Properties

Label 110.2.a.d.1.2
Level $110$
Weight $2$
Character 110.1
Self dual yes
Analytic conductor $0.878$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,2,Mod(1,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 110.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.878354422234\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 110.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.37228 q^{3} +1.00000 q^{4} +1.00000 q^{5} -2.37228 q^{6} -2.37228 q^{7} -1.00000 q^{8} +2.62772 q^{9} -1.00000 q^{10} -1.00000 q^{11} +2.37228 q^{12} +2.00000 q^{13} +2.37228 q^{14} +2.37228 q^{15} +1.00000 q^{16} -4.37228 q^{17} -2.62772 q^{18} +6.37228 q^{19} +1.00000 q^{20} -5.62772 q^{21} +1.00000 q^{22} -8.74456 q^{23} -2.37228 q^{24} +1.00000 q^{25} -2.00000 q^{26} -0.883156 q^{27} -2.37228 q^{28} -4.37228 q^{29} -2.37228 q^{30} -2.37228 q^{31} -1.00000 q^{32} -2.37228 q^{33} +4.37228 q^{34} -2.37228 q^{35} +2.62772 q^{36} +3.62772 q^{37} -6.37228 q^{38} +4.74456 q^{39} -1.00000 q^{40} +11.4891 q^{41} +5.62772 q^{42} -4.00000 q^{43} -1.00000 q^{44} +2.62772 q^{45} +8.74456 q^{46} -8.74456 q^{47} +2.37228 q^{48} -1.37228 q^{49} -1.00000 q^{50} -10.3723 q^{51} +2.00000 q^{52} +13.1168 q^{53} +0.883156 q^{54} -1.00000 q^{55} +2.37228 q^{56} +15.1168 q^{57} +4.37228 q^{58} +8.74456 q^{59} +2.37228 q^{60} +0.372281 q^{61} +2.37228 q^{62} -6.23369 q^{63} +1.00000 q^{64} +2.00000 q^{65} +2.37228 q^{66} +8.00000 q^{67} -4.37228 q^{68} -20.7446 q^{69} +2.37228 q^{70} -7.11684 q^{71} -2.62772 q^{72} +7.48913 q^{73} -3.62772 q^{74} +2.37228 q^{75} +6.37228 q^{76} +2.37228 q^{77} -4.74456 q^{78} -12.7446 q^{79} +1.00000 q^{80} -9.97825 q^{81} -11.4891 q^{82} +8.74456 q^{83} -5.62772 q^{84} -4.37228 q^{85} +4.00000 q^{86} -10.3723 q^{87} +1.00000 q^{88} +4.37228 q^{89} -2.62772 q^{90} -4.74456 q^{91} -8.74456 q^{92} -5.62772 q^{93} +8.74456 q^{94} +6.37228 q^{95} -2.37228 q^{96} -1.25544 q^{97} +1.37228 q^{98} -2.62772 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} + q^{6} + q^{7} - 2 q^{8} + 11 q^{9} - 2 q^{10} - 2 q^{11} - q^{12} + 4 q^{13} - q^{14} - q^{15} + 2 q^{16} - 3 q^{17} - 11 q^{18} + 7 q^{19} + 2 q^{20} - 17 q^{21}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.37228 1.36964 0.684819 0.728714i \(-0.259881\pi\)
0.684819 + 0.728714i \(0.259881\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −2.37228 −0.968480
\(7\) −2.37228 −0.896638 −0.448319 0.893874i \(-0.647977\pi\)
−0.448319 + 0.893874i \(0.647977\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.62772 0.875906
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511
\(12\) 2.37228 0.684819
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 2.37228 0.634019
\(15\) 2.37228 0.612520
\(16\) 1.00000 0.250000
\(17\) −4.37228 −1.06043 −0.530217 0.847862i \(-0.677890\pi\)
−0.530217 + 0.847862i \(0.677890\pi\)
\(18\) −2.62772 −0.619359
\(19\) 6.37228 1.46190 0.730951 0.682430i \(-0.239077\pi\)
0.730951 + 0.682430i \(0.239077\pi\)
\(20\) 1.00000 0.223607
\(21\) −5.62772 −1.22807
\(22\) 1.00000 0.213201
\(23\) −8.74456 −1.82337 −0.911684 0.410893i \(-0.865217\pi\)
−0.911684 + 0.410893i \(0.865217\pi\)
\(24\) −2.37228 −0.484240
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) −0.883156 −0.169963
\(28\) −2.37228 −0.448319
\(29\) −4.37228 −0.811912 −0.405956 0.913893i \(-0.633061\pi\)
−0.405956 + 0.913893i \(0.633061\pi\)
\(30\) −2.37228 −0.433117
\(31\) −2.37228 −0.426074 −0.213037 0.977044i \(-0.568336\pi\)
−0.213037 + 0.977044i \(0.568336\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.37228 −0.412961
\(34\) 4.37228 0.749840
\(35\) −2.37228 −0.400989
\(36\) 2.62772 0.437953
\(37\) 3.62772 0.596393 0.298197 0.954504i \(-0.403615\pi\)
0.298197 + 0.954504i \(0.403615\pi\)
\(38\) −6.37228 −1.03372
\(39\) 4.74456 0.759738
\(40\) −1.00000 −0.158114
\(41\) 11.4891 1.79430 0.897150 0.441726i \(-0.145634\pi\)
0.897150 + 0.441726i \(0.145634\pi\)
\(42\) 5.62772 0.868376
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −1.00000 −0.150756
\(45\) 2.62772 0.391717
\(46\) 8.74456 1.28932
\(47\) −8.74456 −1.27553 −0.637763 0.770233i \(-0.720140\pi\)
−0.637763 + 0.770233i \(0.720140\pi\)
\(48\) 2.37228 0.342409
\(49\) −1.37228 −0.196040
\(50\) −1.00000 −0.141421
\(51\) −10.3723 −1.45241
\(52\) 2.00000 0.277350
\(53\) 13.1168 1.80174 0.900869 0.434092i \(-0.142931\pi\)
0.900869 + 0.434092i \(0.142931\pi\)
\(54\) 0.883156 0.120182
\(55\) −1.00000 −0.134840
\(56\) 2.37228 0.317009
\(57\) 15.1168 2.00227
\(58\) 4.37228 0.574109
\(59\) 8.74456 1.13845 0.569223 0.822183i \(-0.307244\pi\)
0.569223 + 0.822183i \(0.307244\pi\)
\(60\) 2.37228 0.306260
\(61\) 0.372281 0.0476657 0.0238329 0.999716i \(-0.492413\pi\)
0.0238329 + 0.999716i \(0.492413\pi\)
\(62\) 2.37228 0.301280
\(63\) −6.23369 −0.785371
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 2.37228 0.292008
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −4.37228 −0.530217
\(69\) −20.7446 −2.49735
\(70\) 2.37228 0.283542
\(71\) −7.11684 −0.844614 −0.422307 0.906453i \(-0.638780\pi\)
−0.422307 + 0.906453i \(0.638780\pi\)
\(72\) −2.62772 −0.309680
\(73\) 7.48913 0.876536 0.438268 0.898844i \(-0.355592\pi\)
0.438268 + 0.898844i \(0.355592\pi\)
\(74\) −3.62772 −0.421714
\(75\) 2.37228 0.273927
\(76\) 6.37228 0.730951
\(77\) 2.37228 0.270347
\(78\) −4.74456 −0.537216
\(79\) −12.7446 −1.43388 −0.716938 0.697137i \(-0.754457\pi\)
−0.716938 + 0.697137i \(0.754457\pi\)
\(80\) 1.00000 0.111803
\(81\) −9.97825 −1.10869
\(82\) −11.4891 −1.26876
\(83\) 8.74456 0.959840 0.479920 0.877312i \(-0.340666\pi\)
0.479920 + 0.877312i \(0.340666\pi\)
\(84\) −5.62772 −0.614034
\(85\) −4.37228 −0.474240
\(86\) 4.00000 0.431331
\(87\) −10.3723 −1.11203
\(88\) 1.00000 0.106600
\(89\) 4.37228 0.463461 0.231730 0.972780i \(-0.425561\pi\)
0.231730 + 0.972780i \(0.425561\pi\)
\(90\) −2.62772 −0.276986
\(91\) −4.74456 −0.497365
\(92\) −8.74456 −0.911684
\(93\) −5.62772 −0.583567
\(94\) 8.74456 0.901933
\(95\) 6.37228 0.653782
\(96\) −2.37228 −0.242120
\(97\) −1.25544 −0.127470 −0.0637352 0.997967i \(-0.520301\pi\)
−0.0637352 + 0.997967i \(0.520301\pi\)
\(98\) 1.37228 0.138621
\(99\) −2.62772 −0.264096
\(100\) 1.00000 0.100000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 10.3723 1.02701
\(103\) 13.4891 1.32912 0.664562 0.747234i \(-0.268618\pi\)
0.664562 + 0.747234i \(0.268618\pi\)
\(104\) −2.00000 −0.196116
\(105\) −5.62772 −0.549209
\(106\) −13.1168 −1.27402
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −0.883156 −0.0849817
\(109\) 7.48913 0.717328 0.358664 0.933467i \(-0.383232\pi\)
0.358664 + 0.933467i \(0.383232\pi\)
\(110\) 1.00000 0.0953463
\(111\) 8.60597 0.816842
\(112\) −2.37228 −0.224160
\(113\) 14.7446 1.38705 0.693526 0.720432i \(-0.256056\pi\)
0.693526 + 0.720432i \(0.256056\pi\)
\(114\) −15.1168 −1.41582
\(115\) −8.74456 −0.815435
\(116\) −4.37228 −0.405956
\(117\) 5.25544 0.485865
\(118\) −8.74456 −0.805002
\(119\) 10.3723 0.950825
\(120\) −2.37228 −0.216559
\(121\) 1.00000 0.0909091
\(122\) −0.372281 −0.0337048
\(123\) 27.2554 2.45754
\(124\) −2.37228 −0.213037
\(125\) 1.00000 0.0894427
\(126\) 6.23369 0.555341
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −9.48913 −0.835471
\(130\) −2.00000 −0.175412
\(131\) 4.88316 0.426643 0.213322 0.976982i \(-0.431572\pi\)
0.213322 + 0.976982i \(0.431572\pi\)
\(132\) −2.37228 −0.206481
\(133\) −15.1168 −1.31080
\(134\) −8.00000 −0.691095
\(135\) −0.883156 −0.0760100
\(136\) 4.37228 0.374920
\(137\) −2.74456 −0.234484 −0.117242 0.993103i \(-0.537405\pi\)
−0.117242 + 0.993103i \(0.537405\pi\)
\(138\) 20.7446 1.76589
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −2.37228 −0.200494
\(141\) −20.7446 −1.74701
\(142\) 7.11684 0.597232
\(143\) −2.00000 −0.167248
\(144\) 2.62772 0.218977
\(145\) −4.37228 −0.363098
\(146\) −7.48913 −0.619804
\(147\) −3.25544 −0.268504
\(148\) 3.62772 0.298197
\(149\) −18.6060 −1.52426 −0.762130 0.647424i \(-0.775846\pi\)
−0.762130 + 0.647424i \(0.775846\pi\)
\(150\) −2.37228 −0.193696
\(151\) 22.2337 1.80935 0.904676 0.426100i \(-0.140113\pi\)
0.904676 + 0.426100i \(0.140113\pi\)
\(152\) −6.37228 −0.516860
\(153\) −11.4891 −0.928841
\(154\) −2.37228 −0.191164
\(155\) −2.37228 −0.190546
\(156\) 4.74456 0.379869
\(157\) 3.62772 0.289523 0.144762 0.989467i \(-0.453758\pi\)
0.144762 + 0.989467i \(0.453758\pi\)
\(158\) 12.7446 1.01390
\(159\) 31.1168 2.46773
\(160\) −1.00000 −0.0790569
\(161\) 20.7446 1.63490
\(162\) 9.97825 0.783965
\(163\) −23.1168 −1.81065 −0.905325 0.424718i \(-0.860373\pi\)
−0.905325 + 0.424718i \(0.860373\pi\)
\(164\) 11.4891 0.897150
\(165\) −2.37228 −0.184682
\(166\) −8.74456 −0.678710
\(167\) −10.3723 −0.802631 −0.401316 0.915940i \(-0.631447\pi\)
−0.401316 + 0.915940i \(0.631447\pi\)
\(168\) 5.62772 0.434188
\(169\) −9.00000 −0.692308
\(170\) 4.37228 0.335339
\(171\) 16.7446 1.28049
\(172\) −4.00000 −0.304997
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 10.3723 0.786321
\(175\) −2.37228 −0.179328
\(176\) −1.00000 −0.0753778
\(177\) 20.7446 1.55926
\(178\) −4.37228 −0.327716
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 2.62772 0.195859
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 4.74456 0.351690
\(183\) 0.883156 0.0652848
\(184\) 8.74456 0.644658
\(185\) 3.62772 0.266715
\(186\) 5.62772 0.412644
\(187\) 4.37228 0.319733
\(188\) −8.74456 −0.637763
\(189\) 2.09509 0.152396
\(190\) −6.37228 −0.462294
\(191\) 17.4891 1.26547 0.632734 0.774369i \(-0.281933\pi\)
0.632734 + 0.774369i \(0.281933\pi\)
\(192\) 2.37228 0.171205
\(193\) −13.8614 −0.997766 −0.498883 0.866669i \(-0.666256\pi\)
−0.498883 + 0.866669i \(0.666256\pi\)
\(194\) 1.25544 0.0901351
\(195\) 4.74456 0.339765
\(196\) −1.37228 −0.0980201
\(197\) −9.25544 −0.659423 −0.329711 0.944082i \(-0.606951\pi\)
−0.329711 + 0.944082i \(0.606951\pi\)
\(198\) 2.62772 0.186744
\(199\) 0.883156 0.0626053 0.0313026 0.999510i \(-0.490034\pi\)
0.0313026 + 0.999510i \(0.490034\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 18.9783 1.33862
\(202\) −6.00000 −0.422159
\(203\) 10.3723 0.727991
\(204\) −10.3723 −0.726205
\(205\) 11.4891 0.802435
\(206\) −13.4891 −0.939832
\(207\) −22.9783 −1.59710
\(208\) 2.00000 0.138675
\(209\) −6.37228 −0.440780
\(210\) 5.62772 0.388349
\(211\) −11.1168 −0.765315 −0.382658 0.923890i \(-0.624991\pi\)
−0.382658 + 0.923890i \(0.624991\pi\)
\(212\) 13.1168 0.900869
\(213\) −16.8832 −1.15681
\(214\) 12.0000 0.820303
\(215\) −4.00000 −0.272798
\(216\) 0.883156 0.0600912
\(217\) 5.62772 0.382034
\(218\) −7.48913 −0.507228
\(219\) 17.7663 1.20054
\(220\) −1.00000 −0.0674200
\(221\) −8.74456 −0.588223
\(222\) −8.60597 −0.577595
\(223\) −7.25544 −0.485860 −0.242930 0.970044i \(-0.578109\pi\)
−0.242930 + 0.970044i \(0.578109\pi\)
\(224\) 2.37228 0.158505
\(225\) 2.62772 0.175181
\(226\) −14.7446 −0.980794
\(227\) 8.74456 0.580397 0.290199 0.956966i \(-0.406279\pi\)
0.290199 + 0.956966i \(0.406279\pi\)
\(228\) 15.1168 1.00114
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 8.74456 0.576599
\(231\) 5.62772 0.370277
\(232\) 4.37228 0.287054
\(233\) −4.37228 −0.286438 −0.143219 0.989691i \(-0.545745\pi\)
−0.143219 + 0.989691i \(0.545745\pi\)
\(234\) −5.25544 −0.343559
\(235\) −8.74456 −0.570432
\(236\) 8.74456 0.569223
\(237\) −30.2337 −1.96389
\(238\) −10.3723 −0.672335
\(239\) −3.25544 −0.210577 −0.105288 0.994442i \(-0.533577\pi\)
−0.105288 + 0.994442i \(0.533577\pi\)
\(240\) 2.37228 0.153130
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −21.0217 −1.34855
\(244\) 0.372281 0.0238329
\(245\) −1.37228 −0.0876718
\(246\) −27.2554 −1.73774
\(247\) 12.7446 0.810917
\(248\) 2.37228 0.150640
\(249\) 20.7446 1.31463
\(250\) −1.00000 −0.0632456
\(251\) −8.74456 −0.551952 −0.275976 0.961165i \(-0.589001\pi\)
−0.275976 + 0.961165i \(0.589001\pi\)
\(252\) −6.23369 −0.392685
\(253\) 8.74456 0.549766
\(254\) −8.00000 −0.501965
\(255\) −10.3723 −0.649537
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 9.48913 0.590767
\(259\) −8.60597 −0.534749
\(260\) 2.00000 0.124035
\(261\) −11.4891 −0.711159
\(262\) −4.88316 −0.301682
\(263\) 3.86141 0.238105 0.119052 0.992888i \(-0.462014\pi\)
0.119052 + 0.992888i \(0.462014\pi\)
\(264\) 2.37228 0.146004
\(265\) 13.1168 0.805761
\(266\) 15.1168 0.926873
\(267\) 10.3723 0.634773
\(268\) 8.00000 0.488678
\(269\) 2.74456 0.167339 0.0836695 0.996494i \(-0.473336\pi\)
0.0836695 + 0.996494i \(0.473336\pi\)
\(270\) 0.883156 0.0537472
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −4.37228 −0.265108
\(273\) −11.2554 −0.681210
\(274\) 2.74456 0.165805
\(275\) −1.00000 −0.0603023
\(276\) −20.7446 −1.24868
\(277\) −1.25544 −0.0754319 −0.0377160 0.999289i \(-0.512008\pi\)
−0.0377160 + 0.999289i \(0.512008\pi\)
\(278\) 4.00000 0.239904
\(279\) −6.23369 −0.373201
\(280\) 2.37228 0.141771
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 20.7446 1.23532
\(283\) 16.7446 0.995361 0.497680 0.867360i \(-0.334185\pi\)
0.497680 + 0.867360i \(0.334185\pi\)
\(284\) −7.11684 −0.422307
\(285\) 15.1168 0.895445
\(286\) 2.00000 0.118262
\(287\) −27.2554 −1.60884
\(288\) −2.62772 −0.154840
\(289\) 2.11684 0.124520
\(290\) 4.37228 0.256749
\(291\) −2.97825 −0.174588
\(292\) 7.48913 0.438268
\(293\) 0.510875 0.0298456 0.0149228 0.999889i \(-0.495250\pi\)
0.0149228 + 0.999889i \(0.495250\pi\)
\(294\) 3.25544 0.189861
\(295\) 8.74456 0.509128
\(296\) −3.62772 −0.210857
\(297\) 0.883156 0.0512459
\(298\) 18.6060 1.07781
\(299\) −17.4891 −1.01142
\(300\) 2.37228 0.136964
\(301\) 9.48913 0.546944
\(302\) −22.2337 −1.27940
\(303\) 14.2337 0.817704
\(304\) 6.37228 0.365475
\(305\) 0.372281 0.0213168
\(306\) 11.4891 0.656790
\(307\) 16.7446 0.955663 0.477831 0.878452i \(-0.341423\pi\)
0.477831 + 0.878452i \(0.341423\pi\)
\(308\) 2.37228 0.135173
\(309\) 32.0000 1.82042
\(310\) 2.37228 0.134737
\(311\) 13.6277 0.772757 0.386379 0.922340i \(-0.373726\pi\)
0.386379 + 0.922340i \(0.373726\pi\)
\(312\) −4.74456 −0.268608
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) −3.62772 −0.204724
\(315\) −6.23369 −0.351229
\(316\) −12.7446 −0.716938
\(317\) 27.3505 1.53616 0.768079 0.640355i \(-0.221213\pi\)
0.768079 + 0.640355i \(0.221213\pi\)
\(318\) −31.1168 −1.74495
\(319\) 4.37228 0.244801
\(320\) 1.00000 0.0559017
\(321\) −28.4674 −1.58889
\(322\) −20.7446 −1.15605
\(323\) −27.8614 −1.55025
\(324\) −9.97825 −0.554347
\(325\) 2.00000 0.110940
\(326\) 23.1168 1.28032
\(327\) 17.7663 0.982479
\(328\) −11.4891 −0.634381
\(329\) 20.7446 1.14368
\(330\) 2.37228 0.130590
\(331\) −14.9783 −0.823279 −0.411640 0.911347i \(-0.635044\pi\)
−0.411640 + 0.911347i \(0.635044\pi\)
\(332\) 8.74456 0.479920
\(333\) 9.53262 0.522385
\(334\) 10.3723 0.567546
\(335\) 8.00000 0.437087
\(336\) −5.62772 −0.307017
\(337\) 6.88316 0.374949 0.187475 0.982269i \(-0.439970\pi\)
0.187475 + 0.982269i \(0.439970\pi\)
\(338\) 9.00000 0.489535
\(339\) 34.9783 1.89976
\(340\) −4.37228 −0.237120
\(341\) 2.37228 0.128466
\(342\) −16.7446 −0.905442
\(343\) 19.8614 1.07242
\(344\) 4.00000 0.215666
\(345\) −20.7446 −1.11685
\(346\) 6.00000 0.322562
\(347\) 2.23369 0.119911 0.0599553 0.998201i \(-0.480904\pi\)
0.0599553 + 0.998201i \(0.480904\pi\)
\(348\) −10.3723 −0.556013
\(349\) −3.48913 −0.186769 −0.0933843 0.995630i \(-0.529769\pi\)
−0.0933843 + 0.995630i \(0.529769\pi\)
\(350\) 2.37228 0.126804
\(351\) −1.76631 −0.0942788
\(352\) 1.00000 0.0533002
\(353\) −23.4891 −1.25020 −0.625100 0.780545i \(-0.714942\pi\)
−0.625100 + 0.780545i \(0.714942\pi\)
\(354\) −20.7446 −1.10256
\(355\) −7.11684 −0.377723
\(356\) 4.37228 0.231730
\(357\) 24.6060 1.30229
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −2.62772 −0.138493
\(361\) 21.6060 1.13716
\(362\) 10.0000 0.525588
\(363\) 2.37228 0.124512
\(364\) −4.74456 −0.248683
\(365\) 7.48913 0.391999
\(366\) −0.883156 −0.0461633
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) −8.74456 −0.455842
\(369\) 30.1902 1.57164
\(370\) −3.62772 −0.188596
\(371\) −31.1168 −1.61551
\(372\) −5.62772 −0.291784
\(373\) 8.51087 0.440676 0.220338 0.975424i \(-0.429284\pi\)
0.220338 + 0.975424i \(0.429284\pi\)
\(374\) −4.37228 −0.226085
\(375\) 2.37228 0.122504
\(376\) 8.74456 0.450966
\(377\) −8.74456 −0.450368
\(378\) −2.09509 −0.107760
\(379\) 34.2337 1.75847 0.879233 0.476392i \(-0.158056\pi\)
0.879233 + 0.476392i \(0.158056\pi\)
\(380\) 6.37228 0.326891
\(381\) 18.9783 0.972285
\(382\) −17.4891 −0.894821
\(383\) −2.23369 −0.114136 −0.0570681 0.998370i \(-0.518175\pi\)
−0.0570681 + 0.998370i \(0.518175\pi\)
\(384\) −2.37228 −0.121060
\(385\) 2.37228 0.120903
\(386\) 13.8614 0.705527
\(387\) −10.5109 −0.534298
\(388\) −1.25544 −0.0637352
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) −4.74456 −0.240250
\(391\) 38.2337 1.93356
\(392\) 1.37228 0.0693107
\(393\) 11.5842 0.584347
\(394\) 9.25544 0.466282
\(395\) −12.7446 −0.641249
\(396\) −2.62772 −0.132048
\(397\) −20.9783 −1.05287 −0.526434 0.850216i \(-0.676471\pi\)
−0.526434 + 0.850216i \(0.676471\pi\)
\(398\) −0.883156 −0.0442686
\(399\) −35.8614 −1.79532
\(400\) 1.00000 0.0500000
\(401\) 7.62772 0.380910 0.190455 0.981696i \(-0.439004\pi\)
0.190455 + 0.981696i \(0.439004\pi\)
\(402\) −18.9783 −0.946549
\(403\) −4.74456 −0.236343
\(404\) 6.00000 0.298511
\(405\) −9.97825 −0.495823
\(406\) −10.3723 −0.514768
\(407\) −3.62772 −0.179819
\(408\) 10.3723 0.513504
\(409\) −36.2337 −1.79164 −0.895820 0.444417i \(-0.853411\pi\)
−0.895820 + 0.444417i \(0.853411\pi\)
\(410\) −11.4891 −0.567407
\(411\) −6.51087 −0.321158
\(412\) 13.4891 0.664562
\(413\) −20.7446 −1.02077
\(414\) 22.9783 1.12932
\(415\) 8.74456 0.429254
\(416\) −2.00000 −0.0980581
\(417\) −9.48913 −0.464684
\(418\) 6.37228 0.311678
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) −5.62772 −0.274605
\(421\) −24.2337 −1.18108 −0.590539 0.807009i \(-0.701085\pi\)
−0.590539 + 0.807009i \(0.701085\pi\)
\(422\) 11.1168 0.541159
\(423\) −22.9783 −1.11724
\(424\) −13.1168 −0.637010
\(425\) −4.37228 −0.212087
\(426\) 16.8832 0.817992
\(427\) −0.883156 −0.0427389
\(428\) −12.0000 −0.580042
\(429\) −4.74456 −0.229070
\(430\) 4.00000 0.192897
\(431\) 10.9783 0.528804 0.264402 0.964413i \(-0.414825\pi\)
0.264402 + 0.964413i \(0.414825\pi\)
\(432\) −0.883156 −0.0424909
\(433\) −29.7228 −1.42839 −0.714194 0.699948i \(-0.753206\pi\)
−0.714194 + 0.699948i \(0.753206\pi\)
\(434\) −5.62772 −0.270139
\(435\) −10.3723 −0.497313
\(436\) 7.48913 0.358664
\(437\) −55.7228 −2.66558
\(438\) −17.7663 −0.848907
\(439\) −26.9783 −1.28760 −0.643801 0.765193i \(-0.722643\pi\)
−0.643801 + 0.765193i \(0.722643\pi\)
\(440\) 1.00000 0.0476731
\(441\) −3.60597 −0.171713
\(442\) 8.74456 0.415936
\(443\) 6.51087 0.309341 0.154670 0.987966i \(-0.450568\pi\)
0.154670 + 0.987966i \(0.450568\pi\)
\(444\) 8.60597 0.408421
\(445\) 4.37228 0.207266
\(446\) 7.25544 0.343555
\(447\) −44.1386 −2.08768
\(448\) −2.37228 −0.112080
\(449\) −16.9783 −0.801253 −0.400627 0.916241i \(-0.631208\pi\)
−0.400627 + 0.916241i \(0.631208\pi\)
\(450\) −2.62772 −0.123872
\(451\) −11.4891 −0.541002
\(452\) 14.7446 0.693526
\(453\) 52.7446 2.47816
\(454\) −8.74456 −0.410403
\(455\) −4.74456 −0.222429
\(456\) −15.1168 −0.707911
\(457\) 35.3505 1.65363 0.826814 0.562475i \(-0.190151\pi\)
0.826814 + 0.562475i \(0.190151\pi\)
\(458\) 10.0000 0.467269
\(459\) 3.86141 0.180235
\(460\) −8.74456 −0.407717
\(461\) −1.11684 −0.0520166 −0.0260083 0.999662i \(-0.508280\pi\)
−0.0260083 + 0.999662i \(0.508280\pi\)
\(462\) −5.62772 −0.261825
\(463\) 34.2337 1.59097 0.795487 0.605970i \(-0.207215\pi\)
0.795487 + 0.605970i \(0.207215\pi\)
\(464\) −4.37228 −0.202978
\(465\) −5.62772 −0.260979
\(466\) 4.37228 0.202542
\(467\) −13.6277 −0.630616 −0.315308 0.948989i \(-0.602108\pi\)
−0.315308 + 0.948989i \(0.602108\pi\)
\(468\) 5.25544 0.242933
\(469\) −18.9783 −0.876334
\(470\) 8.74456 0.403357
\(471\) 8.60597 0.396542
\(472\) −8.74456 −0.402501
\(473\) 4.00000 0.183920
\(474\) 30.2337 1.38868
\(475\) 6.37228 0.292380
\(476\) 10.3723 0.475413
\(477\) 34.4674 1.57815
\(478\) 3.25544 0.148900
\(479\) −17.4891 −0.799099 −0.399549 0.916712i \(-0.630833\pi\)
−0.399549 + 0.916712i \(0.630833\pi\)
\(480\) −2.37228 −0.108279
\(481\) 7.25544 0.330819
\(482\) 22.0000 1.00207
\(483\) 49.2119 2.23922
\(484\) 1.00000 0.0454545
\(485\) −1.25544 −0.0570065
\(486\) 21.0217 0.953566
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) −0.372281 −0.0168524
\(489\) −54.8397 −2.47994
\(490\) 1.37228 0.0619934
\(491\) −1.62772 −0.0734579 −0.0367290 0.999325i \(-0.511694\pi\)
−0.0367290 + 0.999325i \(0.511694\pi\)
\(492\) 27.2554 1.22877
\(493\) 19.1168 0.860979
\(494\) −12.7446 −0.573405
\(495\) −2.62772 −0.118107
\(496\) −2.37228 −0.106519
\(497\) 16.8832 0.757313
\(498\) −20.7446 −0.929586
\(499\) −10.5109 −0.470531 −0.235266 0.971931i \(-0.575596\pi\)
−0.235266 + 0.971931i \(0.575596\pi\)
\(500\) 1.00000 0.0447214
\(501\) −24.6060 −1.09931
\(502\) 8.74456 0.390289
\(503\) 10.9783 0.489496 0.244748 0.969587i \(-0.421295\pi\)
0.244748 + 0.969587i \(0.421295\pi\)
\(504\) 6.23369 0.277671
\(505\) 6.00000 0.266996
\(506\) −8.74456 −0.388743
\(507\) −21.3505 −0.948210
\(508\) 8.00000 0.354943
\(509\) 44.2337 1.96062 0.980312 0.197455i \(-0.0632678\pi\)
0.980312 + 0.197455i \(0.0632678\pi\)
\(510\) 10.3723 0.459292
\(511\) −17.7663 −0.785935
\(512\) −1.00000 −0.0441942
\(513\) −5.62772 −0.248470
\(514\) −18.0000 −0.793946
\(515\) 13.4891 0.594402
\(516\) −9.48913 −0.417735
\(517\) 8.74456 0.384585
\(518\) 8.60597 0.378125
\(519\) −14.2337 −0.624790
\(520\) −2.00000 −0.0877058
\(521\) 35.4891 1.55481 0.777403 0.629002i \(-0.216536\pi\)
0.777403 + 0.629002i \(0.216536\pi\)
\(522\) 11.4891 0.502865
\(523\) −14.9783 −0.654953 −0.327477 0.944859i \(-0.606198\pi\)
−0.327477 + 0.944859i \(0.606198\pi\)
\(524\) 4.88316 0.213322
\(525\) −5.62772 −0.245614
\(526\) −3.86141 −0.168365
\(527\) 10.3723 0.451824
\(528\) −2.37228 −0.103240
\(529\) 53.4674 2.32467
\(530\) −13.1168 −0.569759
\(531\) 22.9783 0.997171
\(532\) −15.1168 −0.655398
\(533\) 22.9783 0.995299
\(534\) −10.3723 −0.448853
\(535\) −12.0000 −0.518805
\(536\) −8.00000 −0.345547
\(537\) −28.4674 −1.22846
\(538\) −2.74456 −0.118326
\(539\) 1.37228 0.0591083
\(540\) −0.883156 −0.0380050
\(541\) −2.88316 −0.123957 −0.0619783 0.998077i \(-0.519741\pi\)
−0.0619783 + 0.998077i \(0.519741\pi\)
\(542\) 16.0000 0.687259
\(543\) −23.7228 −1.01804
\(544\) 4.37228 0.187460
\(545\) 7.48913 0.320799
\(546\) 11.2554 0.481688
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) −2.74456 −0.117242
\(549\) 0.978251 0.0417507
\(550\) 1.00000 0.0426401
\(551\) −27.8614 −1.18694
\(552\) 20.7446 0.882947
\(553\) 30.2337 1.28567
\(554\) 1.25544 0.0533384
\(555\) 8.60597 0.365303
\(556\) −4.00000 −0.169638
\(557\) −40.9783 −1.73630 −0.868152 0.496298i \(-0.834692\pi\)
−0.868152 + 0.496298i \(0.834692\pi\)
\(558\) 6.23369 0.263893
\(559\) −8.00000 −0.338364
\(560\) −2.37228 −0.100247
\(561\) 10.3723 0.437918
\(562\) −18.0000 −0.759284
\(563\) 26.2337 1.10562 0.552809 0.833308i \(-0.313556\pi\)
0.552809 + 0.833308i \(0.313556\pi\)
\(564\) −20.7446 −0.873504
\(565\) 14.7446 0.620308
\(566\) −16.7446 −0.703826
\(567\) 23.6712 0.994098
\(568\) 7.11684 0.298616
\(569\) −26.7446 −1.12119 −0.560595 0.828090i \(-0.689428\pi\)
−0.560595 + 0.828090i \(0.689428\pi\)
\(570\) −15.1168 −0.633175
\(571\) 9.62772 0.402907 0.201454 0.979498i \(-0.435433\pi\)
0.201454 + 0.979498i \(0.435433\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 41.4891 1.73323
\(574\) 27.2554 1.13762
\(575\) −8.74456 −0.364673
\(576\) 2.62772 0.109488
\(577\) −8.97825 −0.373769 −0.186885 0.982382i \(-0.559839\pi\)
−0.186885 + 0.982382i \(0.559839\pi\)
\(578\) −2.11684 −0.0880491
\(579\) −32.8832 −1.36658
\(580\) −4.37228 −0.181549
\(581\) −20.7446 −0.860629
\(582\) 2.97825 0.123452
\(583\) −13.1168 −0.543244
\(584\) −7.48913 −0.309902
\(585\) 5.25544 0.217286
\(586\) −0.510875 −0.0211040
\(587\) −3.86141 −0.159377 −0.0796887 0.996820i \(-0.525393\pi\)
−0.0796887 + 0.996820i \(0.525393\pi\)
\(588\) −3.25544 −0.134252
\(589\) −15.1168 −0.622879
\(590\) −8.74456 −0.360008
\(591\) −21.9565 −0.903170
\(592\) 3.62772 0.149098
\(593\) −35.4891 −1.45736 −0.728682 0.684852i \(-0.759867\pi\)
−0.728682 + 0.684852i \(0.759867\pi\)
\(594\) −0.883156 −0.0362363
\(595\) 10.3723 0.425222
\(596\) −18.6060 −0.762130
\(597\) 2.09509 0.0857465
\(598\) 17.4891 0.715184
\(599\) 0.605969 0.0247592 0.0123796 0.999923i \(-0.496059\pi\)
0.0123796 + 0.999923i \(0.496059\pi\)
\(600\) −2.37228 −0.0968480
\(601\) −39.4891 −1.61080 −0.805398 0.592735i \(-0.798048\pi\)
−0.805398 + 0.592735i \(0.798048\pi\)
\(602\) −9.48913 −0.386748
\(603\) 21.0217 0.856072
\(604\) 22.2337 0.904676
\(605\) 1.00000 0.0406558
\(606\) −14.2337 −0.578204
\(607\) −23.1168 −0.938284 −0.469142 0.883123i \(-0.655437\pi\)
−0.469142 + 0.883123i \(0.655437\pi\)
\(608\) −6.37228 −0.258430
\(609\) 24.6060 0.997084
\(610\) −0.372281 −0.0150732
\(611\) −17.4891 −0.707534
\(612\) −11.4891 −0.464420
\(613\) 43.4891 1.75651 0.878255 0.478193i \(-0.158708\pi\)
0.878255 + 0.478193i \(0.158708\pi\)
\(614\) −16.7446 −0.675756
\(615\) 27.2554 1.09905
\(616\) −2.37228 −0.0955819
\(617\) 32.2337 1.29768 0.648840 0.760925i \(-0.275255\pi\)
0.648840 + 0.760925i \(0.275255\pi\)
\(618\) −32.0000 −1.28723
\(619\) 24.4674 0.983427 0.491713 0.870757i \(-0.336371\pi\)
0.491713 + 0.870757i \(0.336371\pi\)
\(620\) −2.37228 −0.0952731
\(621\) 7.72281 0.309906
\(622\) −13.6277 −0.546422
\(623\) −10.3723 −0.415557
\(624\) 4.74456 0.189935
\(625\) 1.00000 0.0400000
\(626\) 22.0000 0.879297
\(627\) −15.1168 −0.603709
\(628\) 3.62772 0.144762
\(629\) −15.8614 −0.632436
\(630\) 6.23369 0.248356
\(631\) 24.8832 0.990583 0.495291 0.868727i \(-0.335061\pi\)
0.495291 + 0.868727i \(0.335061\pi\)
\(632\) 12.7446 0.506951
\(633\) −26.3723 −1.04820
\(634\) −27.3505 −1.08623
\(635\) 8.00000 0.317470
\(636\) 31.1168 1.23386
\(637\) −2.74456 −0.108744
\(638\) −4.37228 −0.173100
\(639\) −18.7011 −0.739803
\(640\) −1.00000 −0.0395285
\(641\) 36.0951 1.42567 0.712835 0.701332i \(-0.247411\pi\)
0.712835 + 0.701332i \(0.247411\pi\)
\(642\) 28.4674 1.12352
\(643\) −23.1168 −0.911639 −0.455820 0.890072i \(-0.650654\pi\)
−0.455820 + 0.890072i \(0.650654\pi\)
\(644\) 20.7446 0.817450
\(645\) −9.48913 −0.373634
\(646\) 27.8614 1.09619
\(647\) 19.7228 0.775384 0.387692 0.921789i \(-0.373272\pi\)
0.387692 + 0.921789i \(0.373272\pi\)
\(648\) 9.97825 0.391983
\(649\) −8.74456 −0.343254
\(650\) −2.00000 −0.0784465
\(651\) 13.3505 0.523249
\(652\) −23.1168 −0.905325
\(653\) 16.3723 0.640697 0.320348 0.947300i \(-0.396200\pi\)
0.320348 + 0.947300i \(0.396200\pi\)
\(654\) −17.7663 −0.694718
\(655\) 4.88316 0.190801
\(656\) 11.4891 0.448575
\(657\) 19.6793 0.767763
\(658\) −20.7446 −0.808707
\(659\) −15.8614 −0.617873 −0.308936 0.951083i \(-0.599973\pi\)
−0.308936 + 0.951083i \(0.599973\pi\)
\(660\) −2.37228 −0.0923409
\(661\) 31.4891 1.22479 0.612393 0.790554i \(-0.290207\pi\)
0.612393 + 0.790554i \(0.290207\pi\)
\(662\) 14.9783 0.582146
\(663\) −20.7446 −0.805652
\(664\) −8.74456 −0.339355
\(665\) −15.1168 −0.586206
\(666\) −9.53262 −0.369382
\(667\) 38.2337 1.48041
\(668\) −10.3723 −0.401316
\(669\) −17.2119 −0.665452
\(670\) −8.00000 −0.309067
\(671\) −0.372281 −0.0143718
\(672\) 5.62772 0.217094
\(673\) −13.8614 −0.534318 −0.267159 0.963652i \(-0.586085\pi\)
−0.267159 + 0.963652i \(0.586085\pi\)
\(674\) −6.88316 −0.265129
\(675\) −0.883156 −0.0339927
\(676\) −9.00000 −0.346154
\(677\) 14.7446 0.566680 0.283340 0.959020i \(-0.408558\pi\)
0.283340 + 0.959020i \(0.408558\pi\)
\(678\) −34.9783 −1.34333
\(679\) 2.97825 0.114295
\(680\) 4.37228 0.167669
\(681\) 20.7446 0.794933
\(682\) −2.37228 −0.0908393
\(683\) −34.3723 −1.31522 −0.657609 0.753359i \(-0.728432\pi\)
−0.657609 + 0.753359i \(0.728432\pi\)
\(684\) 16.7446 0.640244
\(685\) −2.74456 −0.104864
\(686\) −19.8614 −0.758312
\(687\) −23.7228 −0.905082
\(688\) −4.00000 −0.152499
\(689\) 26.2337 0.999424
\(690\) 20.7446 0.789732
\(691\) 5.76631 0.219361 0.109680 0.993967i \(-0.465017\pi\)
0.109680 + 0.993967i \(0.465017\pi\)
\(692\) −6.00000 −0.228086
\(693\) 6.23369 0.236798
\(694\) −2.23369 −0.0847896
\(695\) −4.00000 −0.151729
\(696\) 10.3723 0.393160
\(697\) −50.2337 −1.90274
\(698\) 3.48913 0.132065
\(699\) −10.3723 −0.392316
\(700\) −2.37228 −0.0896638
\(701\) −31.6277 −1.19456 −0.597281 0.802032i \(-0.703752\pi\)
−0.597281 + 0.802032i \(0.703752\pi\)
\(702\) 1.76631 0.0666652
\(703\) 23.1168 0.871868
\(704\) −1.00000 −0.0376889
\(705\) −20.7446 −0.781285
\(706\) 23.4891 0.884025
\(707\) −14.2337 −0.535313
\(708\) 20.7446 0.779628
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 7.11684 0.267090
\(711\) −33.4891 −1.25594
\(712\) −4.37228 −0.163858
\(713\) 20.7446 0.776890
\(714\) −24.6060 −0.920855
\(715\) −2.00000 −0.0747958
\(716\) −12.0000 −0.448461
\(717\) −7.72281 −0.288414
\(718\) 0 0
\(719\) 31.1168 1.16046 0.580231 0.814452i \(-0.302962\pi\)
0.580231 + 0.814452i \(0.302962\pi\)
\(720\) 2.62772 0.0979293
\(721\) −32.0000 −1.19174
\(722\) −21.6060 −0.804091
\(723\) −52.1902 −1.94097
\(724\) −10.0000 −0.371647
\(725\) −4.37228 −0.162382
\(726\) −2.37228 −0.0880436
\(727\) 10.2337 0.379546 0.189773 0.981828i \(-0.439225\pi\)
0.189773 + 0.981828i \(0.439225\pi\)
\(728\) 4.74456 0.175845
\(729\) −19.9348 −0.738324
\(730\) −7.48913 −0.277185
\(731\) 17.4891 0.646859
\(732\) 0.883156 0.0326424
\(733\) 11.7663 0.434599 0.217299 0.976105i \(-0.430275\pi\)
0.217299 + 0.976105i \(0.430275\pi\)
\(734\) 4.00000 0.147643
\(735\) −3.25544 −0.120079
\(736\) 8.74456 0.322329
\(737\) −8.00000 −0.294684
\(738\) −30.1902 −1.11132
\(739\) 48.4674 1.78290 0.891451 0.453118i \(-0.149688\pi\)
0.891451 + 0.453118i \(0.149688\pi\)
\(740\) 3.62772 0.133358
\(741\) 30.2337 1.11066
\(742\) 31.1168 1.14234
\(743\) −10.3723 −0.380522 −0.190261 0.981734i \(-0.560933\pi\)
−0.190261 + 0.981734i \(0.560933\pi\)
\(744\) 5.62772 0.206322
\(745\) −18.6060 −0.681670
\(746\) −8.51087 −0.311605
\(747\) 22.9783 0.840730
\(748\) 4.37228 0.159866
\(749\) 28.4674 1.04018
\(750\) −2.37228 −0.0866235
\(751\) −19.8614 −0.724753 −0.362377 0.932032i \(-0.618035\pi\)
−0.362377 + 0.932032i \(0.618035\pi\)
\(752\) −8.74456 −0.318881
\(753\) −20.7446 −0.755974
\(754\) 8.74456 0.318458
\(755\) 22.2337 0.809167
\(756\) 2.09509 0.0761979
\(757\) 24.9783 0.907850 0.453925 0.891040i \(-0.350023\pi\)
0.453925 + 0.891040i \(0.350023\pi\)
\(758\) −34.2337 −1.24342
\(759\) 20.7446 0.752980
\(760\) −6.37228 −0.231147
\(761\) −40.9783 −1.48546 −0.742730 0.669591i \(-0.766469\pi\)
−0.742730 + 0.669591i \(0.766469\pi\)
\(762\) −18.9783 −0.687509
\(763\) −17.7663 −0.643184
\(764\) 17.4891 0.632734
\(765\) −11.4891 −0.415390
\(766\) 2.23369 0.0807064
\(767\) 17.4891 0.631496
\(768\) 2.37228 0.0856023
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) −2.37228 −0.0854911
\(771\) 42.7011 1.53784
\(772\) −13.8614 −0.498883
\(773\) 6.60597 0.237600 0.118800 0.992918i \(-0.462095\pi\)
0.118800 + 0.992918i \(0.462095\pi\)
\(774\) 10.5109 0.377806
\(775\) −2.37228 −0.0852149
\(776\) 1.25544 0.0450676
\(777\) −20.4158 −0.732412
\(778\) −6.00000 −0.215110
\(779\) 73.2119 2.62309
\(780\) 4.74456 0.169883
\(781\) 7.11684 0.254661
\(782\) −38.2337 −1.36723
\(783\) 3.86141 0.137995
\(784\) −1.37228 −0.0490100
\(785\) 3.62772 0.129479
\(786\) −11.5842 −0.413195
\(787\) 24.4674 0.872168 0.436084 0.899906i \(-0.356365\pi\)
0.436084 + 0.899906i \(0.356365\pi\)
\(788\) −9.25544 −0.329711
\(789\) 9.16034 0.326117
\(790\) 12.7446 0.453431
\(791\) −34.9783 −1.24368
\(792\) 2.62772 0.0933719
\(793\) 0.744563 0.0264402
\(794\) 20.9783 0.744490
\(795\) 31.1168 1.10360
\(796\) 0.883156 0.0313026
\(797\) −11.4891 −0.406966 −0.203483 0.979079i \(-0.565226\pi\)
−0.203483 + 0.979079i \(0.565226\pi\)
\(798\) 35.8614 1.26948
\(799\) 38.2337 1.35261
\(800\) −1.00000 −0.0353553
\(801\) 11.4891 0.405948
\(802\) −7.62772 −0.269344
\(803\) −7.48913 −0.264285
\(804\) 18.9783 0.669311
\(805\) 20.7446 0.731150
\(806\) 4.74456 0.167120
\(807\) 6.51087 0.229194
\(808\) −6.00000 −0.211079
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 9.97825 0.350600
\(811\) 16.1386 0.566703 0.283351 0.959016i \(-0.408554\pi\)
0.283351 + 0.959016i \(0.408554\pi\)
\(812\) 10.3723 0.363996
\(813\) −37.9565 −1.33119
\(814\) 3.62772 0.127151
\(815\) −23.1168 −0.809748
\(816\) −10.3723 −0.363102
\(817\) −25.4891 −0.891752
\(818\) 36.2337 1.26688
\(819\) −12.4674 −0.435645
\(820\) 11.4891 0.401218
\(821\) −11.4891 −0.400973 −0.200487 0.979696i \(-0.564252\pi\)
−0.200487 + 0.979696i \(0.564252\pi\)
\(822\) 6.51087 0.227093
\(823\) −28.0000 −0.976019 −0.488009 0.872838i \(-0.662277\pi\)
−0.488009 + 0.872838i \(0.662277\pi\)
\(824\) −13.4891 −0.469916
\(825\) −2.37228 −0.0825922
\(826\) 20.7446 0.721796
\(827\) 1.02175 0.0355297 0.0177649 0.999842i \(-0.494345\pi\)
0.0177649 + 0.999842i \(0.494345\pi\)
\(828\) −22.9783 −0.798549
\(829\) −13.2554 −0.460380 −0.230190 0.973146i \(-0.573935\pi\)
−0.230190 + 0.973146i \(0.573935\pi\)
\(830\) −8.74456 −0.303528
\(831\) −2.97825 −0.103314
\(832\) 2.00000 0.0693375
\(833\) 6.00000 0.207888
\(834\) 9.48913 0.328582
\(835\) −10.3723 −0.358948
\(836\) −6.37228 −0.220390
\(837\) 2.09509 0.0724171
\(838\) 12.0000 0.414533
\(839\) 34.9783 1.20758 0.603792 0.797142i \(-0.293656\pi\)
0.603792 + 0.797142i \(0.293656\pi\)
\(840\) 5.62772 0.194175
\(841\) −9.88316 −0.340798
\(842\) 24.2337 0.835148
\(843\) 42.7011 1.47070
\(844\) −11.1168 −0.382658
\(845\) −9.00000 −0.309609
\(846\) 22.9783 0.790009
\(847\) −2.37228 −0.0815126
\(848\) 13.1168 0.450434
\(849\) 39.7228 1.36328
\(850\) 4.37228 0.149968
\(851\) −31.7228 −1.08744
\(852\) −16.8832 −0.578407
\(853\) 30.4674 1.04318 0.521592 0.853195i \(-0.325339\pi\)
0.521592 + 0.853195i \(0.325339\pi\)
\(854\) 0.883156 0.0302210
\(855\) 16.7446 0.572652
\(856\) 12.0000 0.410152
\(857\) −15.3505 −0.524364 −0.262182 0.965018i \(-0.584442\pi\)
−0.262182 + 0.965018i \(0.584442\pi\)
\(858\) 4.74456 0.161977
\(859\) −31.2554 −1.06642 −0.533211 0.845982i \(-0.679015\pi\)
−0.533211 + 0.845982i \(0.679015\pi\)
\(860\) −4.00000 −0.136399
\(861\) −64.6576 −2.20352
\(862\) −10.9783 −0.373921
\(863\) 32.7446 1.11464 0.557319 0.830299i \(-0.311830\pi\)
0.557319 + 0.830299i \(0.311830\pi\)
\(864\) 0.883156 0.0300456
\(865\) −6.00000 −0.204006
\(866\) 29.7228 1.01002
\(867\) 5.02175 0.170548
\(868\) 5.62772 0.191017
\(869\) 12.7446 0.432330
\(870\) 10.3723 0.351653
\(871\) 16.0000 0.542139
\(872\) −7.48913 −0.253614
\(873\) −3.29894 −0.111652
\(874\) 55.7228 1.88485
\(875\) −2.37228 −0.0801977
\(876\) 17.7663 0.600268
\(877\) −8.97825 −0.303174 −0.151587 0.988444i \(-0.548438\pi\)
−0.151587 + 0.988444i \(0.548438\pi\)
\(878\) 26.9783 0.910472
\(879\) 1.21194 0.0408777
\(880\) −1.00000 −0.0337100
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 3.60597 0.121419
\(883\) −2.37228 −0.0798336 −0.0399168 0.999203i \(-0.512709\pi\)
−0.0399168 + 0.999203i \(0.512709\pi\)
\(884\) −8.74456 −0.294111
\(885\) 20.7446 0.697321
\(886\) −6.51087 −0.218737
\(887\) 34.9783 1.17445 0.587227 0.809422i \(-0.300219\pi\)
0.587227 + 0.809422i \(0.300219\pi\)
\(888\) −8.60597 −0.288797
\(889\) −18.9783 −0.636510
\(890\) −4.37228 −0.146559
\(891\) 9.97825 0.334284
\(892\) −7.25544 −0.242930
\(893\) −55.7228 −1.86469
\(894\) 44.1386 1.47622
\(895\) −12.0000 −0.401116
\(896\) 2.37228 0.0792524
\(897\) −41.4891 −1.38528
\(898\) 16.9783 0.566572
\(899\) 10.3723 0.345935
\(900\) 2.62772 0.0875906
\(901\) −57.3505 −1.91062
\(902\) 11.4891 0.382546
\(903\) 22.5109 0.749115
\(904\) −14.7446 −0.490397
\(905\) −10.0000 −0.332411
\(906\) −52.7446 −1.75232
\(907\) −40.6060 −1.34830 −0.674150 0.738595i \(-0.735490\pi\)
−0.674150 + 0.738595i \(0.735490\pi\)
\(908\) 8.74456 0.290199
\(909\) 15.7663 0.522936
\(910\) 4.74456 0.157281
\(911\) −48.6060 −1.61039 −0.805194 0.593012i \(-0.797939\pi\)
−0.805194 + 0.593012i \(0.797939\pi\)
\(912\) 15.1168 0.500569
\(913\) −8.74456 −0.289403
\(914\) −35.3505 −1.16929
\(915\) 0.883156 0.0291962
\(916\) −10.0000 −0.330409
\(917\) −11.5842 −0.382545
\(918\) −3.86141 −0.127445
\(919\) −26.9783 −0.889930 −0.444965 0.895548i \(-0.646784\pi\)
−0.444965 + 0.895548i \(0.646784\pi\)
\(920\) 8.74456 0.288300
\(921\) 39.7228 1.30891
\(922\) 1.11684 0.0367813
\(923\) −14.2337 −0.468508
\(924\) 5.62772 0.185138
\(925\) 3.62772 0.119279
\(926\) −34.2337 −1.12499
\(927\) 35.4456 1.16419
\(928\) 4.37228 0.143527
\(929\) −27.3505 −0.897342 −0.448671 0.893697i \(-0.648102\pi\)
−0.448671 + 0.893697i \(0.648102\pi\)
\(930\) 5.62772 0.184540
\(931\) −8.74456 −0.286591
\(932\) −4.37228 −0.143219
\(933\) 32.3288 1.05840
\(934\) 13.6277 0.445913
\(935\) 4.37228 0.142989
\(936\) −5.25544 −0.171779
\(937\) −51.4891 −1.68208 −0.841038 0.540976i \(-0.818055\pi\)
−0.841038 + 0.540976i \(0.818055\pi\)
\(938\) 18.9783 0.619662
\(939\) −52.1902 −1.70316
\(940\) −8.74456 −0.285216
\(941\) 48.0951 1.56786 0.783928 0.620852i \(-0.213213\pi\)
0.783928 + 0.620852i \(0.213213\pi\)
\(942\) −8.60597 −0.280398
\(943\) −100.467 −3.27167
\(944\) 8.74456 0.284611
\(945\) 2.09509 0.0681534
\(946\) −4.00000 −0.130051
\(947\) 20.1386 0.654416 0.327208 0.944952i \(-0.393892\pi\)
0.327208 + 0.944952i \(0.393892\pi\)
\(948\) −30.2337 −0.981945
\(949\) 14.9783 0.486215
\(950\) −6.37228 −0.206744
\(951\) 64.8832 2.10398
\(952\) −10.3723 −0.336168
\(953\) 22.8832 0.741258 0.370629 0.928781i \(-0.379142\pi\)
0.370629 + 0.928781i \(0.379142\pi\)
\(954\) −34.4674 −1.11592
\(955\) 17.4891 0.565935
\(956\) −3.25544 −0.105288
\(957\) 10.3723 0.335288
\(958\) 17.4891 0.565048
\(959\) 6.51087 0.210247
\(960\) 2.37228 0.0765651
\(961\) −25.3723 −0.818461
\(962\) −7.25544 −0.233925
\(963\) −31.5326 −1.01612
\(964\) −22.0000 −0.708572
\(965\) −13.8614 −0.446214
\(966\) −49.2119 −1.58337
\(967\) 7.39403 0.237776 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −66.0951 −2.12328
\(970\) 1.25544 0.0403097
\(971\) −46.9783 −1.50760 −0.753802 0.657102i \(-0.771782\pi\)
−0.753802 + 0.657102i \(0.771782\pi\)
\(972\) −21.0217 −0.674273
\(973\) 9.48913 0.304207
\(974\) −20.0000 −0.640841
\(975\) 4.74456 0.151948
\(976\) 0.372281 0.0119164
\(977\) −20.2337 −0.647333 −0.323667 0.946171i \(-0.604916\pi\)
−0.323667 + 0.946171i \(0.604916\pi\)
\(978\) 54.8397 1.75358
\(979\) −4.37228 −0.139739
\(980\) −1.37228 −0.0438359
\(981\) 19.6793 0.628312
\(982\) 1.62772 0.0519426
\(983\) 43.7228 1.39454 0.697271 0.716808i \(-0.254398\pi\)
0.697271 + 0.716808i \(0.254398\pi\)
\(984\) −27.2554 −0.868872
\(985\) −9.25544 −0.294903
\(986\) −19.1168 −0.608804
\(987\) 49.2119 1.56643
\(988\) 12.7446 0.405459
\(989\) 34.9783 1.11224
\(990\) 2.62772 0.0835144
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 2.37228 0.0753200
\(993\) −35.5326 −1.12759
\(994\) −16.8832 −0.535501
\(995\) 0.883156 0.0279979
\(996\) 20.7446 0.657317
\(997\) −12.2337 −0.387445 −0.193722 0.981056i \(-0.562056\pi\)
−0.193722 + 0.981056i \(0.562056\pi\)
\(998\) 10.5109 0.332716
\(999\) −3.20384 −0.101365
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.2.a.d.1.2 2
3.2 odd 2 990.2.a.m.1.1 2
4.3 odd 2 880.2.a.n.1.1 2
5.2 odd 4 550.2.b.f.199.1 4
5.3 odd 4 550.2.b.f.199.4 4
5.4 even 2 550.2.a.n.1.1 2
7.6 odd 2 5390.2.a.bp.1.1 2
8.3 odd 2 3520.2.a.bj.1.2 2
8.5 even 2 3520.2.a.bq.1.1 2
11.10 odd 2 1210.2.a.r.1.2 2
12.11 even 2 7920.2.a.bq.1.2 2
15.2 even 4 4950.2.c.bc.199.3 4
15.8 even 4 4950.2.c.bc.199.2 4
15.14 odd 2 4950.2.a.bw.1.2 2
20.3 even 4 4400.2.b.p.4049.2 4
20.7 even 4 4400.2.b.p.4049.3 4
20.19 odd 2 4400.2.a.bl.1.2 2
44.43 even 2 9680.2.a.bt.1.1 2
55.54 odd 2 6050.2.a.cb.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.a.d.1.2 2 1.1 even 1 trivial
550.2.a.n.1.1 2 5.4 even 2
550.2.b.f.199.1 4 5.2 odd 4
550.2.b.f.199.4 4 5.3 odd 4
880.2.a.n.1.1 2 4.3 odd 2
990.2.a.m.1.1 2 3.2 odd 2
1210.2.a.r.1.2 2 11.10 odd 2
3520.2.a.bj.1.2 2 8.3 odd 2
3520.2.a.bq.1.1 2 8.5 even 2
4400.2.a.bl.1.2 2 20.19 odd 2
4400.2.b.p.4049.2 4 20.3 even 4
4400.2.b.p.4049.3 4 20.7 even 4
4950.2.a.bw.1.2 2 15.14 odd 2
4950.2.c.bc.199.2 4 15.8 even 4
4950.2.c.bc.199.3 4 15.2 even 4
5390.2.a.bp.1.1 2 7.6 odd 2
6050.2.a.cb.1.1 2 55.54 odd 2
7920.2.a.bq.1.2 2 12.11 even 2
9680.2.a.bt.1.1 2 44.43 even 2