Properties

Label 546.2.bk.b.415.2
Level $546$
Weight $2$
Character 546.415
Analytic conductor $4.360$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [546,2,Mod(25,546)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("546.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(546, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.2
Root \(1.75780 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 546.415
Dual form 546.2.bk.b.25.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.294342 + 0.169938i) q^{5} +1.00000i q^{6} +(0.420136 - 2.61218i) q^{7} -1.00000i q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.169938 - 0.294342i) q^{10} +(-0.571683 + 0.330062i) q^{11} +(0.500000 - 0.866025i) q^{12} +(0.660123 - 3.54461i) q^{13} +(-1.66994 + 2.05215i) q^{14} -0.339877i q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.27230 + 5.66780i) q^{17} +(0.866025 - 0.500000i) q^{18} +(-5.27341 - 3.04461i) q^{19} +0.339877i q^{20} +(-2.47228 + 0.942242i) q^{21} +0.660123 q^{22} +(3.71455 - 6.43378i) q^{23} +(-0.866025 + 0.500000i) q^{24} +(-2.44224 - 4.23009i) q^{25} +(-2.34399 + 2.73966i) q^{26} +1.00000 q^{27} +(2.47228 - 0.942242i) q^{28} -3.56424 q^{29} +(-0.169938 + 0.294342i) q^{30} +(3.46410 - 2.00000i) q^{31} +(0.866025 - 0.500000i) q^{32} +(0.571683 + 0.330062i) q^{33} -6.54461i q^{34} +(0.567573 - 0.697477i) q^{35} -1.00000 q^{36} +(-3.06972 - 1.77230i) q^{37} +(3.04461 + 5.27341i) q^{38} +(-3.39978 + 1.20062i) q^{39} +(0.169938 - 0.294342i) q^{40} +0.864853i q^{41} +(2.61218 + 0.420136i) q^{42} -5.08921 q^{43} +(-0.571683 - 0.330062i) q^{44} +(-0.294342 + 0.169938i) q^{45} +(-6.43378 + 3.71455i) q^{46} +(-8.18283 - 4.72436i) q^{47} +1.00000 q^{48} +(-6.64697 - 2.19494i) q^{49} +4.88448i q^{50} +(3.27230 - 5.66780i) q^{51} +(3.39978 - 1.20062i) q^{52} +(-1.50000 - 2.59808i) q^{53} +(-0.866025 - 0.500000i) q^{54} -0.224361 q^{55} +(-2.61218 - 0.420136i) q^{56} +6.08921i q^{57} +(3.08672 + 1.78212i) q^{58} +(-3.38106 + 1.95206i) q^{59} +(0.294342 - 0.169938i) q^{60} +(-0.932427 + 1.61501i) q^{61} -4.00000 q^{62} +(2.05215 + 1.66994i) q^{63} -1.00000 q^{64} +(0.796667 - 0.931146i) q^{65} +(-0.330062 - 0.571683i) q^{66} +(6.45078 - 3.72436i) q^{67} +(-3.27230 + 5.66780i) q^{68} -7.42909 q^{69} +(-0.840272 + 0.320246i) q^{70} -0.884484i q^{71} +(0.866025 + 0.500000i) q^{72} +(8.72051 - 5.03479i) q^{73} +(1.77230 + 3.06972i) q^{74} +(-2.44224 + 4.23009i) q^{75} -6.08921i q^{76} +(0.621996 + 1.63201i) q^{77} +(3.54461 + 0.660123i) q^{78} +(6.22436 - 10.7809i) q^{79} +(-0.294342 + 0.169938i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.432427 - 0.748985i) q^{82} +16.2939i q^{83} +(-2.05215 - 1.66994i) q^{84} +2.22436i q^{85} +(4.40739 + 2.54461i) q^{86} +(1.78212 + 3.08672i) q^{87} +(0.330062 + 0.571683i) q^{88} +(3.85848 + 2.22770i) q^{89} +0.339877 q^{90} +(-8.98181 - 3.21358i) q^{91} +7.42909 q^{92} +(-3.46410 - 2.00000i) q^{93} +(4.72436 + 8.18283i) q^{94} +(-1.03479 - 1.79231i) q^{95} +(-0.866025 - 0.500000i) q^{96} +16.1088i q^{97} +(4.65898 + 5.22436i) q^{98} -0.660123i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} + 6 q^{4} - 6 q^{9} + 6 q^{12} + 12 q^{13} - 18 q^{14} - 6 q^{16} + 18 q^{17} + 12 q^{22} - 6 q^{25} + 12 q^{27} + 12 q^{29} + 24 q^{35} - 12 q^{36} - 6 q^{38} - 6 q^{39} + 6 q^{42} + 24 q^{43}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.294342 + 0.169938i 0.131634 + 0.0759988i 0.564371 0.825521i \(-0.309119\pi\)
−0.432737 + 0.901520i \(0.642452\pi\)
\(6\) 1.00000i 0.408248i
\(7\) 0.420136 2.61218i 0.158796 0.987311i
\(8\) 1.00000i 0.353553i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.169938 0.294342i −0.0537393 0.0930791i
\(11\) −0.571683 + 0.330062i −0.172369 + 0.0995173i −0.583702 0.811968i \(-0.698397\pi\)
0.411333 + 0.911485i \(0.365063\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) 0.660123 3.54461i 0.183085 0.983097i
\(14\) −1.66994 + 2.05215i −0.446310 + 0.548459i
\(15\) 0.339877i 0.0877558i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.27230 + 5.66780i 0.793650 + 1.37464i 0.923693 + 0.383134i \(0.125155\pi\)
−0.130043 + 0.991508i \(0.541511\pi\)
\(18\) 0.866025 0.500000i 0.204124 0.117851i
\(19\) −5.27341 3.04461i −1.20980 0.698481i −0.247088 0.968993i \(-0.579474\pi\)
−0.962716 + 0.270512i \(0.912807\pi\)
\(20\) 0.339877i 0.0759988i
\(21\) −2.47228 + 0.942242i −0.539496 + 0.205614i
\(22\) 0.660123 0.140739
\(23\) 3.71455 6.43378i 0.774536 1.34154i −0.160519 0.987033i \(-0.551317\pi\)
0.935055 0.354503i \(-0.115350\pi\)
\(24\) −0.866025 + 0.500000i −0.176777 + 0.102062i
\(25\) −2.44224 4.23009i −0.488448 0.846017i
\(26\) −2.34399 + 2.73966i −0.459694 + 0.537291i
\(27\) 1.00000 0.192450
\(28\) 2.47228 0.942242i 0.467217 0.178067i
\(29\) −3.56424 −0.661862 −0.330931 0.943655i \(-0.607363\pi\)
−0.330931 + 0.943655i \(0.607363\pi\)
\(30\) −0.169938 + 0.294342i −0.0310264 + 0.0537393i
\(31\) 3.46410 2.00000i 0.622171 0.359211i −0.155543 0.987829i \(-0.549713\pi\)
0.777714 + 0.628619i \(0.216379\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0.571683 + 0.330062i 0.0995173 + 0.0574563i
\(34\) 6.54461i 1.12239i
\(35\) 0.567573 0.697477i 0.0959374 0.117895i
\(36\) −1.00000 −0.166667
\(37\) −3.06972 1.77230i −0.504659 0.291365i 0.225977 0.974133i \(-0.427443\pi\)
−0.730635 + 0.682768i \(0.760776\pi\)
\(38\) 3.04461 + 5.27341i 0.493900 + 0.855461i
\(39\) −3.39978 + 1.20062i −0.544401 + 0.192253i
\(40\) 0.169938 0.294342i 0.0268696 0.0465396i
\(41\) 0.864853i 0.135067i 0.997717 + 0.0675337i \(0.0215130\pi\)
−0.997717 + 0.0675337i \(0.978487\pi\)
\(42\) 2.61218 + 0.420136i 0.403068 + 0.0648284i
\(43\) −5.08921 −0.776098 −0.388049 0.921639i \(-0.626851\pi\)
−0.388049 + 0.921639i \(0.626851\pi\)
\(44\) −0.571683 0.330062i −0.0861845 0.0497587i
\(45\) −0.294342 + 0.169938i −0.0438779 + 0.0253329i
\(46\) −6.43378 + 3.71455i −0.948609 + 0.547680i
\(47\) −8.18283 4.72436i −1.19359 0.689119i −0.234470 0.972123i \(-0.575336\pi\)
−0.959119 + 0.283004i \(0.908669\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.64697 2.19494i −0.949567 0.313563i
\(50\) 4.88448i 0.690770i
\(51\) 3.27230 5.66780i 0.458214 0.793650i
\(52\) 3.39978 1.20062i 0.471465 0.166496i
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) −0.866025 0.500000i −0.117851 0.0680414i
\(55\) −0.224361 −0.0302528
\(56\) −2.61218 0.420136i −0.349067 0.0561430i
\(57\) 6.08921i 0.806536i
\(58\) 3.08672 + 1.78212i 0.405306 + 0.234004i
\(59\) −3.38106 + 1.95206i −0.440177 + 0.254136i −0.703673 0.710524i \(-0.748458\pi\)
0.263496 + 0.964661i \(0.415124\pi\)
\(60\) 0.294342 0.169938i 0.0379994 0.0219390i
\(61\) −0.932427 + 1.61501i −0.119385 + 0.206781i −0.919524 0.393034i \(-0.871426\pi\)
0.800139 + 0.599814i \(0.204759\pi\)
\(62\) −4.00000 −0.508001
\(63\) 2.05215 + 1.66994i 0.258546 + 0.210392i
\(64\) −1.00000 −0.125000
\(65\) 0.796667 0.931146i 0.0988144 0.115495i
\(66\) −0.330062 0.571683i −0.0406278 0.0703694i
\(67\) 6.45078 3.72436i 0.788088 0.455003i −0.0512007 0.998688i \(-0.516305\pi\)
0.839289 + 0.543685i \(0.182971\pi\)
\(68\) −3.27230 + 5.66780i −0.396825 + 0.687321i
\(69\) −7.42909 −0.894357
\(70\) −0.840272 + 0.320246i −0.100432 + 0.0382767i
\(71\) 0.884484i 0.104969i −0.998622 0.0524845i \(-0.983286\pi\)
0.998622 0.0524845i \(-0.0167140\pi\)
\(72\) 0.866025 + 0.500000i 0.102062 + 0.0589256i
\(73\) 8.72051 5.03479i 1.02066 0.589278i 0.106364 0.994327i \(-0.466079\pi\)
0.914295 + 0.405049i \(0.132746\pi\)
\(74\) 1.77230 + 3.06972i 0.206026 + 0.356848i
\(75\) −2.44224 + 4.23009i −0.282006 + 0.488448i
\(76\) 6.08921i 0.698481i
\(77\) 0.621996 + 1.63201i 0.0708830 + 0.185985i
\(78\) 3.54461 + 0.660123i 0.401348 + 0.0747442i
\(79\) 6.22436 10.7809i 0.700295 1.21295i −0.268067 0.963400i \(-0.586385\pi\)
0.968363 0.249547i \(-0.0802817\pi\)
\(80\) −0.294342 + 0.169938i −0.0329084 + 0.0189997i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.432427 0.748985i 0.0477535 0.0827115i
\(83\) 16.2939i 1.78849i 0.447575 + 0.894246i \(0.352288\pi\)
−0.447575 + 0.894246i \(0.647712\pi\)
\(84\) −2.05215 1.66994i −0.223908 0.182205i
\(85\) 2.22436i 0.241266i
\(86\) 4.40739 + 2.54461i 0.475261 + 0.274392i
\(87\) 1.78212 + 3.08672i 0.191063 + 0.330931i
\(88\) 0.330062 + 0.571683i 0.0351847 + 0.0609417i
\(89\) 3.85848 + 2.22770i 0.408998 + 0.236135i 0.690359 0.723467i \(-0.257452\pi\)
−0.281361 + 0.959602i \(0.590786\pi\)
\(90\) 0.339877 0.0358262
\(91\) −8.98181 3.21358i −0.941550 0.336874i
\(92\) 7.42909 0.774536
\(93\) −3.46410 2.00000i −0.359211 0.207390i
\(94\) 4.72436 + 8.18283i 0.487281 + 0.843995i
\(95\) −1.03479 1.79231i −0.106167 0.183887i
\(96\) −0.866025 0.500000i −0.0883883 0.0510310i
\(97\) 16.1088i 1.63561i 0.575499 + 0.817803i \(0.304808\pi\)
−0.575499 + 0.817803i \(0.695192\pi\)
\(98\) 4.65898 + 5.22436i 0.470628 + 0.527740i
\(99\) 0.660123i 0.0663449i
\(100\) 2.44224 4.23009i 0.244224 0.423009i
\(101\) −1.39764 2.42077i −0.139070 0.240876i 0.788075 0.615579i \(-0.211078\pi\)
−0.927145 + 0.374703i \(0.877745\pi\)
\(102\) −5.66780 + 3.27230i −0.561195 + 0.324006i
\(103\) 3.76897 6.52804i 0.371367 0.643227i −0.618409 0.785857i \(-0.712222\pi\)
0.989776 + 0.142629i \(0.0455557\pi\)
\(104\) −3.54461 0.660123i −0.347577 0.0647304i
\(105\) −0.887820 0.142794i −0.0866423 0.0139353i
\(106\) 3.00000i 0.291386i
\(107\) 1.86485 3.23002i 0.180282 0.312258i −0.761694 0.647936i \(-0.775632\pi\)
0.941977 + 0.335679i \(0.108966\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) 12.4790 7.20473i 1.19527 0.690088i 0.235771 0.971809i \(-0.424238\pi\)
0.959496 + 0.281721i \(0.0909052\pi\)
\(110\) 0.194302 + 0.112180i 0.0185260 + 0.0106960i
\(111\) 3.54461i 0.336439i
\(112\) 2.05215 + 1.66994i 0.193910 + 0.157794i
\(113\) 15.5576 1.46353 0.731766 0.681556i \(-0.238696\pi\)
0.731766 + 0.681556i \(0.238696\pi\)
\(114\) 3.04461 5.27341i 0.285154 0.493900i
\(115\) 2.18669 1.26249i 0.203910 0.117728i
\(116\) −1.78212 3.08672i −0.165466 0.286595i
\(117\) 2.73966 + 2.34399i 0.253281 + 0.216702i
\(118\) 3.90411 0.359403
\(119\) 16.1801 6.16660i 1.48323 0.565292i
\(120\) −0.339877 −0.0310264
\(121\) −5.28212 + 9.14890i −0.480193 + 0.831718i
\(122\) 1.61501 0.932427i 0.146216 0.0844179i
\(123\) 0.748985 0.432427i 0.0675337 0.0389906i
\(124\) 3.46410 + 2.00000i 0.311086 + 0.179605i
\(125\) 3.35951i 0.300483i
\(126\) −0.942242 2.47228i −0.0839416 0.220248i
\(127\) 14.4028 1.27804 0.639020 0.769190i \(-0.279340\pi\)
0.639020 + 0.769190i \(0.279340\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 2.54461 + 4.40739i 0.224040 + 0.388049i
\(130\) −1.15551 + 0.408063i −0.101345 + 0.0357895i
\(131\) 10.3365 17.9034i 0.903108 1.56423i 0.0796705 0.996821i \(-0.474613\pi\)
0.823437 0.567407i \(-0.192053\pi\)
\(132\) 0.660123i 0.0574563i
\(133\) −10.1686 + 12.4960i −0.881730 + 1.08354i
\(134\) −7.44872 −0.643472
\(135\) 0.294342 + 0.169938i 0.0253329 + 0.0146260i
\(136\) 5.66780 3.27230i 0.486009 0.280598i
\(137\) −12.3187 + 7.11218i −1.05245 + 0.607635i −0.923335 0.383995i \(-0.874548\pi\)
−0.129119 + 0.991629i \(0.541215\pi\)
\(138\) 6.43378 + 3.71455i 0.547680 + 0.316203i
\(139\) 9.42909 0.799765 0.399883 0.916566i \(-0.369051\pi\)
0.399883 + 0.916566i \(0.369051\pi\)
\(140\) 0.887820 + 0.142794i 0.0750345 + 0.0120683i
\(141\) 9.44872i 0.795726i
\(142\) −0.442242 + 0.765985i −0.0371121 + 0.0642801i
\(143\) 0.792557 + 2.24427i 0.0662769 + 0.187676i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −1.04910 0.605701i −0.0871234 0.0503007i
\(146\) −10.0696 −0.833365
\(147\) 1.42261 + 6.85392i 0.117335 + 0.565302i
\(148\) 3.54461i 0.291365i
\(149\) 7.02247 + 4.05442i 0.575303 + 0.332151i 0.759264 0.650782i \(-0.225559\pi\)
−0.183962 + 0.982933i \(0.558892\pi\)
\(150\) 4.23009 2.44224i 0.345385 0.199408i
\(151\) −4.59047 + 2.65031i −0.373567 + 0.215679i −0.675016 0.737803i \(-0.735863\pi\)
0.301449 + 0.953482i \(0.402530\pi\)
\(152\) −3.04461 + 5.27341i −0.246950 + 0.427730i
\(153\) −6.54461 −0.529100
\(154\) 0.277341 1.72436i 0.0223488 0.138953i
\(155\) 1.35951 0.109198
\(156\) −2.73966 2.34399i −0.219348 0.187669i
\(157\) 11.5281 + 19.9673i 0.920044 + 1.59356i 0.799344 + 0.600874i \(0.205181\pi\)
0.120700 + 0.992689i \(0.461486\pi\)
\(158\) −10.7809 + 6.22436i −0.857683 + 0.495184i
\(159\) −1.50000 + 2.59808i −0.118958 + 0.206041i
\(160\) 0.339877 0.0268696
\(161\) −15.2456 12.4061i −1.20152 0.977740i
\(162\) 1.00000i 0.0785674i
\(163\) 11.7470 + 6.78212i 0.920094 + 0.531217i 0.883665 0.468120i \(-0.155068\pi\)
0.0364290 + 0.999336i \(0.488402\pi\)
\(164\) −0.748985 + 0.432427i −0.0584859 + 0.0337668i
\(165\) 0.112180 + 0.194302i 0.00873322 + 0.0151264i
\(166\) 8.14697 14.1110i 0.632328 1.09522i
\(167\) 15.7034i 1.21517i 0.794256 + 0.607583i \(0.207861\pi\)
−0.794256 + 0.607583i \(0.792139\pi\)
\(168\) 0.942242 + 2.47228i 0.0726955 + 0.190741i
\(169\) −12.1285 4.67975i −0.932960 0.359981i
\(170\) 1.11218 1.92635i 0.0853003 0.147745i
\(171\) 5.27341 3.04461i 0.403268 0.232827i
\(172\) −2.54461 4.40739i −0.194024 0.336060i
\(173\) −6.80175 + 11.7810i −0.517127 + 0.895691i 0.482675 + 0.875800i \(0.339665\pi\)
−0.999802 + 0.0198913i \(0.993668\pi\)
\(174\) 3.56424i 0.270204i
\(175\) −12.0758 + 4.60236i −0.912846 + 0.347906i
\(176\) 0.660123i 0.0497587i
\(177\) 3.38106 + 1.95206i 0.254136 + 0.146726i
\(178\) −2.22770 3.85848i −0.166973 0.289206i
\(179\) −0.224361 0.388604i −0.0167695 0.0290456i 0.857519 0.514453i \(-0.172005\pi\)
−0.874288 + 0.485407i \(0.838671\pi\)
\(180\) −0.294342 0.169938i −0.0219390 0.0126665i
\(181\) −15.9041 −1.18214 −0.591072 0.806619i \(-0.701295\pi\)
−0.591072 + 0.806619i \(0.701295\pi\)
\(182\) 6.17169 + 7.27394i 0.457476 + 0.539181i
\(183\) 1.86485 0.137854
\(184\) −6.43378 3.71455i −0.474305 0.273840i
\(185\) −0.602365 1.04333i −0.0442868 0.0767069i
\(186\) 2.00000 + 3.46410i 0.146647 + 0.254000i
\(187\) −3.74144 2.16012i −0.273601 0.157964i
\(188\) 9.44872i 0.689119i
\(189\) 0.420136 2.61218i 0.0305604 0.190008i
\(190\) 2.06958i 0.150143i
\(191\) 5.20473 9.01486i 0.376601 0.652292i −0.613964 0.789334i \(-0.710426\pi\)
0.990565 + 0.137042i \(0.0437594\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) −6.66786 + 3.84969i −0.479963 + 0.277107i −0.720401 0.693558i \(-0.756042\pi\)
0.240438 + 0.970665i \(0.422709\pi\)
\(194\) 8.05442 13.9507i 0.578274 1.00160i
\(195\) −1.20473 0.224361i −0.0862725 0.0160668i
\(196\) −1.42261 6.85392i −0.101615 0.489565i
\(197\) 8.98037i 0.639825i −0.947447 0.319912i \(-0.896347\pi\)
0.947447 0.319912i \(-0.103653\pi\)
\(198\) −0.330062 + 0.571683i −0.0234565 + 0.0406278i
\(199\) 10.2973 + 17.8354i 0.729955 + 1.26432i 0.956902 + 0.290412i \(0.0937922\pi\)
−0.226947 + 0.973907i \(0.572874\pi\)
\(200\) −4.23009 + 2.44224i −0.299112 + 0.172693i
\(201\) −6.45078 3.72436i −0.455003 0.262696i
\(202\) 2.79527i 0.196675i
\(203\) −1.49746 + 9.31043i −0.105101 + 0.653464i
\(204\) 6.54461 0.458214
\(205\) −0.146972 + 0.254563i −0.0102650 + 0.0177794i
\(206\) −6.52804 + 3.76897i −0.454830 + 0.262596i
\(207\) 3.71455 + 6.43378i 0.258179 + 0.447179i
\(208\) 2.73966 + 2.34399i 0.189961 + 0.162526i
\(209\) 4.01963 0.278044
\(210\) 0.697477 + 0.567573i 0.0481305 + 0.0391663i
\(211\) 15.3898 1.05948 0.529740 0.848160i \(-0.322290\pi\)
0.529740 + 0.848160i \(0.322290\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) −0.765985 + 0.442242i −0.0524845 + 0.0303019i
\(214\) −3.23002 + 1.86485i −0.220800 + 0.127479i
\(215\) −1.49797 0.864853i −0.102161 0.0589825i
\(216\) 1.00000i 0.0680414i
\(217\) −3.76897 9.88913i −0.255854 0.671318i
\(218\) −14.4095 −0.975932
\(219\) −8.72051 5.03479i −0.589278 0.340220i
\(220\) −0.112180 0.194302i −0.00756319 0.0130998i
\(221\) 22.2502 7.85759i 1.49671 0.528558i
\(222\) 1.77230 3.06972i 0.118949 0.206026i
\(223\) 18.0196i 1.20668i −0.797483 0.603342i \(-0.793835\pi\)
0.797483 0.603342i \(-0.206165\pi\)
\(224\) −0.942242 2.47228i −0.0629562 0.165186i
\(225\) 4.88448 0.325632
\(226\) −13.4732 7.77878i −0.896227 0.517437i
\(227\) 0.200080 0.115516i 0.0132798 0.00766709i −0.493345 0.869833i \(-0.664226\pi\)
0.506625 + 0.862166i \(0.330893\pi\)
\(228\) −5.27341 + 3.04461i −0.349240 + 0.201634i
\(229\) −5.75084 3.32025i −0.380026 0.219408i 0.297804 0.954627i \(-0.403746\pi\)
−0.677830 + 0.735219i \(0.737079\pi\)
\(230\) −2.52498 −0.166492
\(231\) 1.10236 1.35467i 0.0725303 0.0891307i
\(232\) 3.56424i 0.234004i
\(233\) 14.7592 25.5636i 0.966904 1.67473i 0.262495 0.964933i \(-0.415455\pi\)
0.704410 0.709794i \(-0.251212\pi\)
\(234\) −1.20062 3.39978i −0.0784870 0.222251i
\(235\) −1.60570 2.78116i −0.104744 0.181423i
\(236\) −3.38106 1.95206i −0.220088 0.127068i
\(237\) −12.4487 −0.808631
\(238\) −17.0957 2.74962i −1.10815 0.178232i
\(239\) 15.0236i 0.971799i −0.874015 0.485900i \(-0.838492\pi\)
0.874015 0.485900i \(-0.161508\pi\)
\(240\) 0.294342 + 0.169938i 0.0189997 + 0.0109695i
\(241\) −3.85271 + 2.22436i −0.248175 + 0.143284i −0.618928 0.785448i \(-0.712433\pi\)
0.370754 + 0.928731i \(0.379099\pi\)
\(242\) 9.14890 5.28212i 0.588113 0.339547i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −1.86485 −0.119385
\(245\) −1.58348 1.77564i −0.101165 0.113441i
\(246\) −0.864853 −0.0551410
\(247\) −14.2730 + 16.6824i −0.908172 + 1.06147i
\(248\) −2.00000 3.46410i −0.127000 0.219971i
\(249\) 14.1110 8.14697i 0.894246 0.516293i
\(250\) −1.67975 + 2.90942i −0.106237 + 0.184008i
\(251\) −24.3961 −1.53987 −0.769935 0.638123i \(-0.779711\pi\)
−0.769935 + 0.638123i \(0.779711\pi\)
\(252\) −0.420136 + 2.61218i −0.0264661 + 0.164552i
\(253\) 4.90411i 0.308319i
\(254\) −12.4732 7.20139i −0.782637 0.451856i
\(255\) 1.92635 1.11218i 0.120633 0.0696474i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −9.22436 + 15.9771i −0.575400 + 0.996622i 0.420598 + 0.907247i \(0.361820\pi\)
−0.995998 + 0.0893747i \(0.971513\pi\)
\(258\) 5.08921i 0.316841i
\(259\) −5.91928 + 7.27405i −0.367806 + 0.451988i
\(260\) 1.20473 + 0.224361i 0.0747142 + 0.0139143i
\(261\) 1.78212 3.08672i 0.110310 0.191063i
\(262\) −17.9034 + 10.3365i −1.10608 + 0.638594i
\(263\) 3.15031 + 5.45649i 0.194256 + 0.336462i 0.946656 0.322245i \(-0.104437\pi\)
−0.752400 + 0.658706i \(0.771104\pi\)
\(264\) 0.330062 0.571683i 0.0203139 0.0351847i
\(265\) 1.01963i 0.0626354i
\(266\) 15.0543 5.73751i 0.923036 0.351789i
\(267\) 4.45539i 0.272666i
\(268\) 6.45078 + 3.72436i 0.394044 + 0.227502i
\(269\) 4.94759 + 8.56947i 0.301660 + 0.522490i 0.976512 0.215463i \(-0.0691260\pi\)
−0.674852 + 0.737953i \(0.735793\pi\)
\(270\) −0.169938 0.294342i −0.0103421 0.0179131i
\(271\) 10.9980 + 6.34969i 0.668080 + 0.385716i 0.795349 0.606152i \(-0.207288\pi\)
−0.127269 + 0.991868i \(0.540621\pi\)
\(272\) −6.54461 −0.396825
\(273\) 1.70787 + 9.38526i 0.103365 + 0.568022i
\(274\) 14.2244 0.859325
\(275\) 2.79238 + 1.61218i 0.168387 + 0.0972181i
\(276\) −3.71455 6.43378i −0.223589 0.387268i
\(277\) −14.0216 24.2862i −0.842479 1.45922i −0.887793 0.460243i \(-0.847762\pi\)
0.0453142 0.998973i \(-0.485571\pi\)
\(278\) −8.16583 4.71455i −0.489754 0.282760i
\(279\) 4.00000i 0.239474i
\(280\) −0.697477 0.567573i −0.0416822 0.0339190i
\(281\) 1.82157i 0.108666i 0.998523 + 0.0543330i \(0.0173032\pi\)
−0.998523 + 0.0543330i \(0.982697\pi\)
\(282\) 4.72436 8.18283i 0.281332 0.487281i
\(283\) −4.49018 7.77723i −0.266914 0.462308i 0.701149 0.713014i \(-0.252671\pi\)
−0.968063 + 0.250706i \(0.919337\pi\)
\(284\) 0.765985 0.442242i 0.0454529 0.0262422i
\(285\) −1.03479 + 1.79231i −0.0612958 + 0.106167i
\(286\) 0.435763 2.33988i 0.0257672 0.138360i
\(287\) 2.25915 + 0.363356i 0.133354 + 0.0214482i
\(288\) 1.00000i 0.0589256i
\(289\) −12.9159 + 22.3711i −0.759761 + 1.31594i
\(290\) 0.605701 + 1.04910i 0.0355680 + 0.0616056i
\(291\) 13.9507 8.05442i 0.817803 0.472159i
\(292\) 8.72051 + 5.03479i 0.510330 + 0.294639i
\(293\) 2.80194i 0.163691i 0.996645 + 0.0818456i \(0.0260814\pi\)
−0.996645 + 0.0818456i \(0.973919\pi\)
\(294\) 2.19494 6.64697i 0.128012 0.387659i
\(295\) −1.32692 −0.0772562
\(296\) −1.77230 + 3.06972i −0.103013 + 0.178424i
\(297\) −0.571683 + 0.330062i −0.0331724 + 0.0191521i
\(298\) −4.05442 7.02247i −0.234866 0.406800i
\(299\) −20.3532 17.4137i −1.17705 1.00706i
\(300\) −4.88448 −0.282006
\(301\) −2.13816 + 13.2939i −0.123242 + 0.766250i
\(302\) 5.30062 0.305016
\(303\) −1.39764 + 2.42077i −0.0802920 + 0.139070i
\(304\) 5.27341 3.04461i 0.302451 0.174620i
\(305\) −0.548905 + 0.316910i −0.0314302 + 0.0181462i
\(306\) 5.66780 + 3.27230i 0.324006 + 0.187065i
\(307\) 9.21769i 0.526081i 0.964785 + 0.263041i \(0.0847253\pi\)
−0.964785 + 0.263041i \(0.915275\pi\)
\(308\) −1.10236 + 1.35467i −0.0628131 + 0.0771895i
\(309\) −7.53793 −0.428818
\(310\) −1.17737 0.679754i −0.0668700 0.0386074i
\(311\) 5.73418 + 9.93188i 0.325155 + 0.563185i 0.981544 0.191238i \(-0.0612501\pi\)
−0.656388 + 0.754423i \(0.727917\pi\)
\(312\) 1.20062 + 3.39978i 0.0679717 + 0.192475i
\(313\) 11.2821 19.5412i 0.637703 1.10453i −0.348233 0.937408i \(-0.613218\pi\)
0.985936 0.167126i \(-0.0534486\pi\)
\(314\) 23.0562i 1.30114i
\(315\) 0.320246 + 0.840272i 0.0180438 + 0.0473439i
\(316\) 12.4487 0.700295
\(317\) 10.9354 + 6.31357i 0.614195 + 0.354606i 0.774605 0.632445i \(-0.217948\pi\)
−0.160410 + 0.987050i \(0.551282\pi\)
\(318\) 2.59808 1.50000i 0.145693 0.0841158i
\(319\) 2.03762 1.17642i 0.114085 0.0658667i
\(320\) −0.294342 0.169938i −0.0164542 0.00949985i
\(321\) −3.72971 −0.208172
\(322\) 7.00000 + 18.3668i 0.390095 + 1.02354i
\(323\) 39.8515i 2.21740i
\(324\) 0.500000 0.866025i 0.0277778 0.0481125i
\(325\) −16.6062 + 5.86441i −0.921145 + 0.325299i
\(326\) −6.78212 11.7470i −0.375627 0.650605i
\(327\) −12.4790 7.20473i −0.690088 0.398422i
\(328\) 0.864853 0.0477535
\(329\) −15.7788 + 19.3902i −0.869912 + 1.06901i
\(330\) 0.224361i 0.0123506i
\(331\) −23.2278 13.4106i −1.27672 0.737113i −0.300474 0.953790i \(-0.597145\pi\)
−0.976243 + 0.216677i \(0.930478\pi\)
\(332\) −14.1110 + 8.14697i −0.774440 + 0.447123i
\(333\) 3.06972 1.77230i 0.168220 0.0971216i
\(334\) 7.85170 13.5995i 0.429626 0.744134i
\(335\) 2.53165 0.138319
\(336\) 0.420136 2.61218i 0.0229203 0.142506i
\(337\) 9.81892 0.534871 0.267435 0.963576i \(-0.413824\pi\)
0.267435 + 0.963576i \(0.413824\pi\)
\(338\) 8.16369 + 10.1170i 0.444046 + 0.550294i
\(339\) −7.77878 13.4732i −0.422485 0.731766i
\(340\) −1.92635 + 1.11218i −0.104471 + 0.0603164i
\(341\) −1.32025 + 2.28673i −0.0714953 + 0.123834i
\(342\) −6.08921 −0.329267
\(343\) −8.52621 + 16.4409i −0.460372 + 0.887726i
\(344\) 5.08921i 0.274392i
\(345\) −2.18669 1.26249i −0.117728 0.0679701i
\(346\) 11.7810 6.80175i 0.633349 0.365664i
\(347\) −9.54794 16.5375i −0.512560 0.887781i −0.999894 0.0145648i \(-0.995364\pi\)
0.487334 0.873216i \(-0.337970\pi\)
\(348\) −1.78212 + 3.08672i −0.0955316 + 0.165466i
\(349\) 0.416132i 0.0222750i −0.999938 0.0111375i \(-0.996455\pi\)
0.999938 0.0111375i \(-0.00354525\pi\)
\(350\) 12.7592 + 2.05215i 0.682005 + 0.109692i
\(351\) 0.660123 3.54461i 0.0352348 0.189197i
\(352\) −0.330062 + 0.571683i −0.0175923 + 0.0304708i
\(353\) 14.2790 8.24399i 0.759995 0.438783i −0.0692989 0.997596i \(-0.522076\pi\)
0.829294 + 0.558813i \(0.188743\pi\)
\(354\) −1.95206 3.38106i −0.103751 0.179701i
\(355\) 0.150308 0.260341i 0.00797751 0.0138175i
\(356\) 4.45539i 0.236135i
\(357\) −13.4305 10.9291i −0.710817 0.578429i
\(358\) 0.448721i 0.0237157i
\(359\) −21.1937 12.2362i −1.11856 0.645801i −0.177527 0.984116i \(-0.556810\pi\)
−0.941033 + 0.338315i \(0.890143\pi\)
\(360\) 0.169938 + 0.294342i 0.00895654 + 0.0155132i
\(361\) 9.03926 + 15.6565i 0.475751 + 0.824024i
\(362\) 13.7734 + 7.95206i 0.723912 + 0.417951i
\(363\) 10.5642 0.554479
\(364\) −1.70787 9.38526i −0.0895165 0.491922i
\(365\) 3.42242 0.179138
\(366\) −1.61501 0.932427i −0.0844179 0.0487387i
\(367\) 6.24399 + 10.8149i 0.325934 + 0.564534i 0.981701 0.190429i \(-0.0609880\pi\)
−0.655767 + 0.754963i \(0.727655\pi\)
\(368\) 3.71455 + 6.43378i 0.193634 + 0.335384i
\(369\) −0.748985 0.432427i −0.0389906 0.0225112i
\(370\) 1.20473i 0.0626309i
\(371\) −7.41685 + 2.82673i −0.385064 + 0.146756i
\(372\) 4.00000i 0.207390i
\(373\) 3.91393 6.77913i 0.202656 0.351010i −0.746728 0.665130i \(-0.768376\pi\)
0.949383 + 0.314120i \(0.101709\pi\)
\(374\) 2.16012 + 3.74144i 0.111697 + 0.193465i
\(375\) −2.90942 + 1.67975i −0.150242 + 0.0867421i
\(376\) −4.72436 + 8.18283i −0.243640 + 0.421997i
\(377\) −2.35284 + 12.6338i −0.121177 + 0.650675i
\(378\) −1.66994 + 2.05215i −0.0858924 + 0.105551i
\(379\) 8.67975i 0.445849i 0.974836 + 0.222925i \(0.0715603\pi\)
−0.974836 + 0.222925i \(0.928440\pi\)
\(380\) 1.03479 1.79231i 0.0530837 0.0919436i
\(381\) −7.20139 12.4732i −0.368939 0.639020i
\(382\) −9.01486 + 5.20473i −0.461240 + 0.266297i
\(383\) 20.2844 + 11.7112i 1.03648 + 0.598415i 0.918836 0.394640i \(-0.129131\pi\)
0.117649 + 0.993055i \(0.462464\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −0.0942619 + 0.586070i −0.00480403 + 0.0298689i
\(386\) 7.69938 0.391888
\(387\) 2.54461 4.40739i 0.129350 0.224040i
\(388\) −13.9507 + 8.05442i −0.708238 + 0.408901i
\(389\) 15.0957 + 26.1465i 0.765382 + 1.32568i 0.940044 + 0.341052i \(0.110783\pi\)
−0.174662 + 0.984628i \(0.555883\pi\)
\(390\) 0.931146 + 0.796667i 0.0471504 + 0.0403408i
\(391\) 48.6205 2.45884
\(392\) −2.19494 + 6.64697i −0.110861 + 0.335723i
\(393\) −20.6731 −1.04282
\(394\) −4.49018 + 7.77723i −0.226212 + 0.391811i
\(395\) 3.66418 2.11552i 0.184365 0.106443i
\(396\) 0.571683 0.330062i 0.0287282 0.0165862i
\(397\) −7.35659 4.24733i −0.369216 0.213167i 0.303900 0.952704i \(-0.401711\pi\)
−0.673116 + 0.739537i \(0.735045\pi\)
\(398\) 20.5946i 1.03231i
\(399\) 15.9061 + 2.55830i 0.796302 + 0.128075i
\(400\) 4.88448 0.244224
\(401\) 17.4693 + 10.0859i 0.872373 + 0.503665i 0.868136 0.496326i \(-0.165318\pi\)
0.00423681 + 0.999991i \(0.498651\pi\)
\(402\) 3.72436 + 6.45078i 0.185754 + 0.321736i
\(403\) −4.80248 13.5991i −0.239229 0.677421i
\(404\) 1.39764 2.42077i 0.0695349 0.120438i
\(405\) 0.339877i 0.0168886i
\(406\) 5.95206 7.31434i 0.295396 0.363004i
\(407\) 2.33988 0.115983
\(408\) −5.66780 3.27230i −0.280598 0.162003i
\(409\) 3.72444 2.15031i 0.184162 0.106326i −0.405085 0.914279i \(-0.632758\pi\)
0.589247 + 0.807953i \(0.299425\pi\)
\(410\) 0.254563 0.146972i 0.0125720 0.00725842i
\(411\) 12.3187 + 7.11218i 0.607635 + 0.350818i
\(412\) 7.53793 0.371367
\(413\) 3.67862 + 9.65207i 0.181013 + 0.474947i
\(414\) 7.42909i 0.365120i
\(415\) −2.76897 + 4.79599i −0.135923 + 0.235426i
\(416\) −1.20062 3.39978i −0.0588652 0.166688i
\(417\) −4.71455 8.16583i −0.230872 0.399883i
\(418\) −3.48110 2.00982i −0.170266 0.0983033i
\(419\) −32.8974 −1.60715 −0.803573 0.595207i \(-0.797070\pi\)
−0.803573 + 0.595207i \(0.797070\pi\)
\(420\) −0.320246 0.840272i −0.0156264 0.0410011i
\(421\) 21.7230i 1.05872i 0.848399 + 0.529358i \(0.177567\pi\)
−0.848399 + 0.529358i \(0.822433\pi\)
\(422\) −13.3280 7.69491i −0.648796 0.374583i
\(423\) 8.18283 4.72436i 0.397863 0.229706i
\(424\) −2.59808 + 1.50000i −0.126174 + 0.0728464i
\(425\) 15.9835 27.6843i 0.775314 1.34288i
\(426\) 0.884484 0.0428534
\(427\) 3.82695 + 3.11419i 0.185199 + 0.150706i
\(428\) 3.72971 0.180282
\(429\) 1.54732 1.80851i 0.0747053 0.0873158i
\(430\) 0.864853 + 1.49797i 0.0417069 + 0.0722385i
\(431\) −5.25063 + 3.03146i −0.252914 + 0.146020i −0.621098 0.783733i \(-0.713313\pi\)
0.368184 + 0.929753i \(0.379980\pi\)
\(432\) −0.500000 + 0.866025i −0.0240563 + 0.0416667i
\(433\) 11.1392 0.535314 0.267657 0.963514i \(-0.413751\pi\)
0.267657 + 0.963514i \(0.413751\pi\)
\(434\) −1.68054 + 10.4487i −0.0806687 + 0.501555i
\(435\) 1.21140i 0.0580823i
\(436\) 12.4790 + 7.20473i 0.597634 + 0.345044i
\(437\) −39.1767 + 22.6187i −1.87407 + 1.08200i
\(438\) 5.03479 + 8.72051i 0.240572 + 0.416682i
\(439\) −5.81156 + 10.0659i −0.277371 + 0.480420i −0.970731 0.240171i \(-0.922796\pi\)
0.693360 + 0.720592i \(0.256130\pi\)
\(440\) 0.224361i 0.0106960i
\(441\) 5.22436 4.65898i 0.248779 0.221856i
\(442\) −23.1981 4.32025i −1.10342 0.205493i
\(443\) 2.33654 4.04701i 0.111012 0.192279i −0.805166 0.593049i \(-0.797924\pi\)
0.916179 + 0.400770i \(0.131257\pi\)
\(444\) −3.06972 + 1.77230i −0.145682 + 0.0841098i
\(445\) 0.757143 + 1.31141i 0.0358920 + 0.0621668i
\(446\) −9.00982 + 15.6055i −0.426627 + 0.738940i
\(447\) 8.10884i 0.383535i
\(448\) −0.420136 + 2.61218i −0.0198496 + 0.123414i
\(449\) 36.6271i 1.72854i −0.503026 0.864271i \(-0.667780\pi\)
0.503026 0.864271i \(-0.332220\pi\)
\(450\) −4.23009 2.44224i −0.199408 0.115128i
\(451\) −0.285455 0.494422i −0.0134415 0.0232814i
\(452\) 7.77878 + 13.4732i 0.365883 + 0.633728i
\(453\) 4.59047 + 2.65031i 0.215679 + 0.124522i
\(454\) −0.231033 −0.0108429
\(455\) −2.09761 2.47225i −0.0983377 0.115901i
\(456\) 6.08921 0.285154
\(457\) 27.1388 + 15.6686i 1.26950 + 0.732947i 0.974894 0.222672i \(-0.0714778\pi\)
0.294607 + 0.955618i \(0.404811\pi\)
\(458\) 3.32025 + 5.75084i 0.155145 + 0.268719i
\(459\) 3.27230 + 5.66780i 0.152738 + 0.264550i
\(460\) 2.18669 + 1.26249i 0.101955 + 0.0588638i
\(461\) 0.601231i 0.0280021i −0.999902 0.0140011i \(-0.995543\pi\)
0.999902 0.0140011i \(-0.00445682\pi\)
\(462\) −1.63201 + 0.621996i −0.0759280 + 0.0289379i
\(463\) 10.5013i 0.488038i 0.969770 + 0.244019i \(0.0784659\pi\)
−0.969770 + 0.244019i \(0.921534\pi\)
\(464\) 1.78212 3.08672i 0.0827328 0.143297i
\(465\) −0.679754 1.17737i −0.0315228 0.0545991i
\(466\) −25.5636 + 14.7592i −1.18421 + 0.683705i
\(467\) −13.6109 + 23.5747i −0.629835 + 1.09091i 0.357749 + 0.933818i \(0.383544\pi\)
−0.987584 + 0.157089i \(0.949789\pi\)
\(468\) −0.660123 + 3.54461i −0.0305142 + 0.163850i
\(469\) −7.01850 18.4153i −0.324084 0.850341i
\(470\) 3.21140i 0.148131i
\(471\) 11.5281 19.9673i 0.531188 0.920044i
\(472\) 1.95206 + 3.38106i 0.0898507 + 0.155626i
\(473\) 2.90942 1.67975i 0.133775 0.0772352i
\(474\) 10.7809 + 6.22436i 0.495184 + 0.285894i
\(475\) 29.7427i 1.36469i
\(476\) 13.4305 + 10.9291i 0.615586 + 0.500934i
\(477\) 3.00000 0.137361
\(478\) −7.51182 + 13.0109i −0.343583 + 0.595103i
\(479\) 25.0031 14.4356i 1.14242 0.659578i 0.195393 0.980725i \(-0.437402\pi\)
0.947029 + 0.321147i \(0.104068\pi\)
\(480\) −0.169938 0.294342i −0.00775659 0.0134348i
\(481\) −8.30851 + 9.71101i −0.378836 + 0.442784i
\(482\) 4.44872 0.202634
\(483\) −3.12123 + 19.4061i −0.142021 + 0.883009i
\(484\) −10.5642 −0.480193
\(485\) −2.73751 + 4.74151i −0.124304 + 0.215301i
\(486\) 0.866025 0.500000i 0.0392837 0.0226805i
\(487\) −3.39262 + 1.95873i −0.153734 + 0.0887585i −0.574894 0.818228i \(-0.694957\pi\)
0.421159 + 0.906987i \(0.361623\pi\)
\(488\) 1.61501 + 0.932427i 0.0731081 + 0.0422090i
\(489\) 13.5642i 0.613396i
\(490\) 0.483513 + 2.32949i 0.0218429 + 0.105236i
\(491\) −13.4202 −0.605643 −0.302821 0.953047i \(-0.597929\pi\)
−0.302821 + 0.953047i \(0.597929\pi\)
\(492\) 0.748985 + 0.432427i 0.0337668 + 0.0194953i
\(493\) −11.6633 20.2014i −0.525287 0.909824i
\(494\) 20.7020 7.31083i 0.931427 0.328930i
\(495\) 0.112180 0.194302i 0.00504213 0.00873322i
\(496\) 4.00000i 0.179605i
\(497\) −2.31043 0.371603i −0.103637 0.0166687i
\(498\) −16.2939 −0.730149
\(499\) 28.3900 + 16.3910i 1.27091 + 0.733760i 0.975159 0.221505i \(-0.0710969\pi\)
0.295751 + 0.955265i \(0.404430\pi\)
\(500\) 2.90942 1.67975i 0.130113 0.0751209i
\(501\) 13.5995 7.85170i 0.607583 0.350788i
\(502\) 21.1277 + 12.1981i 0.942973 + 0.544426i
\(503\) 22.8582 1.01920 0.509598 0.860413i \(-0.329794\pi\)
0.509598 + 0.860413i \(0.329794\pi\)
\(504\) 1.66994 2.05215i 0.0743850 0.0914099i
\(505\) 0.950048i 0.0422766i
\(506\) 2.45206 4.24709i 0.109007 0.188806i
\(507\) 2.01145 + 12.8434i 0.0893317 + 0.570397i
\(508\) 7.20139 + 12.4732i 0.319510 + 0.553408i
\(509\) 28.4445 + 16.4224i 1.26078 + 0.727911i 0.973225 0.229854i \(-0.0738248\pi\)
0.287553 + 0.957765i \(0.407158\pi\)
\(510\) −2.22436 −0.0984963
\(511\) −9.48798 24.8949i −0.419724 1.10128i
\(512\) 1.00000i 0.0441942i
\(513\) −5.27341 3.04461i −0.232827 0.134423i
\(514\) 15.9771 9.22436i 0.704718 0.406869i
\(515\) 2.21873 1.28098i 0.0977690 0.0564469i
\(516\) −2.54461 + 4.40739i −0.112020 + 0.194024i
\(517\) 6.23732 0.274317
\(518\) 8.76327 3.33988i 0.385036 0.146746i
\(519\) 13.6035 0.597127
\(520\) −0.931146 0.796667i −0.0408335 0.0349362i
\(521\) −1.40946 2.44126i −0.0617496 0.106953i 0.833498 0.552523i \(-0.186335\pi\)
−0.895248 + 0.445569i \(0.853001\pi\)
\(522\) −3.08672 + 1.78212i −0.135102 + 0.0780012i
\(523\) 2.81490 4.87555i 0.123087 0.213193i −0.797897 0.602794i \(-0.794054\pi\)
0.920984 + 0.389601i \(0.127387\pi\)
\(524\) 20.6731 0.903108
\(525\) 10.0237 + 8.15679i 0.437469 + 0.355991i
\(526\) 6.30062i 0.274720i
\(527\) 22.6712 + 13.0892i 0.987572 + 0.570175i
\(528\) −0.571683 + 0.330062i −0.0248793 + 0.0143641i
\(529\) −16.0957 27.8786i −0.699813 1.21211i
\(530\) −0.509815 + 0.883026i −0.0221450 + 0.0383562i
\(531\) 3.90411i 0.169424i
\(532\) −15.9061 2.55830i −0.689618 0.110916i
\(533\) 3.06556 + 0.570909i 0.132784 + 0.0247288i
\(534\) −2.22770 + 3.85848i −0.0964019 + 0.166973i
\(535\) 1.09781 0.633820i 0.0474624 0.0274024i
\(536\) −3.72436 6.45078i −0.160868 0.278631i
\(537\) −0.224361 + 0.388604i −0.00968187 + 0.0167695i
\(538\) 9.89517i 0.426611i
\(539\) 4.52443 0.939099i 0.194881 0.0404498i
\(540\) 0.339877i 0.0146260i
\(541\) −21.4015 12.3562i −0.920123 0.531233i −0.0364488 0.999336i \(-0.511605\pi\)
−0.883674 + 0.468102i \(0.844938\pi\)
\(542\) −6.34969 10.9980i −0.272743 0.472404i
\(543\) 7.95206 + 13.7734i 0.341255 + 0.591072i
\(544\) 5.66780 + 3.27230i 0.243005 + 0.140299i
\(545\) 4.89744 0.209783
\(546\) 3.21358 8.98181i 0.137528 0.384386i
\(547\) 18.1874 0.777636 0.388818 0.921315i \(-0.372884\pi\)
0.388818 + 0.921315i \(0.372884\pi\)
\(548\) −12.3187 7.11218i −0.526227 0.303817i
\(549\) −0.932427 1.61501i −0.0397950 0.0689270i
\(550\) −1.61218 2.79238i −0.0687436 0.119067i
\(551\) 18.7957 + 10.8517i 0.800724 + 0.462298i
\(552\) 7.42909i 0.316203i
\(553\) −25.5466 20.7886i −1.08635 0.884021i
\(554\) 28.0433i 1.19144i
\(555\) −0.602365 + 1.04333i −0.0255690 + 0.0442868i
\(556\) 4.71455 + 8.16583i 0.199941 + 0.346308i
\(557\) −23.0713 + 13.3202i −0.977564 + 0.564397i −0.901534 0.432709i \(-0.857558\pi\)
−0.0760303 + 0.997106i \(0.524225\pi\)
\(558\) 2.00000 3.46410i 0.0846668 0.146647i
\(559\) −3.35951 + 18.0393i −0.142092 + 0.762979i
\(560\) 0.320246 + 0.840272i 0.0135329 + 0.0355080i
\(561\) 4.32025i 0.182401i
\(562\) 0.910786 1.57753i 0.0384192 0.0665440i
\(563\) −13.8386 23.9691i −0.583225 1.01018i −0.995094 0.0989328i \(-0.968457\pi\)
0.411869 0.911243i \(-0.364876\pi\)
\(564\) −8.18283 + 4.72436i −0.344559 + 0.198931i
\(565\) 4.57925 + 2.64383i 0.192650 + 0.111227i
\(566\) 8.98037i 0.377473i
\(567\) −2.47228 + 0.942242i −0.103826 + 0.0395704i
\(568\) −0.884484 −0.0371121
\(569\) 10.1949 17.6581i 0.427393 0.740266i −0.569248 0.822166i \(-0.692765\pi\)
0.996641 + 0.0818997i \(0.0260987\pi\)
\(570\) 1.79231 1.03479i 0.0750717 0.0433426i
\(571\) −19.1022 33.0859i −0.799401 1.38460i −0.920007 0.391903i \(-0.871817\pi\)
0.120606 0.992700i \(-0.461516\pi\)
\(572\) −1.54732 + 1.80851i −0.0646967 + 0.0756177i
\(573\) −10.4095 −0.434861
\(574\) −1.77481 1.44425i −0.0740789 0.0602819i
\(575\) −36.2873 −1.51328
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 9.83762 5.67975i 0.409546 0.236451i −0.281049 0.959693i \(-0.590682\pi\)
0.690594 + 0.723242i \(0.257349\pi\)
\(578\) 22.3711 12.9159i 0.930514 0.537232i
\(579\) 6.66786 + 3.84969i 0.277107 + 0.159988i
\(580\) 1.21140i 0.0503007i
\(581\) 42.5627 + 6.84567i 1.76580 + 0.284006i
\(582\) −16.1088 −0.667733
\(583\) 1.71505 + 0.990185i 0.0710301 + 0.0410093i
\(584\) −5.03479 8.72051i −0.208341 0.360857i
\(585\) 0.408063 + 1.15551i 0.0168713 + 0.0477743i
\(586\) 1.40097 2.42655i 0.0578736 0.100240i
\(587\) 37.2347i 1.53684i 0.639946 + 0.768420i \(0.278957\pi\)
−0.639946 + 0.768420i \(0.721043\pi\)
\(588\) −5.22436 + 4.65898i −0.215449 + 0.192133i
\(589\) −24.3569 −1.00361
\(590\) 1.14914 + 0.663459i 0.0473095 + 0.0273142i
\(591\) −7.77723 + 4.49018i −0.319912 + 0.184702i
\(592\) 3.06972 1.77230i 0.126165 0.0728412i
\(593\) −20.9674 12.1055i −0.861026 0.497114i 0.00332968 0.999994i \(-0.498940\pi\)
−0.864356 + 0.502881i \(0.832273\pi\)
\(594\) 0.660123 0.0270852
\(595\) 5.81043 + 0.934534i 0.238204 + 0.0383121i
\(596\) 8.10884i 0.332151i
\(597\) 10.2973 17.8354i 0.421440 0.729955i
\(598\) 8.91951 + 25.2573i 0.364746 + 1.03285i
\(599\) 3.23952 + 5.61102i 0.132363 + 0.229260i 0.924587 0.380971i \(-0.124410\pi\)
−0.792224 + 0.610231i \(0.791077\pi\)
\(600\) 4.23009 + 2.44224i 0.172693 + 0.0997041i
\(601\) 41.4354 1.69018 0.845092 0.534621i \(-0.179546\pi\)
0.845092 + 0.534621i \(0.179546\pi\)
\(602\) 8.49867 10.4438i 0.346380 0.425658i
\(603\) 7.44872i 0.303335i
\(604\) −4.59047 2.65031i −0.186783 0.107839i
\(605\) −3.10950 + 1.79527i −0.126419 + 0.0729881i
\(606\) 2.42077 1.39764i 0.0983373 0.0567750i
\(607\) 4.20139 7.27703i 0.170529 0.295365i −0.768076 0.640359i \(-0.778786\pi\)
0.938605 + 0.344994i \(0.112119\pi\)
\(608\) −6.08921 −0.246950
\(609\) 8.81180 3.35837i 0.357072 0.136088i
\(610\) 0.633820 0.0256626
\(611\) −22.1477 + 25.8863i −0.895999 + 1.04725i
\(612\) −3.27230 5.66780i −0.132275 0.229107i
\(613\) 40.6144 23.4487i 1.64040 0.947085i 0.659708 0.751522i \(-0.270680\pi\)
0.980691 0.195563i \(-0.0626534\pi\)
\(614\) 4.60884 7.98275i 0.185998 0.322158i
\(615\) 0.293944 0.0118529
\(616\) 1.63201 0.621996i 0.0657556 0.0250609i
\(617\) 32.6271i 1.31352i 0.754100 + 0.656760i \(0.228073\pi\)
−0.754100 + 0.656760i \(0.771927\pi\)
\(618\) 6.52804 + 3.76897i 0.262596 + 0.151610i
\(619\) −4.72995 + 2.73084i −0.190113 + 0.109762i −0.592035 0.805912i \(-0.701675\pi\)
0.401923 + 0.915674i \(0.368342\pi\)
\(620\) 0.679754 + 1.17737i 0.0272996 + 0.0472842i
\(621\) 3.71455 6.43378i 0.149060 0.258179i
\(622\) 11.4684i 0.459839i
\(623\) 7.44023 9.14312i 0.298087 0.366311i
\(624\) 0.660123 3.54461i 0.0264261 0.141898i
\(625\) −11.6403 + 20.1616i −0.465612 + 0.806464i
\(626\) −19.5412 + 11.2821i −0.781024 + 0.450924i
\(627\) −2.00982 3.48110i −0.0802643 0.139022i
\(628\) −11.5281 + 19.9673i −0.460022 + 0.796782i
\(629\) 23.1981i 0.924967i
\(630\) 0.142794 0.887820i 0.00568907 0.0353716i
\(631\) 41.8845i 1.66739i −0.552221 0.833697i \(-0.686220\pi\)
0.552221 0.833697i \(-0.313780\pi\)
\(632\) −10.7809 6.22436i −0.428842 0.247592i
\(633\) −7.69491 13.3280i −0.305845 0.529740i
\(634\) −6.31357 10.9354i −0.250744 0.434301i
\(635\) 4.23935 + 2.44759i 0.168233 + 0.0971295i
\(636\) −3.00000 −0.118958
\(637\) −12.1680 + 22.1120i −0.482115 + 0.876108i
\(638\) −2.35284 −0.0931497
\(639\) 0.765985 + 0.442242i 0.0303019 + 0.0174948i
\(640\) 0.169938 + 0.294342i 0.00671741 + 0.0116349i
\(641\) −3.30842 5.73035i −0.130675 0.226335i 0.793262 0.608880i \(-0.208381\pi\)
−0.923937 + 0.382545i \(0.875048\pi\)
\(642\) 3.23002 + 1.86485i 0.127479 + 0.0735999i
\(643\) 23.7427i 0.936319i −0.883644 0.468160i \(-0.844917\pi\)
0.883644 0.468160i \(-0.155083\pi\)
\(644\) 3.12123 19.4061i 0.122994 0.764708i
\(645\) 1.72971i 0.0681071i
\(646\) −19.9258 + 34.5124i −0.783968 + 1.35787i
\(647\) −19.5642 33.8863i −0.769150 1.33221i −0.938025 0.346569i \(-0.887347\pi\)
0.168875 0.985637i \(-0.445987\pi\)
\(648\) −0.866025 + 0.500000i −0.0340207 + 0.0196419i
\(649\) 1.28860 2.23192i 0.0505819 0.0876104i
\(650\) 17.3136 + 3.22436i 0.679094 + 0.126470i
\(651\) −6.67975 + 8.20859i −0.261800 + 0.321720i
\(652\) 13.5642i 0.531217i
\(653\) −2.75714 + 4.77551i −0.107895 + 0.186880i −0.914917 0.403641i \(-0.867744\pi\)
0.807022 + 0.590521i \(0.201078\pi\)
\(654\) 7.20473 + 12.4790i 0.281727 + 0.487966i
\(655\) 6.08496 3.51315i 0.237759 0.137270i
\(656\) −0.748985 0.432427i −0.0292429 0.0168834i
\(657\) 10.0696i 0.392852i
\(658\) 23.3599 8.90298i 0.910664 0.347074i
\(659\) −49.2217 −1.91741 −0.958703 0.284410i \(-0.908202\pi\)
−0.958703 + 0.284410i \(0.908202\pi\)
\(660\) −0.112180 + 0.194302i −0.00436661 + 0.00756319i
\(661\) −10.6731 + 6.16213i −0.415137 + 0.239679i −0.692994 0.720943i \(-0.743709\pi\)
0.277858 + 0.960622i \(0.410376\pi\)
\(662\) 13.4106 + 23.2278i 0.521218 + 0.902775i
\(663\) −17.9300 15.3405i −0.696343 0.595775i
\(664\) 16.2939 0.632328
\(665\) −5.11659 + 1.95005i −0.198413 + 0.0756196i
\(666\) −3.54461 −0.137351
\(667\) −13.2395 + 22.9315i −0.512636 + 0.887912i
\(668\) −13.5995 + 7.85170i −0.526182 + 0.303791i
\(669\) −15.6055 + 9.00982i −0.603342 + 0.348340i
\(670\) −2.19247 1.26582i −0.0847026 0.0489031i
\(671\) 1.23103i 0.0475235i
\(672\) −1.66994 + 2.05215i −0.0644193 + 0.0791633i
\(673\) 6.79527 0.261938 0.130969 0.991386i \(-0.458191\pi\)
0.130969 + 0.991386i \(0.458191\pi\)
\(674\) −8.50343 4.90946i −0.327540 0.189105i
\(675\) −2.44224 4.23009i −0.0940019 0.162816i
\(676\) −2.01145 12.8434i −0.0773635 0.493979i
\(677\) −8.34636 + 14.4563i −0.320777 + 0.555601i −0.980648 0.195777i \(-0.937277\pi\)
0.659872 + 0.751378i \(0.270611\pi\)
\(678\) 15.5576i 0.597485i
\(679\) 42.0792 + 6.76790i 1.61485 + 0.259728i
\(680\) 2.22436 0.0853003
\(681\) −0.200080 0.115516i −0.00766709 0.00442659i
\(682\) 2.28673 1.32025i 0.0875636 0.0505548i
\(683\) −18.8069 + 10.8582i −0.719627 + 0.415477i −0.814615 0.580002i \(-0.803052\pi\)
0.0949885 + 0.995478i \(0.469719\pi\)
\(684\) 5.27341 + 3.04461i 0.201634 + 0.116413i
\(685\) −4.83453 −0.184718
\(686\) 15.6044 9.97514i 0.595778 0.380853i
\(687\) 6.64049i 0.253351i
\(688\) 2.54461 4.40739i 0.0970122 0.168030i
\(689\) −10.1993 + 3.60186i −0.388564 + 0.137220i
\(690\) 1.26249 + 2.18669i 0.0480621 + 0.0832460i
\(691\) −40.6461 23.4670i −1.54625 0.892728i −0.998423 0.0561358i \(-0.982122\pi\)
−0.547827 0.836592i \(-0.684545\pi\)
\(692\) −13.6035 −0.517127
\(693\) −1.72436 0.277341i −0.0655030 0.0105353i
\(694\) 19.0959i 0.724870i
\(695\) 2.77538 + 1.60236i 0.105276 + 0.0607812i
\(696\) 3.08672 1.78212i 0.117002 0.0675510i
\(697\) −4.90181 + 2.83006i −0.185669 + 0.107196i
\(698\) −0.208066 + 0.360381i −0.00787541 + 0.0136406i
\(699\) −29.5183 −1.11648
\(700\) −10.0237 8.15679i −0.378859 0.308298i
\(701\) −7.32251 −0.276568 −0.138284 0.990393i \(-0.544159\pi\)
−0.138284 + 0.990393i \(0.544159\pi\)
\(702\) −2.34399 + 2.73966i −0.0884681 + 0.103402i
\(703\) 10.7919 + 18.6922i 0.407026 + 0.704989i
\(704\) 0.571683 0.330062i 0.0215461 0.0124397i
\(705\) −1.60570 + 2.78116i −0.0604742 + 0.104744i
\(706\) −16.4880 −0.620533
\(707\) −6.91070 + 2.63382i −0.259904 + 0.0990550i
\(708\) 3.90411i 0.146726i
\(709\) 5.75661 + 3.32358i 0.216194 + 0.124820i 0.604187 0.796843i \(-0.293498\pi\)
−0.387993 + 0.921662i \(0.626831\pi\)
\(710\) −0.260341 + 0.150308i −0.00977041 + 0.00564095i
\(711\) 6.22436 + 10.7809i 0.233432 + 0.404316i
\(712\) 2.22770 3.85848i 0.0834865 0.144603i
\(713\) 29.7164i 1.11289i
\(714\) 6.16660 + 16.1801i 0.230779 + 0.605526i
\(715\) −0.148106 + 0.795270i −0.00553884 + 0.0297414i
\(716\) 0.224361 0.388604i 0.00838475 0.0145228i
\(717\) −13.0109 + 7.51182i −0.485900 + 0.280534i
\(718\) 12.2362 + 21.1937i 0.456650 + 0.790942i
\(719\) 2.43576 4.21886i 0.0908386 0.157337i −0.817026 0.576601i \(-0.804379\pi\)
0.907864 + 0.419264i \(0.137712\pi\)
\(720\) 0.339877i 0.0126665i
\(721\) −15.4689 12.5879i −0.576094 0.468797i
\(722\) 18.0785i 0.672813i
\(723\) 3.85271 + 2.22436i 0.143284 + 0.0827249i
\(724\) −7.95206 13.7734i −0.295536 0.511883i
\(725\) 8.70473 + 15.0770i 0.323286 + 0.559947i
\(726\) −9.14890 5.28212i −0.339547 0.196038i
\(727\) −4.98931 −0.185043 −0.0925216 0.995711i \(-0.529493\pi\)
−0.0925216 + 0.995711i \(0.529493\pi\)
\(728\) −3.21358 + 8.98181i −0.119103 + 0.332888i
\(729\) 1.00000 0.0370370
\(730\) −2.96390 1.71121i −0.109699 0.0633347i
\(731\) −16.6535 28.8446i −0.615950 1.06686i
\(732\) 0.932427 + 1.61501i 0.0344635 + 0.0596925i
\(733\) −6.46582 3.73304i −0.238820 0.137883i 0.375814 0.926695i \(-0.377363\pi\)
−0.614634 + 0.788812i \(0.710696\pi\)
\(734\) 12.4880i 0.460940i
\(735\) −0.746010 + 2.25915i −0.0275170 + 0.0833301i
\(736\) 7.42909i 0.273840i
\(737\) −2.45854 + 4.25831i −0.0905614 + 0.156857i
\(738\) 0.432427 + 0.748985i 0.0159178 + 0.0275705i
\(739\) 1.26585 0.730840i 0.0465651 0.0268844i −0.476537 0.879155i \(-0.658108\pi\)
0.523102 + 0.852270i \(0.324775\pi\)
\(740\) 0.602365 1.04333i 0.0221434 0.0383535i
\(741\) 21.5839 + 4.01963i 0.792903 + 0.147665i
\(742\) 7.83654 + 1.26041i 0.287688 + 0.0462710i
\(743\) 5.67975i 0.208370i 0.994558 + 0.104185i \(0.0332234\pi\)
−0.994558 + 0.104185i \(0.966777\pi\)
\(744\) −2.00000 + 3.46410i −0.0733236 + 0.127000i
\(745\) 1.37800 + 2.38677i 0.0504862 + 0.0874446i
\(746\) −6.77913 + 3.91393i −0.248201 + 0.143299i
\(747\) −14.1110 8.14697i −0.516293 0.298082i
\(748\) 4.32025i 0.157964i
\(749\) −7.65390 6.22838i −0.279668 0.227580i
\(750\) 3.35951 0.122672
\(751\) −2.19806 + 3.80715i −0.0802083 + 0.138925i −0.903339 0.428927i \(-0.858892\pi\)
0.823131 + 0.567851i \(0.192225\pi\)
\(752\) 8.18283 4.72436i 0.298397 0.172280i
\(753\) 12.1981 + 21.1277i 0.444522 + 0.769935i
\(754\) 8.35453 9.76479i 0.304254 0.355613i
\(755\) −1.80156 −0.0655654
\(756\) 2.47228 0.942242i 0.0899160 0.0342690i
\(757\) 21.0326 0.764442 0.382221 0.924071i \(-0.375159\pi\)
0.382221 + 0.924071i \(0.375159\pi\)
\(758\) 4.33988 7.51689i 0.157631 0.273026i
\(759\) 4.24709 2.45206i 0.154160 0.0890040i
\(760\) −1.79231 + 1.03479i −0.0650140 + 0.0375358i
\(761\) 10.9130 + 6.30062i 0.395595 + 0.228397i 0.684582 0.728936i \(-0.259985\pi\)
−0.288986 + 0.957333i \(0.593318\pi\)
\(762\) 14.4028i 0.521758i
\(763\) −13.5772 35.6243i −0.491528 1.28968i
\(764\) 10.4095 0.376601
\(765\) −1.92635 1.11218i −0.0696474 0.0402110i
\(766\) −11.7112 20.2844i −0.423143 0.732906i
\(767\) 4.68736 + 13.2731i 0.169251 + 0.479265i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) 34.4398i 1.24193i −0.783838 0.620965i \(-0.786741\pi\)
0.783838 0.620965i \(-0.213259\pi\)
\(770\) 0.374668 0.460421i 0.0135021 0.0165924i
\(771\) 18.4487 0.664414
\(772\) −6.66786 3.84969i −0.239982 0.138553i
\(773\) 14.5471 8.39877i 0.523223 0.302083i −0.215030 0.976608i \(-0.568985\pi\)
0.738252 + 0.674525i \(0.235651\pi\)
\(774\) −4.40739 + 2.54461i −0.158420 + 0.0914640i
\(775\) −16.9203 9.76897i −0.607797 0.350912i
\(776\) 16.1088 0.578274
\(777\) 9.25915 + 1.48922i 0.332170 + 0.0534253i
\(778\) 30.1914i 1.08241i
\(779\) 2.63314 4.56073i 0.0943419 0.163405i
\(780\) −0.408063 1.15551i −0.0146110 0.0413738i
\(781\) 0.291934 + 0.505645i 0.0104462 + 0.0180934i
\(782\) −42.1066 24.3102i −1.50573 0.869332i
\(783\) −3.56424 −0.127375
\(784\) 5.22436 4.65898i 0.186584 0.166392i
\(785\) 7.83628i 0.279689i
\(786\) 17.9034 + 10.3365i 0.638594 + 0.368692i
\(787\) 31.9974 18.4737i 1.14058 0.658516i 0.194008 0.981000i \(-0.437851\pi\)
0.946575 + 0.322484i \(0.104518\pi\)
\(788\) 7.77723 4.49018i 0.277052 0.159956i
\(789\) 3.15031 5.45649i 0.112154 0.194256i
\(790\) −4.23103 −0.150533
\(791\) 6.53629 40.6392i 0.232404 1.44496i
\(792\) −0.660123 −0.0234565
\(793\) 5.10906 + 4.37119i 0.181428 + 0.155226i
\(794\) 4.24733 + 7.35659i 0.150732 + 0.261075i
\(795\) −0.883026 + 0.509815i −0.0313177 + 0.0180813i
\(796\) −10.2973 + 17.8354i −0.364977 + 0.632159i
\(797\) 38.7819 1.37373 0.686863 0.726787i \(-0.258987\pi\)
0.686863 + 0.726787i \(0.258987\pi\)
\(798\) −12.4960 10.1686i −0.442352 0.359965i
\(799\) 61.8382i 2.18768i
\(800\) −4.23009 2.44224i −0.149556 0.0863463i
\(801\) −3.85848 + 2.22770i −0.136333 + 0.0787118i
\(802\) −10.0859 17.4693i −0.356145 0.616861i
\(803\) −3.32358 + 5.75661i −0.117287 + 0.203146i
\(804\) 7.44872i 0.262696i
\(805\) −2.37914 6.24245i −0.0838536 0.220018i
\(806\) −2.64049 + 14.1784i −0.0930074 + 0.499414i
\(807\) 4.94759 8.56947i 0.174163 0.301660i
\(808\) −2.42077 + 1.39764i −0.0851626 + 0.0491686i
\(809\) −1.06090 1.83754i −0.0372993 0.0646043i 0.846773 0.531954i \(-0.178542\pi\)
−0.884072 + 0.467350i \(0.845209\pi\)
\(810\) −0.169938 + 0.294342i −0.00597103 + 0.0103421i
\(811\) 3.66680i 0.128759i −0.997926 0.0643793i \(-0.979493\pi\)
0.997926 0.0643793i \(-0.0205067\pi\)
\(812\) −8.81180 + 3.35837i −0.309234 + 0.117856i
\(813\) 12.6994i 0.445387i
\(814\) −2.02639 1.16994i −0.0710250 0.0410063i
\(815\) 2.30509 + 3.99253i 0.0807436 + 0.139852i
\(816\) 3.27230 + 5.66780i 0.114554 + 0.198413i
\(817\) 26.8375 + 15.4947i 0.938926 + 0.542089i
\(818\) −4.30062 −0.150367
\(819\) 7.27394 6.17169i 0.254172 0.215656i
\(820\) −0.293944 −0.0102650
\(821\) 18.6261 + 10.7538i 0.650057 + 0.375310i 0.788478 0.615063i \(-0.210869\pi\)
−0.138421 + 0.990373i \(0.544203\pi\)
\(822\) −7.11218 12.3187i −0.248066 0.429663i
\(823\) 17.9770 + 31.1371i 0.626640 + 1.08537i 0.988221 + 0.153032i \(0.0489037\pi\)
−0.361581 + 0.932341i \(0.617763\pi\)
\(824\) −6.52804 3.76897i −0.227415 0.131298i
\(825\) 3.22436i 0.112258i
\(826\) 1.64026 10.1983i 0.0570719 0.354843i
\(827\) 32.8778i 1.14327i 0.820507 + 0.571637i \(0.193691\pi\)
−0.820507 + 0.571637i \(0.806309\pi\)
\(828\) −3.71455 + 6.43378i −0.129089 + 0.223589i
\(829\) 4.91280 + 8.50921i 0.170628 + 0.295537i 0.938640 0.344899i \(-0.112087\pi\)
−0.768011 + 0.640436i \(0.778754\pi\)
\(830\) 4.79599 2.76897i 0.166471 0.0961123i
\(831\) −14.0216 + 24.2862i −0.486405 + 0.842479i
\(832\) −0.660123 + 3.54461i −0.0228857 + 0.122887i
\(833\) −9.31043 44.8562i −0.322587 1.55417i
\(834\) 9.42909i 0.326503i
\(835\) −2.66861 + 4.62217i −0.0923511 + 0.159957i
\(836\) 2.00982 + 3.48110i 0.0695109 + 0.120396i
\(837\) 3.46410 2.00000i 0.119737 0.0691301i
\(838\) 28.4900 + 16.4487i 0.984171 + 0.568212i
\(839\) 42.6008i 1.47074i 0.677663 + 0.735372i \(0.262993\pi\)
−0.677663 + 0.735372i \(0.737007\pi\)
\(840\) −0.142794 + 0.887820i −0.00492688 + 0.0306327i
\(841\) −16.2962 −0.561938
\(842\) 10.8615 18.8127i 0.374313 0.648328i
\(843\) 1.57753 0.910786i 0.0543330 0.0313691i
\(844\) 7.69491 + 13.3280i 0.264870 + 0.458768i
\(845\) −2.77465 3.43854i −0.0954509 0.118289i
\(846\) −9.44872 −0.324854
\(847\) 21.6794 + 17.6416i 0.744912 + 0.606173i
\(848\) 3.00000 0.103020
\(849\) −4.49018 + 7.77723i −0.154103 + 0.266914i
\(850\) −27.6843 + 15.9835i −0.949562 + 0.548230i
\(851\) −22.8052 + 13.1666i −0.781753 + 0.451345i
\(852\) −0.765985 0.442242i −0.0262422 0.0151510i
\(853\) 47.7490i 1.63489i −0.576005 0.817446i \(-0.695389\pi\)
0.576005 0.817446i \(-0.304611\pi\)
\(854\) −1.75714 4.61044i −0.0601282 0.157766i
\(855\) 2.06958 0.0707782
\(856\) −3.23002 1.86485i −0.110400 0.0637394i
\(857\) 3.44671 + 5.96988i 0.117737 + 0.203927i 0.918871 0.394559i \(-0.129103\pi\)
−0.801133 + 0.598486i \(0.795769\pi\)
\(858\) −2.24427 + 0.792557i −0.0766183 + 0.0270575i
\(859\) −14.3898 + 24.9239i −0.490975 + 0.850393i −0.999946 0.0103904i \(-0.996693\pi\)
0.508971 + 0.860783i \(0.330026\pi\)
\(860\) 1.72971i 0.0589825i
\(861\) −0.814901 2.13816i −0.0277717 0.0728683i
\(862\) 6.06291 0.206504
\(863\) −42.0668 24.2873i −1.43197 0.826748i −0.434699 0.900576i \(-0.643145\pi\)
−0.997271 + 0.0738274i \(0.976479\pi\)
\(864\) 0.866025 0.500000i 0.0294628 0.0170103i
\(865\) −4.00408 + 2.31176i −0.136143 + 0.0786021i
\(866\) −9.64680 5.56958i −0.327812 0.189262i
\(867\) 25.8319 0.877297
\(868\) 6.67975 8.20859i 0.226726 0.278618i
\(869\) 8.21769i 0.278766i
\(870\) 0.605701 1.04910i 0.0205352 0.0355680i
\(871\) −8.94308 25.3240i −0.303025 0.858072i
\(872\) −7.20473 12.4790i −0.243983 0.422591i
\(873\) −13.9507 8.05442i −0.472159 0.272601i
\(874\) 45.2373 1.53018
\(875\) −8.77564 1.41145i −0.296671 0.0477157i
\(876\) 10.0696i 0.340220i
\(877\) 7.99779 + 4.61753i 0.270066 + 0.155923i 0.628918 0.777472i \(-0.283498\pi\)
−0.358852 + 0.933395i \(0.616832\pi\)
\(878\) 10.0659 5.81156i 0.339709 0.196131i
\(879\) 2.42655 1.40097i 0.0818456 0.0472536i
\(880\) 0.112180 0.194302i 0.00378160 0.00654992i
\(881\) −14.9108 −0.502357 −0.251179 0.967941i \(-0.580818\pi\)
−0.251179 + 0.967941i \(0.580818\pi\)
\(882\) −6.85392 + 1.42261i −0.230783 + 0.0479018i
\(883\) −37.9171 −1.27601 −0.638006 0.770032i \(-0.720240\pi\)
−0.638006 + 0.770032i \(0.720240\pi\)
\(884\) 17.9300 + 15.3405i 0.603051 + 0.515956i
\(885\) 0.663459 + 1.14914i 0.0223019 + 0.0386281i
\(886\) −4.04701 + 2.33654i −0.135962 + 0.0784976i
\(887\) −5.56424 + 9.63754i −0.186829 + 0.323597i −0.944191 0.329398i \(-0.893154\pi\)
0.757362 + 0.652995i \(0.226488\pi\)
\(888\) 3.54461 0.118949
\(889\) 6.05113 37.6227i 0.202948 1.26182i
\(890\) 1.51429i 0.0507590i
\(891\) 0.571683 + 0.330062i 0.0191521 + 0.0110575i
\(892\) 15.6055 9.00982i 0.522509 0.301671i
\(893\) 28.7676 + 49.8270i 0.962672 + 1.66740i
\(894\) −4.05442 + 7.02247i −0.135600 + 0.234866i
\(895\) 0.152510i 0.00509785i
\(896\) 1.66994 2.05215i 0.0557887 0.0685574i
\(897\) −4.90411 + 26.3332i −0.163744 + 0.879240i
\(898\) −18.3136 + 31.7200i −0.611132 + 1.05851i
\(899\) −12.3469 + 7.12847i −0.411792 + 0.237748i
\(900\) 2.44224 + 4.23009i 0.0814081 + 0.141003i
\(901\) 9.81691 17.0034i 0.327049 0.566465i
\(902\) 0.570909i 0.0190092i
\(903\) 12.5820 4.79527i 0.418702 0.159577i
\(904\) 15.5576i 0.517437i
\(905\) −4.68125 2.70272i −0.155610 0.0898415i
\(906\) −2.65031 4.59047i −0.0880506 0.152508i
\(907\) 6.05442 + 10.4866i 0.201034 + 0.348201i 0.948862 0.315692i \(-0.102237\pi\)
−0.747828 + 0.663893i \(0.768903\pi\)
\(908\) 0.200080 + 0.115516i 0.00663989 + 0.00383354i
\(909\) 2.79527 0.0927133
\(910\) 0.580464 + 3.18983i 0.0192422 + 0.105742i
\(911\) −46.4354 −1.53847 −0.769236 0.638964i \(-0.779363\pi\)
−0.769236 + 0.638964i \(0.779363\pi\)
\(912\) −5.27341 3.04461i −0.174620 0.100817i
\(913\) −5.37800 9.31498i −0.177986 0.308281i
\(914\) −15.6686 27.1388i −0.518272 0.897673i
\(915\) 0.548905 + 0.316910i 0.0181462 + 0.0104767i
\(916\) 6.64049i 0.219408i
\(917\) −42.4242 34.5228i −1.40097 1.14004i
\(918\) 6.54461i 0.216004i
\(919\) −18.3898 + 31.8521i −0.606624 + 1.05070i 0.385168 + 0.922846i \(0.374143\pi\)
−0.991792 + 0.127858i \(0.959190\pi\)
\(920\) −1.26249 2.18669i −0.0416230 0.0720931i
\(921\) 7.98275 4.60884i 0.263041 0.151867i
\(922\) −0.300616 + 0.520681i −0.00990025 + 0.0171477i
\(923\) −3.13515 0.583868i −0.103195 0.0192183i
\(924\) 1.72436 + 0.277341i 0.0567273 + 0.00912386i
\(925\) 17.3136i 0.569267i
\(926\) 5.25066 9.09442i 0.172548 0.298861i
\(927\) 3.76897 + 6.52804i 0.123789 + 0.214409i
\(928\) −3.08672 + 1.78212i −0.101327 + 0.0585009i
\(929\) −3.58462 2.06958i −0.117608 0.0679008i 0.440042 0.897977i \(-0.354963\pi\)
−0.557650 + 0.830076i \(0.688297\pi\)
\(930\) 1.35951i 0.0445800i
\(931\) 28.3695 + 31.8122i 0.929773 + 1.04260i
\(932\) 29.5183 0.966904
\(933\) 5.73418 9.93188i 0.187728 0.325155i
\(934\) 23.5747 13.6109i 0.771387 0.445361i
\(935\) −0.734176 1.27163i −0.0240101 0.0415867i
\(936\) 2.34399 2.73966i 0.0766156 0.0895485i
\(937\) 45.2939 1.47969 0.739844 0.672778i \(-0.234899\pi\)
0.739844 + 0.672778i \(0.234899\pi\)
\(938\) −3.12947 + 19.4574i −0.102181 + 0.635307i
\(939\) −22.5642 −0.736356
\(940\) 1.60570 2.78116i 0.0523722 0.0907113i
\(941\) 41.4781 23.9474i 1.35215 0.780663i 0.363598 0.931556i \(-0.381548\pi\)
0.988550 + 0.150893i \(0.0482150\pi\)
\(942\) −19.9673 + 11.5281i −0.650569 + 0.375606i
\(943\) 5.56428 + 3.21254i 0.181198 + 0.104615i
\(944\) 3.90411i 0.127068i
\(945\) 0.567573 0.697477i 0.0184632 0.0226889i
\(946\) −3.35951 −0.109227
\(947\) −18.5809 10.7277i −0.603799 0.348603i 0.166736 0.986002i \(-0.446677\pi\)
−0.770534 + 0.637398i \(0.780011\pi\)
\(948\) −6.22436 10.7809i −0.202158 0.350148i
\(949\) −12.0897 34.2344i −0.392450 1.11129i
\(950\) 14.8713 25.7579i 0.482490 0.835697i
\(951\) 12.6271i 0.409463i
\(952\) −6.16660 16.1801i −0.199861 0.524401i
\(953\) 48.0433 1.55627 0.778137 0.628094i \(-0.216165\pi\)
0.778137 + 0.628094i \(0.216165\pi\)
\(954\) −2.59808 1.50000i −0.0841158 0.0485643i
\(955\) 3.06394 1.76897i 0.0991468 0.0572424i
\(956\) 13.0109 7.51182i 0.420801 0.242950i
\(957\) −2.03762 1.17642i −0.0658667 0.0380282i
\(958\) −28.8711 −0.932784
\(959\) 13.4028 + 35.1666i 0.432799 + 1.13559i
\(960\) 0.339877i 0.0109695i
\(961\) −7.50000 + 12.9904i −0.241935 + 0.419045i
\(962\) 12.0509 4.25573i 0.388536 0.137210i
\(963\) 1.86485 + 3.23002i 0.0600940 + 0.104086i
\(964\) −3.85271 2.22436i −0.124087 0.0716418i
\(965\) −2.61684 −0.0842392
\(966\) 12.4061 15.2456i 0.399160 0.490519i
\(967\) 4.91481i 0.158049i −0.996873 0.0790247i \(-0.974819\pi\)
0.996873 0.0790247i \(-0.0251806\pi\)
\(968\) 9.14890 + 5.28212i 0.294057 + 0.169774i
\(969\) −34.5124 + 19.9258i −1.10870 + 0.640107i
\(970\) 4.74151 2.73751i 0.152241 0.0878962i
\(971\) −15.0792 + 26.1180i −0.483915 + 0.838165i −0.999829 0.0184751i \(-0.994119\pi\)
0.515915 + 0.856640i \(0.327452\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 3.96150 24.6305i 0.127000 0.789617i
\(974\) 3.91746 0.125523
\(975\) 13.3818 + 11.4492i 0.428561 + 0.366667i
\(976\) −0.932427 1.61501i −0.0298462 0.0516952i
\(977\) 29.7995 17.2047i 0.953369 0.550428i 0.0592434 0.998244i \(-0.481131\pi\)
0.894126 + 0.447815i \(0.147798\pi\)
\(978\) −6.78212 + 11.7470i −0.216868 + 0.375627i
\(979\) −2.94111 −0.0939982
\(980\) 0.746010 2.25915i 0.0238304 0.0721660i
\(981\) 14.4095i 0.460059i
\(982\) 11.6222 + 6.71008i 0.370879 + 0.214127i
\(983\) −17.2772 + 9.97502i −0.551059 + 0.318154i −0.749549 0.661949i \(-0.769730\pi\)
0.198490 + 0.980103i \(0.436396\pi\)
\(984\) −0.432427 0.748985i −0.0137853 0.0238768i
\(985\) 1.52611 2.64330i 0.0486259 0.0842225i
\(986\) 23.3265i 0.742868i
\(987\) 24.6818 + 3.96975i 0.785629 + 0.126358i
\(988\) −21.5839 4.01963i −0.686674 0.127881i
\(989\) −18.9041 + 32.7429i −0.601116 + 1.04116i
\(990\) −0.194302 + 0.112180i −0.00617532 + 0.00356532i
\(991\) 11.9474 + 20.6935i 0.379521 + 0.657351i 0.990993 0.133916i \(-0.0427553\pi\)
−0.611471 + 0.791267i \(0.709422\pi\)
\(992\) 2.00000 3.46410i 0.0635001 0.109985i
\(993\) 26.8212i 0.851145i
\(994\) 1.81509 + 1.47703i 0.0575712 + 0.0468487i
\(995\) 6.99961i 0.221903i
\(996\) 14.1110 + 8.14697i 0.447123 + 0.258147i
\(997\) −3.07273 5.32212i −0.0973142 0.168553i 0.813258 0.581903i \(-0.197692\pi\)
−0.910572 + 0.413350i \(0.864359\pi\)
\(998\) −16.3910 28.3900i −0.518847 0.898669i
\(999\) −3.06972 1.77230i −0.0971216 0.0560732i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 546.2.bk.b.415.2 yes 12
3.2 odd 2 1638.2.dm.c.415.5 12
7.2 even 3 3822.2.c.k.883.5 6
7.4 even 3 inner 546.2.bk.b.25.5 yes 12
7.5 odd 6 3822.2.c.j.883.5 6
13.12 even 2 inner 546.2.bk.b.415.5 yes 12
21.11 odd 6 1638.2.dm.c.1117.2 12
39.38 odd 2 1638.2.dm.c.415.2 12
91.12 odd 6 3822.2.c.j.883.2 6
91.25 even 6 inner 546.2.bk.b.25.2 12
91.51 even 6 3822.2.c.k.883.2 6
273.116 odd 6 1638.2.dm.c.1117.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.bk.b.25.2 12 91.25 even 6 inner
546.2.bk.b.25.5 yes 12 7.4 even 3 inner
546.2.bk.b.415.2 yes 12 1.1 even 1 trivial
546.2.bk.b.415.5 yes 12 13.12 even 2 inner
1638.2.dm.c.415.2 12 39.38 odd 2
1638.2.dm.c.415.5 12 3.2 odd 2
1638.2.dm.c.1117.2 12 21.11 odd 6
1638.2.dm.c.1117.5 12 273.116 odd 6
3822.2.c.j.883.2 6 91.12 odd 6
3822.2.c.j.883.5 6 7.5 odd 6
3822.2.c.k.883.2 6 91.51 even 6
3822.2.c.k.883.5 6 7.2 even 3