.883156i − 0.0652848i
\(184\) −8.74456 −0.644658
\(185\) 0 0
\(186\) 5.62772 0.412644
\(187\) 4.37228i 0.319733i
\(188\) 8.74456i 0.637763i
\(189\) −2.09509 −0.152396
\(190\) 0 0
\(191\) 17.4891 1.26547 0.632734 0.774369i \(-0.281933\pi\)
0.632734 + 0.774369i \(0.281933\pi\)
\(192\) 2.37228i 0.171205i
\(193\) 13.8614i 0.997766i 0.866669 + 0.498883i \(0.166256\pi\)
−0.866669 + 0.498883i \(0.833744\pi\)
\(194\) −1.25544 −0.0901351
\(195\) 0 0
\(196\) −1.37228 −0.0980201
\(197\) − 9.25544i − 0.659423i −0.944082 0.329711i \(-0.893049\pi\)
0.944082 0.329711i \(-0.106951\pi\)
\(198\) − 2.62772i − 0.186744i
\(199\) −0.883156 −0.0626053 −0.0313026 0.999510i \(-0.509966\pi\)
−0.0313026 + 0.999510i \(0.509966\pi\)
\(200\) 0 0
\(201\) 18.9783 1.33862
\(202\) − 6.00000i − 0.422159i
\(203\) − 10.3723i − 0.727991i
\(204\) 10.3723 0.726205
\(205\) 0 0
\(206\) −13.4891 −0.939832
\(207\) − 22.9783i − 1.59710i
\(208\) − 2.00000i − 0.138675i
\(209\) 6.37228 0.440780
\(210\) 0 0
\(211\) −11.1168 −0.765315 −0.382658 0.923890i \(-0.624991\pi\)
−0.382658 + 0.923890i \(0.624991\pi\)
\(212\) 13.1168i 0.900869i
\(213\) 16.8832i 1.15681i
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) 0.883156 0.0600912
\(217\) 5.62772i 0.382034i
\(218\) 7.48913i 0.507228i
\(219\) −17.7663 −1.20054
\(220\) 0 0
\(221\) −8.74456 −0.588223
\(222\) − 8.60597i − 0.577595i
\(223\) 7.25544i 0.485860i 0.970044 + 0.242930i \(0.0781085\pi\)
−0.970044 + 0.242930i \(0.921891\pi\)
\(224\) −2.37228 −0.158505
\(225\) 0 0
\(226\) −14.7446 −0.980794
\(227\) 8.74456i 0.580397i 0.956966 + 0.290199i \(0.0937213\pi\)
−0.956966 + 0.290199i \(0.906279\pi\)
\(228\) − 15.1168i − 1.00114i
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 5.62772 0.370277
\(232\) 4.37228i 0.287054i
\(233\) 4.37228i 0.286438i 0.989691 + 0.143219i \(0.0457453\pi\)
−0.989691 + 0.143219i \(0.954255\pi\)
\(234\) 5.25544 0.343559
\(235\) 0 0
\(236\) 8.74456 0.569223
\(237\) − 30.2337i − 1.96389i
\(238\) 10.3723i 0.672335i
\(239\) 3.25544 0.210577 0.105288 0.994442i \(-0.466423\pi\)
0.105288 + 0.994442i \(0.466423\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) − 1.00000i − 0.0642824i
\(243\) 21.0217i 1.34855i
\(244\) −0.372281 −0.0238329
\(245\) 0 0
\(246\) −27.2554 −1.73774
\(247\) 12.7446i 0.810917i
\(248\) − 2.37228i − 0.150640i
\(249\) −20.7446 −1.31463
\(250\) 0 0
\(251\) −8.74456 −0.551952 −0.275976 0.961165i \(-0.589001\pi\)
−0.275976 + 0.961165i \(0.589001\pi\)
\(252\) − 6.23369i − 0.392685i
\(253\) − 8.74456i − 0.549766i
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) − 9.48913i − 0.590767i
\(259\) 8.60597 0.534749
\(260\) 0 0
\(261\) −11.4891 −0.711159
\(262\) − 4.88316i − 0.301682i
\(263\) − 3.86141i − 0.238105i −0.992888 0.119052i \(-0.962014\pi\)
0.992888 0.119052i \(-0.0379856\pi\)
\(264\) −2.37228 −0.146004
\(265\) 0 0
\(266\) 15.1168 0.926873
\(267\) 10.3723i 0.634773i
\(268\) − 8.00000i − 0.488678i
\(269\) −2.74456 −0.167339 −0.0836695 0.996494i \(-0.526664\pi\)
−0.0836695 + 0.996494i \(0.526664\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) − 4.37228i − 0.265108i
\(273\) 11.2554i 0.681210i
\(274\) −2.74456 −0.165805
\(275\) 0 0
\(276\) −20.7446 −1.24868
\(277\) − 1.25544i − 0.0754319i −0.999289 0.0377160i \(-0.987992\pi\)
0.999289 0.0377160i \(-0.0120082\pi\)
\(278\) − 4.00000i − 0.239904i
\(279\) 6.23369 0.373201
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 20.7446i 1.23532i
\(283\) − 16.7446i − 0.995361i −0.867360 0.497680i \(-0.834185\pi\)
0.867360 0.497680i \(-0.165815\pi\)
\(284\) 7.11684 0.422307
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) − 27.2554i − 1.60884i
\(288\) 2.62772i 0.154840i
\(289\) −2.11684 −0.124520
\(290\) 0 0
\(291\) −2.97825 −0.174588
\(292\) 7.48913i 0.438268i
\(293\) − 0.510875i − 0.0298456i −0.999889 0.0149228i \(-0.995250\pi\)
0.999889 0.0149228i \(-0.00475025\pi\)
\(294\) −3.25544 −0.189861
\(295\) 0 0
\(296\) −3.62772 −0.210857
\(297\) 0.883156i 0.0512459i
\(298\) − 18.6060i − 1.07781i
\(299\) 17.4891 1.01142
\(300\) 0 0
\(301\) 9.48913 0.546944
\(302\) − 22.2337i − 1.27940i
\(303\) − 14.2337i − 0.817704i
\(304\) −6.37228 −0.365475
\(305\) 0 0
\(306\) 11.4891 0.656790
\(307\) 16.7446i 0.955663i 0.878452 + 0.477831i \(0.158577\pi\)
−0.878452 + 0.477831i \(0.841423\pi\)
\(308\) − 2.37228i − 0.135173i
\(309\) −32.0000 −1.82042
\(310\) 0 0
\(311\) 13.6277 0.772757 0.386379 0.922340i \(-0.373726\pi\)
0.386379 + 0.922340i \(0.373726\pi\)
\(312\) − 4.74456i − 0.268608i
\(313\) 22.0000i 1.24351i 0.783210 + 0.621757i \(0.213581\pi\)
−0.783210 + 0.621757i \(0.786419\pi\)
\(314\) 3.62772 0.204724
\(315\) 0 0
\(316\) −12.7446 −0.716938
\(317\) 27.3505i 1.53616i 0.640355 + 0.768079i \(0.278787\pi\)
−0.640355 + 0.768079i \(0.721213\pi\)
\(318\) 31.1168i 1.74495i
\(319\) −4.37228 −0.244801
\(320\) 0 0
\(321\) −28.4674 −1.58889
\(322\) − 20.7446i − 1.15605i
\(323\) 27.8614i 1.55025i
\(324\) 9.97825 0.554347
\(325\) 0 0
\(326\) 23.1168 1.28032
\(327\) 17.7663i 0.982479i
\(328\) 11.4891i 0.634381i
\(329\) −20.7446 −1.14368
\(330\) 0 0
\(331\) −14.9783 −0.823279 −0.411640 0.911347i \(-0.635044\pi\)
−0.411640 + 0.911347i \(0.635044\pi\)
\(332\) 8.74456i 0.479920i
\(333\) − 9.53262i − 0.522385i
\(334\) −10.3723 −0.567546
\(335\) 0 0
\(336\) −5.62772 −0.307017
\(337\) 6.88316i 0.374949i 0.982269 + 0.187475i \(0.0600303\pi\)
−0.982269 + 0.187475i \(0.939970\pi\)
\(338\) − 9.00000i − 0.489535i
\(339\) −34.9783 −1.89976
\(340\) 0 0
\(341\) 2.37228 0.128466
\(342\) − 16.7446i − 0.905442i
\(343\) − 19.8614i − 1.07242i
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 2.23369i 0.119911i 0.998201 + 0.0599553i \(0.0190958\pi\)
−0.998201 + 0.0599553i \(0.980904\pi\)
\(348\) 10.3723i 0.556013i
\(349\) 3.48913 0.186769 0.0933843 0.995630i \(-0.470231\pi\)
0.0933843 + 0.995630i \(0.470231\pi\)
\(350\) 0 0
\(351\) −1.76631 −0.0942788
\(352\) 1.00000i 0.0533002i
\(353\) 23.4891i 1.25020i 0.780545 + 0.625100i \(0.214942\pi\)
−0.780545 + 0.625100i \(0.785058\pi\)
\(354\) 20.7446 1.10256
\(355\) 0 0
\(356\) 4.37228 0.231730
\(357\) 24.6060i 1.30229i
\(358\) − 12.0000i − 0.634220i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 21.6060 1.13716
\(362\) 10.0000i 0.525588i
\(363\) − 2.37228i − 0.124512i
\(364\) 4.74456 0.248683
\(365\) 0 0
\(366\) −0.883156 −0.0461633
\(367\) − 4.00000i − 0.208798i −0.994535 0.104399i \(-0.966708\pi\)
0.994535 0.104399i \(-0.0332919\pi\)
\(368\) 8.74456i 0.455842i
\(369\) −30.1902 −1.57164
\(370\) 0 0
\(371\) −31.1168 −1.61551
\(372\) − 5.62772i − 0.291784i
\(373\) − 8.51087i − 0.440676i −0.975424 0.220338i \(-0.929284\pi\)
0.975424 0.220338i \(-0.0707161\pi\)
\(374\) 4.37228 0.226085
\(375\) 0 0
\(376\) 8.74456 0.450966
\(377\) − 8.74456i − 0.450368i
\(378\) 2.09509i 0.107760i
\(379\) −34.2337 −1.75847 −0.879233 0.476392i \(-0.841944\pi\)
−0.879233 + 0.476392i \(0.841944\pi\)
\(380\) 0 0
\(381\) 18.9783 0.972285
\(382\) − 17.4891i − 0.894821i
\(383\) 2.23369i 0.114136i 0.998370 + 0.0570681i \(0.0181752\pi\)
−0.998370 + 0.0570681i \(0.981825\pi\)
\(384\) 2.37228 0.121060
\(385\) 0 0
\(386\) 13.8614 0.705527
\(387\) − 10.5109i − 0.534298i
\(388\) 1.25544i 0.0637352i
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 38.2337 1.93356
\(392\) 1.37228i 0.0693107i
\(393\) − 11.5842i − 0.584347i
\(394\) −9.25544 −0.466282
\(395\) 0 0
\(396\) −2.62772 −0.132048
\(397\) − 20.9783i − 1.05287i −0.850216 0.526434i \(-0.823529\pi\)
0.850216 0.526434i \(-0.176471\pi\)
\(398\) 0.883156i 0.0442686i
\(399\) 35.8614 1.79532
\(400\) 0 0
\(401\) 7.62772 0.380910 0.190455 0.981696i \(-0.439004\pi\)
0.190455 + 0.981696i \(0.439004\pi\)
\(402\) − 18.9783i − 0.946549i
\(403\) 4.74456i 0.236343i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) −10.3723 −0.514768
\(407\) − 3.62772i − 0.179819i
\(408\) − 10.3723i − 0.513504i
\(409\) 36.2337 1.79164 0.895820 0.444417i \(-0.146589\pi\)
0.895820 + 0.444417i \(0.146589\pi\)
\(410\) 0 0
\(411\) −6.51087 −0.321158
\(412\) 13.4891i 0.664562i
\(413\) 20.7446i 1.02077i
\(414\) −22.9783 −1.12932
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) − 9.48913i − 0.464684i
\(418\) − 6.37228i − 0.311678i
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −24.2337 −1.18108 −0.590539 0.807009i \(-0.701085\pi\)
−0.590539 + 0.807009i \(0.701085\pi\)
\(422\) 11.1168i 0.541159i
\(423\) 22.9783i 1.11724i
\(424\) 13.1168 0.637010
\(425\) 0 0
\(426\) 16.8832 0.817992
\(427\) − 0.883156i − 0.0427389i
\(428\) 12.0000i 0.580042i
\(429\) 4.74456 0.229070
\(430\) 0 0
\(431\) 10.9783 0.528804 0.264402 0.964413i \(-0.414825\pi\)
0.264402 + 0.964413i \(0.414825\pi\)
\(432\) − 0.883156i − 0.0424909i
\(433\) 29.7228i 1.42839i 0.699948 + 0.714194i \(0.253206\pi\)
−0.699948 + 0.714194i \(0.746794\pi\)
\(434\) 5.62772 0.270139
\(435\) 0 0
\(436\) 7.48913 0.358664
\(437\) − 55.7228i − 2.66558i
\(438\) 17.7663i 0.848907i
\(439\) 26.9783 1.28760 0.643801 0.765193i \(-0.277357\pi\)
0.643801 + 0.765193i \(0.277357\pi\)
\(440\) 0 0
\(441\) −3.60597 −0.171713
\(442\) 8.74456i 0.415936i
\(443\) − 6.51087i − 0.309341i −0.987966 0.154670i \(-0.950568\pi\)
0.987966 0.154670i \(-0.0494316\pi\)
\(444\) −8.60597 −0.408421
\(445\) 0 0
\(446\) 7.25544 0.343555
\(447\) − 44.1386i − 2.08768i
\(448\) 2.37228i 0.112080i
\(449\) 16.9783 0.801253 0.400627 0.916241i \(-0.368792\pi\)
0.400627 + 0.916241i \(0.368792\pi\)
\(450\) 0 0
\(451\) −11.4891 −0.541002
\(452\) 14.7446i 0.693526i
\(453\) − 52.7446i − 2.47816i
\(454\) 8.74456 0.410403
\(455\) 0 0
\(456\) −15.1168 −0.707911
\(457\) 35.3505i 1.65363i 0.562475 + 0.826814i \(0.309849\pi\)
−0.562475 + 0.826814i \(0.690151\pi\)
\(458\) − 10.0000i − 0.467269i
\(459\) −3.86141 −0.180235
\(460\) 0 0
\(461\) −1.11684 −0.0520166 −0.0260083 0.999662i \(-0.508280\pi\)
−0.0260083 + 0.999662i \(0.508280\pi\)
\(462\) − 5.62772i − 0.261825i
\(463\) − 34.2337i − 1.59097i −0.605970 0.795487i \(-0.707215\pi\)
0.605970 0.795487i \(-0.292785\pi\)
\(464\) 4.37228 0.202978
\(465\) 0 0
\(466\) 4.37228 0.202542
\(467\) − 13.6277i − 0.630616i −0.948989 0.315308i \(-0.897892\pi\)
0.948989 0.315308i \(-0.102108\pi\)
\(468\) − 5.25544i − 0.242933i
\(469\) 18.9783 0.876334
\(470\) 0 0
\(471\) 8.60597 0.396542
\(472\) − 8.74456i − 0.402501i
\(473\) − 4.00000i − 0.183920i
\(474\) −30.2337 −1.38868
\(475\) 0 0
\(476\) 10.3723 0.475413
\(477\) 34.4674i 1.57815i
\(478\) − 3.25544i − 0.148900i
\(479\) 17.4891 0.799099 0.399549 0.916712i \(-0.369167\pi\)
0.399549 + 0.916712i \(0.369167\pi\)
\(480\) 0 0
\(481\) 7.25544 0.330819
\(482\) 22.0000i 1.00207i
\(483\) − 49.2119i − 2.23922i
\(484\) −1.00000 −0.0454545
\(485\) 0 0
\(486\) 21.0217 0.953566
\(487\) 20.0000i 0.906287i 0.891438 + 0.453143i \(0.149697\pi\)
−0.891438 + 0.453143i \(0.850303\pi\)
\(488\) 0.372281i 0.0168524i
\(489\) 54.8397 2.47994
\(490\) 0 0
\(491\) −1.62772 −0.0734579 −0.0367290 0.999325i \(-0.511694\pi\)
−0.0367290 + 0.999325i \(0.511694\pi\)
\(492\) 27.2554i 1.22877i
\(493\) − 19.1168i − 0.860979i
\(494\) 12.7446 0.573405
\(495\) 0 0
\(496\) −2.37228 −0.106519
\(497\) 16.8832i 0.757313i
\(498\) 20.7446i 0.929586i
\(499\) 10.5109 0.470531 0.235266 0.971931i \(-0.424404\pi\)
0.235266 + 0.971931i \(0.424404\pi\)
\(500\) 0 0
\(501\) −24.6060 −1.09931
\(502\) 8.74456i 0.390289i
\(503\) − 10.9783i − 0.489496i −0.969587 0.244748i \(-0.921295\pi\)
0.969587 0.244748i \(-0.0787052\pi\)
\(504\) −6.23369 −0.277671
\(505\) 0 0
\(506\) −8.74456 −0.388743
\(507\) − 21.3505i − 0.948210i
\(508\) − 8.00000i − 0.354943i
\(509\) −44.2337 −1.96062 −0.980312 0.197455i \(-0.936732\pi\)
−0.980312 + 0.197455i \(0.936732\pi\)
\(510\) 0 0
\(511\) −17.7663 −0.785935
\(512\) − 1.00000i − 0.0441942i
\(513\) 5.62772i 0.248470i
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) −9.48913 −0.417735
\(517\) 8.74456i 0.384585i
\(518\) − 8.60597i − 0.378125i
\(519\) 14.2337 0.624790
\(520\) 0 0
\(521\) 35.4891 1.55481 0.777403 0.629002i \(-0.216536\pi\)
0.777403 + 0.629002i \(0.216536\pi\)
\(522\) 11.4891i 0.502865i
\(523\) 14.9783i 0.654953i 0.944859 + 0.327477i \(0.106198\pi\)
−0.944859 + 0.327477i \(0.893802\pi\)
\(524\) −4.88316 −0.213322
\(525\) 0 0
\(526\) −3.86141 −0.168365
\(527\) 10.3723i 0.451824i
\(528\) 2.37228i 0.103240i
\(529\) −53.4674 −2.32467
\(530\) 0 0
\(531\) 22.9783 0.997171
\(532\) − 15.1168i − 0.655398i
\(533\) − 22.9783i − 0.995299i
\(534\) 10.3723 0.448853
\(535\) 0 0
\(536\) −8.00000 −0.345547
\(537\) − 28.4674i − 1.22846i
\(538\) 2.74456i 0.118326i
\(539\) −1.37228 −0.0591083
\(540\) 0 0
\(541\) −2.88316 −0.123957 −0.0619783 0.998077i \(-0.519741\pi\)
−0.0619783 + 0.998077i \(0.519741\pi\)
\(542\) 16.0000i 0.687259i
\(543\) 23.7228i 1.01804i
\(544\) −4.37228 −0.187460
\(545\) 0 0
\(546\) 11.2554 0.481688
\(547\) 20.0000i 0.855138i 0.903983 + 0.427569i \(0.140630\pi\)
−0.903983 + 0.427569i \(0.859370\pi\)
\(548\) 2.74456i 0.117242i
\(549\) −0.978251 −0.0417507
\(550\) 0 0
\(551\) −27.8614 −1.18694
\(552\) 20.7446i 0.882947i
\(553\) − 30.2337i − 1.28567i
\(554\) −1.25544 −0.0533384
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) − 40.9783i − 1.73630i −0.496298 0.868152i \(-0.665308\pi\)
0.496298 0.868152i \(-0.334692\pi\)
\(558\) − 6.23369i − 0.263893i
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 10.3723 0.437918
\(562\) − 18.0000i − 0.759284i
\(563\) − 26.2337i − 1.10562i −0.833308 0.552809i \(-0.813556\pi\)
0.833308 0.552809i \(-0.186444\pi\)
\(564\) 20.7446 0.873504
\(565\) 0 0
\(566\) −16.7446 −0.703826
\(567\) 23.6712i 0.994098i
\(568\) − 7.11684i − 0.298616i
\(569\) 26.7446 1.12119 0.560595 0.828090i \(-0.310572\pi\)
0.560595 + 0.828090i \(0.310572\pi\)
\(570\) 0 0
\(571\) 9.62772 0.402907 0.201454 0.979498i \(-0.435433\pi\)
0.201454 + 0.979498i \(0.435433\pi\)
\(572\) − 2.00000i − 0.0836242i
\(573\) − 41.4891i − 1.73323i
\(574\) −27.2554 −1.13762
\(575\) 0 0
\(576\) 2.62772 0.109488
\(577\) − 8.97825i − 0.373769i −0.982382 0.186885i \(-0.940161\pi\)
0.982382 0.186885i \(-0.0598391\pi\)
\(578\) 2.11684i 0.0880491i
\(579\) 32.8832 1.36658
\(580\) 0 0
\(581\) −20.7446 −0.860629
\(582\) 2.97825i 0.123452i
\(583\) 13.1168i 0.543244i
\(584\) 7.48913 0.309902
\(585\) 0 0
\(586\) −0.510875 −0.0211040
\(587\) − 3.86141i − 0.159377i −0.996820 0.0796887i \(-0.974607\pi\)
0.996820 0.0796887i \(-0.0253926\pi\)
\(588\) 3.25544i 0.134252i
\(589\) 15.1168 0.622879
\(590\) 0 0
\(591\) −21.9565 −0.903170
\(592\) 3.62772i 0.149098i
\(593\) 35.4891i 1.45736i 0.684852 + 0.728682i \(0.259867\pi\)
−0.684852 + 0.728682i \(0.740133\pi\)
\(594\) 0.883156 0.0362363
\(595\) 0 0
\(596\) −18.6060 −0.762130
\(597\) 2.09509i 0.0857465i
\(598\) − 17.4891i − 0.715184i
\(599\) −0.605969 −0.0247592 −0.0123796 0.999923i \(-0.503941\pi\)
−0.0123796 + 0.999923i \(0.503941\pi\)
\(600\) 0 0
\(601\) −39.4891 −1.61080 −0.805398 0.592735i \(-0.798048\pi\)
−0.805398 + 0.592735i \(0.798048\pi\)
\(602\) − 9.48913i − 0.386748i
\(603\) − 21.0217i − 0.856072i
\(604\) −22.2337 −0.904676
\(605\) 0 0
\(606\) −14.2337 −0.578204
\(607\) − 23.1168i − 0.938284i −0.883123 0.469142i \(-0.844563\pi\)
0.883123 0.469142i \(-0.155437\pi\)
\(608\) 6.37228i 0.258430i
\(609\) −24.6060 −0.997084
\(610\) 0 0
\(611\) −17.4891 −0.707534
\(612\) − 11.4891i − 0.464420i
\(613\) − 43.4891i − 1.75651i −0.478193 0.878255i \(-0.658708\pi\)
0.478193 0.878255i \(-0.341292\pi\)
\(614\) 16.7446 0.675756
\(615\) 0 0
\(616\) −2.37228 −0.0955819
\(617\) 32.2337i 1.29768i 0.760925 + 0.648840i \(0.224745\pi\)
−0.760925 + 0.648840i \(0.775255\pi\)
\(618\) 32.0000i 1.28723i
\(619\) −24.4674 −0.983427 −0.491713 0.870757i \(-0.663629\pi\)
−0.491713 + 0.870757i \(0.663629\pi\)
\(620\) 0 0
\(621\) 7.72281 0.309906
\(622\) − 13.6277i − 0.546422i
\(623\) 10.3723i 0.415557i
\(624\) −4.74456 −0.189935
\(625\) 0 0
\(626\) 22.0000 0.879297
\(627\) − 15.1168i − 0.603709i
\(628\) − 3.62772i − 0.144762i
\(629\) 15.8614 0.632436
\(630\) 0 0
\(631\) 24.8832 0.990583 0.495291 0.868727i \(-0.335061\pi\)
0.495291 + 0.868727i \(0.335061\pi\)
\(632\) 12.7446i 0.506951i
\(633\) 26.3723i 1.04820i
\(634\) 27.3505 1.08623
\(635\) 0 0
\(636\) 31.1168 1.23386
\(637\) − 2.74456i − 0.108744i
\(638\) 4.37228i 0.173100i
\(639\) 18.7011 0.739803
\(640\) 0 0
\(641\) 36.0951 1.42567 0.712835 0.701332i \(-0.247411\pi\)
0.712835 + 0.701332i \(0.247411\pi\)
\(642\) 28.4674i 1.12352i
\(643\) 23.1168i 0.911639i 0.890072 + 0.455820i \(0.150654\pi\)
−0.890072 + 0.455820i \(0.849346\pi\)
\(644\) −20.7446 −0.817450
\(645\) 0 0
\(646\) 27.8614 1.09619
\(647\) 19.7228i 0.775384i 0.921789 + 0.387692i \(0.126728\pi\)
−0.921789 + 0.387692i \(0.873272\pi\)
\(648\) − 9.97825i − 0.391983i
\(649\) 8.74456 0.343254
\(650\) 0 0
\(651\) 13.3505 0.523249
\(652\) − 23.1168i − 0.905325i
\(653\) − 16.3723i − 0.640697i −0.947300 0.320348i \(-0.896200\pi\)
0.947300 0.320348i \(-0.103800\pi\)
\(654\) 17.7663 0.694718
\(655\) 0 0
\(656\) 11.4891 0.448575
\(657\) 19.6793i 0.767763i
\(658\) 20.7446i 0.808707i
\(659\) 15.8614 0.617873 0.308936 0.951083i \(-0.400027\pi\)
0.308936 + 0.951083i \(0.400027\pi\)
\(660\) 0 0
\(661\) 31.4891 1.22479 0.612393 0.790554i \(-0.290207\pi\)
0.612393 + 0.790554i \(0.290207\pi\)
\(662\) 14.9783i 0.582146i
\(663\) 20.7446i 0.805652i
\(664\) 8.74456 0.339355
\(665\) 0 0
\(666\) −9.53262 −0.369382
\(667\) 38.2337i 1.48041i
\(668\) 10.3723i 0.401316i
\(669\) 17.2119 0.665452
\(670\) 0 0
\(671\) −0.372281 −0.0143718
\(672\) 5.62772i 0.217094i
\(673\) 13.8614i 0.534318i 0.963652 + 0.267159i \(0.0860849\pi\)
−0.963652 + 0.267159i \(0.913915\pi\)
\(674\) 6.88316 0.265129
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 14.7446i 0.566680i 0.959020 + 0.283340i \(0.0914424\pi\)
−0.959020 + 0.283340i \(0.908558\pi\)
\(678\) 34.9783i 1.34333i
\(679\) −2.97825 −0.114295
\(680\) 0 0
\(681\) 20.7446 0.794933
\(682\) − 2.37228i − 0.0908393i
\(683\) 34.3723i 1.31522i 0.753359 + 0.657609i \(0.228432\pi\)
−0.753359 + 0.657609i \(0.771568\pi\)
\(684\) −16.7446 −0.640244
\(685\) 0 0
\(686\) −19.8614 −0.758312
\(687\) − 23.7228i − 0.905082i
\(688\) 4.00000i 0.152499i
\(689\) −26.2337 −0.999424
\(690\) 0 0
\(691\) 5.76631 0.219361 0.109680 0.993967i \(-0.465017\pi\)
0.109680 + 0.993967i \(0.465017\pi\)
\(692\) − 6.00000i − 0.228086i
\(693\) − 6.23369i − 0.236798i
\(694\) 2.23369 0.0847896
\(695\) 0 0
\(696\) 10.3723 0.393160
\(697\) − 50.2337i − 1.90274i
\(698\) − 3.48913i − 0.132065i
\(699\) 10.3723 0.392316
\(700\) 0 0
\(701\) −31.6277 −1.19456 −0.597281 0.802032i \(-0.703752\pi\)
−0.597281 + 0.802032i \(0.703752\pi\)
\(702\) 1.76631i 0.0666652i
\(703\) − 23.1168i − 0.871868i
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 23.4891 0.884025
\(707\) − 14.2337i − 0.535313i
\(708\) − 20.7446i − 0.779628i
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) −33.4891 −1.25594
\(712\) − 4.37228i − 0.163858i
\(713\) − 20.7446i − 0.776890i
\(714\) 24.6060 0.920855
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) − 7.72281i − 0.288414i
\(718\) 0 0
\(719\) −31.1168 −1.16046 −0.580231 0.814452i \(-0.697038\pi\)
−0.580231 + 0.814452i \(0.697038\pi\)
\(720\) 0 0
\(721\) −32.0000 −1.19174
\(722\) − 21.6060i − 0.804091i
\(723\) 52.1902i 1.94097i
\(724\) 10.0000 0.371647
\(725\) 0 0
\(726\) −2.37228 −0.0880436
\(727\) 10.2337i 0.379546i 0.981828 + 0.189773i \(0.0607753\pi\)
−0.981828 + 0.189773i \(0.939225\pi\)
\(728\) − 4.74456i − 0.175845i
\(729\) 19.9348 0.738324
\(730\) 0 0
\(731\) 17.4891 0.646859
\(732\) 0.883156i 0.0326424i
\(733\) − 11.7663i − 0.434599i −0.976105 0.217299i \(-0.930275\pi\)
0.976105 0.217299i \(-0.0697248\pi\)
\(734\) −4.00000 −0.147643
\(735\) 0 0
\(736\) 8.74456 0.322329
\(737\) − 8.00000i − 0.294684i
\(738\) 30.1902i 1.11132i
\(739\) −48.4674 −1.78290 −0.891451 0.453118i \(-0.850312\pi\)
−0.891451 + 0.453118i \(0.850312\pi\)
\(740\) 0 0
\(741\) 30.2337 1.11066
\(742\) 31.1168i 1.14234i
\(743\) 10.3723i 0.380522i 0.981734 + 0.190261i \(0.0609334\pi\)
−0.981734 + 0.190261i \(0.939067\pi\)
\(744\) −5.62772 −0.206322
\(745\) 0 0
\(746\) −8.51087 −0.311605
\(747\) 22.9783i 0.840730i
\(748\) − 4.37228i − 0.159866i
\(749\) −28.4674 −1.04018
\(750\) 0 0
\(751\) −19.8614 −0.724753 −0.362377 0.932032i \(-0.618035\pi\)
−0.362377 + 0.932032i \(0.618035\pi\)
\(752\) − 8.74456i − 0.318881i
\(753\) 20.7446i 0.755974i
\(754\) −8.74456 −0.318458
\(755\) 0 0
\(756\) 2.09509 0.0761979
\(757\) 24.9783i 0.907850i 0.891040 + 0.453925i \(0.149977\pi\)
−0.891040 + 0.453925i \(0.850023\pi\)
\(758\) 34.2337i 1.24342i
\(759\) −20.7446 −0.752980
\(760\) 0 0
\(761\) −40.9783 −1.48546 −0.742730 0.669591i \(-0.766469\pi\)
−0.742730 + 0.669591i \(0.766469\pi\)
\(762\) − 18.9783i − 0.687509i
\(763\) 17.7663i 0.643184i
\(764\) −17.4891 −0.632734
\(765\) 0 0
\(766\) 2.23369 0.0807064
\(767\) 17.4891i 0.631496i
\(768\) − 2.37228i − 0.0856023i
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) 42.7011 1.53784
\(772\) − 13.8614i − 0.498883i
\(773\) − 6.60597i − 0.237600i −0.992918 0.118800i \(-0.962095\pi\)
0.992918 0.118800i \(-0.0379048\pi\)
\(774\) −10.5109 −0.377806
\(775\) 0 0
\(776\) 1.25544 0.0450676
\(777\) − 20.4158i − 0.732412i
\(778\) 6.00000i 0.215110i
\(779\) −73.2119 −2.62309
\(780\) 0 0
\(781\) 7.11684 0.254661
\(782\) − 38.2337i − 1.36723i
\(783\) − 3.86141i − 0.137995i
\(784\) 1.37228 0.0490100
\(785\) 0 0
\(786\) −11.5842 −0.413195
\(787\) 24.4674i 0.872168i 0.899906 + 0.436084i \(0.143635\pi\)
−0.899906 + 0.436084i \(0.856365\pi\)
\(788\) 9.25544i 0.329711i
\(789\) −9.16034 −0.326117
\(790\) 0 0
\(791\) −34.9783 −1.24368
\(792\) 2.62772i 0.0933719i
\(793\) − 0.744563i − 0.0264402i
\(794\) −20.9783 −0.744490
\(795\) 0 0
\(796\) 0.883156 0.0313026
\(797\) − 11.4891i − 0.406966i −0.979079 0.203483i \(-0.934774\pi\)
0.979079 0.203483i \(-0.0652261\pi\)
\(798\) − 35.8614i − 1.26948i
\(799\) −38.2337 −1.35261
\(800\) 0 0
\(801\) 11.4891 0.405948
\(802\) − 7.62772i − 0.269344i
\(803\) 7.48913i 0.264285i
\(804\) −18.9783 −0.669311
\(805\) 0 0
\(806\) 4.74456 0.167120
\(807\) 6.51087i 0.229194i
\(808\) 6.00000i 0.211079i
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 16.1386 0.566703 0.283351 0.959016i \(-0.408554\pi\)
0.283351 + 0.959016i \(0.408554\pi\)
\(812\) 10.3723i 0.363996i
\(813\) 37.9565i 1.33119i
\(814\) −3.62772 −0.127151
\(815\) 0 0
\(816\) −10.3723 −0.363102
\(817\) − 25.4891i − 0.891752i
\(818\) − 36.2337i − 1.26688i
\(819\) 12.4674 0.435645
\(820\) 0 0
\(821\) −11.4891 −0.400973 −0.200487 0.979696i \(-0.564252\pi\)
−0.200487 + 0.979696i \(0.564252\pi\)
\(822\) 6.51087i 0.227093i
\(823\) 28.0000i 0.976019i 0.872838 + 0.488009i \(0.162277\pi\)
−0.872838 + 0.488009i \(0.837723\pi\)
\(824\) 13.4891 0.469916
\(825\) 0 0
\(826\) 20.7446 0.721796
\(827\) 1.02175i 0.0355297i 0.999842 + 0.0177649i \(0.00565503\pi\)
−0.999842 + 0.0177649i \(0.994345\pi\)
\(828\) 22.9783i 0.798549i
\(829\) 13.2554 0.460380 0.230190 0.973146i \(-0.426065\pi\)
0.230190 + 0.973146i \(0.426065\pi\)
\(830\) 0 0
\(831\) −2.97825 −0.103314
\(832\) 2.00000i 0.0693375i
\(833\) − 6.00000i − 0.207888i
\(834\) −9.48913 −0.328582
\(835\) 0 0
\(836\) −6.37228 −0.220390
\(837\) 2.09509i 0.0724171i
\(838\) − 12.0000i − 0.414533i
\(839\) −34.9783 −1.20758 −0.603792 0.797142i \(-0.706344\pi\)
−0.603792 + 0.797142i \(0.706344\pi\)
\(840\) 0 0
\(841\) −9.88316 −0.340798
\(842\) 24.2337i 0.835148i
\(843\) − 42.7011i − 1.47070i
\(844\) 11.1168 0.382658
\(845\) 0 0
\(846\) 22.9783 0.790009
\(847\) − 2.37228i − 0.0815126i
\(848\) − 13.1168i − 0.450434i
\(849\) −39.7228 −1.36328
\(850\) 0 0
\(851\) −31.7228 −1.08744
\(852\) − 16.8832i − 0.578407i
\(853\) − 30.4674i − 1.04318i −0.853195 0.521592i \(-0.825339\pi\)
0.853195 0.521592i \(-0.174661\pi\)
\(854\) −0.883156 −0.0302210
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) − 15.3505i − 0.524364i −0.965018 0.262182i \(-0.915558\pi\)
0.965018 0.262182i \(-0.0844421\pi\)
\(858\) − 4.74456i − 0.161977i
\(859\) 31.2554 1.06642 0.533211 0.845982i \(-0.320985\pi\)
0.533211 + 0.845982i \(0.320985\pi\)
\(860\) 0 0
\(861\) −64.6576 −2.20352
\(862\) − 10.9783i − 0.373921i
\(863\) − 32.7446i − 1.11464i −0.830299 0.557319i \(-0.811830\pi\)
0.830299 0.557319i \(-0.188170\pi\)
\(864\) −0.883156 −0.0300456
\(865\) 0 0
\(866\) 29.7228 1.01002
\(867\) 5.02175i 0.170548i
\(868\) − 5.62772i − 0.191017i
\(869\) −12.7446 −0.432330
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) − 7.48913i − 0.253614i
\(873\) 3.29894i 0.111652i
\(874\) −55.7228 −1.88485
\(875\) 0 0
\(876\) 17.7663 0.600268
\(877\) − 8.97825i − 0.303174i −0.988444 0.151587i \(-0.951562\pi\)
0.988444 0.151587i \(-0.0484384\pi\)
\(878\) − 26.9783i − 0.910472i
\(879\) −1.21194 −0.0408777
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 3.60597i 0.121419i
\(883\) 2.37228i 0.0798336i 0.999203 + 0.0399168i \(0.0127093\pi\)
−0.999203 + 0.0399168i \(0.987291\pi\)
\(884\) 8.74456 0.294111
\(885\) 0 0
\(886\) −6.51087 −0.218737
\(887\) 34.9783i 1.17445i 0.809422 + 0.587227i \(0.199781\pi\)
−0.809422 + 0.587227i \(0.800219\pi\)
\(888\) 8.60597i 0.288797i
\(889\) 18.9783 0.636510
\(890\) 0 0
\(891\) 9.97825 0.334284
\(892\) − 7.25544i − 0.242930i
\(893\) 55.7228i 1.86469i
\(894\) −44.1386 −1.47622
\(895\) 0 0
\(896\) 2.37228 0.0792524
\(897\) − 41.4891i − 1.38528i
\(898\) − 16.9783i − 0.566572i
\(899\) −10.3723 −0.345935
\(900\) 0 0
\(901\) −57.3505 −1.91062
\(902\) 11.4891i 0.382546i
\(903\) − 22.5109i − 0.749115i
\(904\) 14.7446 0.490397
\(905\) 0 0
\(906\) −52.7446 −1.75232
\(907\) − 40.6060i − 1.34830i −0.738595 0.674150i \(-0.764510\pi\)
0.738595 0.674150i \(-0.235490\pi\)
\(908\) − 8.74456i − 0.290199i
\(909\) −15.7663 −0.522936
\(910\) 0 0
\(911\) −48.6060 −1.61039 −0.805194 0.593012i \(-0.797939\pi\)
−0.805194 + 0.593012i \(0.797939\pi\)
\(912\) 15.1168i 0.500569i
\(913\) 8.74456i 0.289403i
\(914\) 35.3505 1.16929
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) − 11.5842i − 0.382545i
\(918\) 3.86141i 0.127445i
\(919\) 26.9783 0.889930 0.444965 0.895548i \(-0.353216\pi\)
0.444965 + 0.895548i \(0.353216\pi\)
\(920\) 0 0
\(921\) 39.7228 1.30891
\(922\) 1.11684i 0.0367813i
\(923\) 14.2337i 0.468508i
\(924\) −5.62772 −0.185138
\(925\) 0 0
\(926\) −34.2337 −1.12499
\(927\) 35.4456i 1.16419i
\(928\) − 4.37228i − 0.143527i
\(929\) 27.3505 0.897342 0.448671 0.893697i \(-0.351898\pi\)
0.448671 + 0.893697i \(0.351898\pi\)
\(930\) 0 0
\(931\) −8.74456 −0.286591
\(932\) − 4.37228i − 0.143219i
\(933\) − 32.3288i − 1.05840i
\(934\) −13.6277 −0.445913
\(935\) 0 0
\(936\) −5.25544 −0.171779
\(937\) − 51.4891i − 1.68208i −0.540976 0.841038i \(-0.681945\pi\)
0.540976 0.841038i \(-0.318055\pi\)
\(938\) − 18.9783i − 0.619662i
\(939\) 52.1902 1.70316
\(940\) 0 0
\(941\) 48.0951 1.56786 0.783928 0.620852i \(-0.213213\pi\)
0.783928 + 0.620852i \(0.213213\pi\)
\(942\) − 8.60597i − 0.280398i
\(943\) 100.467i 3.27167i
\(944\) −8.74456 −0.284611
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) 20.1386i 0.654416i 0.944952 + 0.327208i \(0.106108\pi\)
−0.944952 + 0.327208i \(0.893892\pi\)
\(948\) 30.2337i 0.981945i
\(949\) −14.9783 −0.486215
\(950\) 0 0
\(951\) 64.8832 2.10398
\(952\) − 10.3723i − 0.336168i
\(953\) − 22.8832i − 0.741258i −0.928781 0.370629i \(-0.879142\pi\)
0.928781 0.370629i \(-0.120858\pi\)
\(954\) 34.4674 1.11592
\(955\) 0 0
\(956\) −3.25544 −0.105288
\(957\) 10.3723i 0.335288i
\(958\) − 17.4891i − 0.565048i
\(959\) −6.51087 −0.210247
\(960\) 0 0
\(961\) −25.3723 −0.818461
\(962\) − 7.25544i − 0.233925i
\(963\) 31.5326i 1.01612i
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) −49.2119 −1.58337
\(967\) 7.39403i 0.237776i 0.992908 + 0.118888i \(0.0379329\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(968\) 1.00000i 0.0321412i
\(969\) 66.0951 2.12328
\(970\) 0 0
\(971\) −46.9783 −1.50760 −0.753802 0.657102i \(-0.771782\pi\)
−0.753802 + 0.657102i \(0.771782\pi\)
\(972\) − 21.0217i − 0.674273i
\(973\) − 9.48913i − 0.304207i
\(974\) 20.0000 0.640841
\(975\) 0 0
\(976\) 0.372281 0.0119164
\(977\) − 20.2337i − 0.647333i −0.946171 0.323667i \(-0.895084\pi\)
0.946171 0.323667i \(-0.104916\pi\)
\(978\) − 54.8397i − 1.75358i
\(979\) 4.37228 0.139739
\(980\) 0 0
\(981\) 19.6793 0.628312
\(982\) 1.62772i 0.0519426i
\(983\) − 43.7228i − 1.39454i −0.716808 0.697271i \(-0.754398\pi\)
0.716808 0.697271i \(-0.245602\pi\)
\(984\) 27.2554 0.868872
\(985\) 0 0
\(986\) −19.1168 −0.608804
\(987\) 49.2119i 1.56643i
\(988\) − 12.7446i − 0.405459i
\(989\) −34.9783 −1.11224
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 2.37228i 0.0753200i
\(993\) 35.5326i 1.12759i
\(994\) 16.8832 0.535501
\(995\) 0 0
\(996\) 20.7446 0.657317
\(997\) − 12.2337i − 0.387445i −0.981056 0.193722i \(-0.937944\pi\)
0.981056 0.193722i \(-0.0620561\pi\)
\(998\) − 10.5109i − 0.332716i
\(999\) 3.20384 0.101365
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.b.f.199.1 4
3.2 odd 2 4950.2.c.bc.199.3 4
4.3 odd 2 4400.2.b.p.4049.3 4
5.2 odd 4 550.2.a.n.1.1 2
5.3 odd 4 110.2.a.d.1.2 2
5.4 even 2 inner 550.2.b.f.199.4 4
15.2 even 4 4950.2.a.bw.1.2 2
15.8 even 4 990.2.a.m.1.1 2
15.14 odd 2 4950.2.c.bc.199.2 4
20.3 even 4 880.2.a.n.1.1 2
20.7 even 4 4400.2.a.bl.1.2 2
20.19 odd 2 4400.2.b.p.4049.2 4
35.13 even 4 5390.2.a.bp.1.1 2
40.3 even 4 3520.2.a.bj.1.2 2
40.13 odd 4 3520.2.a.bq.1.1 2
55.32 even 4 6050.2.a.cb.1.1 2
55.43 even 4 1210.2.a.r.1.2 2
60.23 odd 4 7920.2.a.bq.1.2 2
220.43 odd 4 9680.2.a.bt.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.a.d.1.2 2 5.3 odd 4
550.2.a.n.1.1 2 5.2 odd 4
550.2.b.f.199.1 4 1.1 even 1 trivial
550.2.b.f.199.4 4 5.4 even 2 inner
880.2.a.n.1.1 2 20.3 even 4
990.2.a.m.1.1 2 15.8 even 4
1210.2.a.r.1.2 2 55.43 even 4
3520.2.a.bj.1.2 2 40.3 even 4
3520.2.a.bq.1.1 2 40.13 odd 4
4400.2.a.bl.1.2 2 20.7 even 4
4400.2.b.p.4049.2 4 20.19 odd 2
4400.2.b.p.4049.3 4 4.3 odd 2
4950.2.a.bw.1.2 2 15.2 even 4
4950.2.c.bc.199.2 4 15.14 odd 2
4950.2.c.bc.199.3 4 3.2 odd 2
5390.2.a.bp.1.1 2 35.13 even 4
6050.2.a.cb.1.1 2 55.32 even 4
7920.2.a.bq.1.2 2 60.23 odd 4
9680.2.a.bt.1.1 2 220.43 odd 4