Properties

Label 3822.2.c.k.883.5
Level $3822$
Weight $2$
Character 3822.883
Analytic conductor $30.519$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3822,2,Mod(883,3822)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3822, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3822.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6,-6,0,0,0,0,6,0,0,-6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.5188236525\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.9144576.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 12x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 883.5
Root \(-0.339877i\) of defining polynomial
Character \(\chi\) \(=\) 3822.883
Dual form 3822.2.c.k.883.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000 q^{3} -1.00000 q^{4} -0.339877i q^{5} +1.00000i q^{6} -1.00000i q^{8} +1.00000 q^{9} +0.339877 q^{10} -0.660123i q^{11} -1.00000 q^{12} +(0.660123 - 3.54461i) q^{13} -0.339877i q^{15} +1.00000 q^{16} -6.54461 q^{17} +1.00000i q^{18} +6.08921i q^{19} +0.339877i q^{20} +0.660123 q^{22} -7.42909 q^{23} -1.00000i q^{24} +4.88448 q^{25} +(3.54461 + 0.660123i) q^{26} +1.00000 q^{27} -3.56424 q^{29} +0.339877 q^{30} +4.00000i q^{31} +1.00000i q^{32} -0.660123i q^{33} -6.54461i q^{34} -1.00000 q^{36} +3.54461i q^{37} -6.08921 q^{38} +(0.660123 - 3.54461i) q^{39} -0.339877 q^{40} +0.864853i q^{41} -5.08921 q^{43} +0.660123i q^{44} -0.339877i q^{45} -7.42909i q^{46} +9.44872i q^{47} +1.00000 q^{48} +4.88448i q^{50} -6.54461 q^{51} +(-0.660123 + 3.54461i) q^{52} +3.00000 q^{53} +1.00000i q^{54} -0.224361 q^{55} +6.08921i q^{57} -3.56424i q^{58} -3.90411i q^{59} +0.339877i q^{60} +1.86485 q^{61} -4.00000 q^{62} -1.00000 q^{64} +(-1.20473 - 0.224361i) q^{65} +0.660123 q^{66} +7.44872i q^{67} +6.54461 q^{68} -7.42909 q^{69} -0.884484i q^{71} -1.00000i q^{72} +10.0696i q^{73} -3.54461 q^{74} +4.88448 q^{75} -6.08921i q^{76} +(3.54461 + 0.660123i) q^{78} -12.4487 q^{79} -0.339877i q^{80} +1.00000 q^{81} -0.864853 q^{82} +16.2939i q^{83} +2.22436i q^{85} -5.08921i q^{86} -3.56424 q^{87} -0.660123 q^{88} -4.45539i q^{89} +0.339877 q^{90} +7.42909 q^{92} +4.00000i q^{93} -9.44872 q^{94} +2.06958 q^{95} +1.00000i q^{96} +16.1088i q^{97} -0.660123i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - 6 q^{4} + 6 q^{9} - 6 q^{12} + 6 q^{13} + 6 q^{16} - 18 q^{17} + 6 q^{22} + 6 q^{25} + 6 q^{27} + 6 q^{29} - 6 q^{36} + 6 q^{38} + 6 q^{39} + 12 q^{43} + 6 q^{48} - 18 q^{51} - 6 q^{52}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3822\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(2549\) \(3433\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000 0.577350
\(4\) −1.00000 −0.500000
\(5\) 0.339877i 0.151998i −0.997108 0.0759988i \(-0.975785\pi\)
0.997108 0.0759988i \(-0.0242145\pi\)
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) 0.339877 0.107479
\(11\) 0.660123i 0.199035i −0.995036 0.0995173i \(-0.968270\pi\)
0.995036 0.0995173i \(-0.0317299\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0.660123 3.54461i 0.183085 0.983097i
\(14\) 0 0
\(15\) 0.339877i 0.0877558i
\(16\) 1.00000 0.250000
\(17\) −6.54461 −1.58730 −0.793650 0.608374i \(-0.791822\pi\)
−0.793650 + 0.608374i \(0.791822\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 6.08921i 1.39696i 0.715629 + 0.698481i \(0.246140\pi\)
−0.715629 + 0.698481i \(0.753860\pi\)
\(20\) 0.339877i 0.0759988i
\(21\) 0 0
\(22\) 0.660123 0.140739
\(23\) −7.42909 −1.54907 −0.774536 0.632530i \(-0.782017\pi\)
−0.774536 + 0.632530i \(0.782017\pi\)
\(24\) 1.00000i 0.204124i
\(25\) 4.88448 0.976897
\(26\) 3.54461 + 0.660123i 0.695155 + 0.129461i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.56424 −0.661862 −0.330931 0.943655i \(-0.607363\pi\)
−0.330931 + 0.943655i \(0.607363\pi\)
\(30\) 0.339877 0.0620527
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.660123i 0.114913i
\(34\) 6.54461i 1.12239i
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 3.54461i 0.582730i 0.956612 + 0.291365i \(0.0941094\pi\)
−0.956612 + 0.291365i \(0.905891\pi\)
\(38\) −6.08921 −0.987801
\(39\) 0.660123 3.54461i 0.105704 0.567591i
\(40\) −0.339877 −0.0537393
\(41\) 0.864853i 0.135067i 0.997717 + 0.0675337i \(0.0215130\pi\)
−0.997717 + 0.0675337i \(0.978487\pi\)
\(42\) 0 0
\(43\) −5.08921 −0.776098 −0.388049 0.921639i \(-0.626851\pi\)
−0.388049 + 0.921639i \(0.626851\pi\)
\(44\) 0.660123i 0.0995173i
\(45\) 0.339877i 0.0506659i
\(46\) 7.42909i 1.09536i
\(47\) 9.44872i 1.37824i 0.724648 + 0.689119i \(0.242002\pi\)
−0.724648 + 0.689119i \(0.757998\pi\)
\(48\) 1.00000 0.144338
\(49\) 0 0
\(50\) 4.88448i 0.690770i
\(51\) −6.54461 −0.916428
\(52\) −0.660123 + 3.54461i −0.0915426 + 0.491549i
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −0.224361 −0.0302528
\(56\) 0 0
\(57\) 6.08921i 0.806536i
\(58\) 3.56424i 0.468007i
\(59\) 3.90411i 0.508272i −0.967168 0.254136i \(-0.918209\pi\)
0.967168 0.254136i \(-0.0817911\pi\)
\(60\) 0.339877i 0.0438779i
\(61\) 1.86485 0.238770 0.119385 0.992848i \(-0.461908\pi\)
0.119385 + 0.992848i \(0.461908\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.20473 0.224361i −0.149428 0.0278285i
\(66\) 0.660123 0.0812555
\(67\) 7.44872i 0.910006i 0.890490 + 0.455003i \(0.150362\pi\)
−0.890490 + 0.455003i \(0.849638\pi\)
\(68\) 6.54461 0.793650
\(69\) −7.42909 −0.894357
\(70\) 0 0
\(71\) 0.884484i 0.104969i −0.998622 0.0524845i \(-0.983286\pi\)
0.998622 0.0524845i \(-0.0167140\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 10.0696i 1.17856i 0.807931 + 0.589278i \(0.200588\pi\)
−0.807931 + 0.589278i \(0.799412\pi\)
\(74\) −3.54461 −0.412052
\(75\) 4.88448 0.564012
\(76\) 6.08921i 0.698481i
\(77\) 0 0
\(78\) 3.54461 + 0.660123i 0.401348 + 0.0747442i
\(79\) −12.4487 −1.40059 −0.700295 0.713853i \(-0.746948\pi\)
−0.700295 + 0.713853i \(0.746948\pi\)
\(80\) 0.339877i 0.0379994i
\(81\) 1.00000 0.111111
\(82\) −0.864853 −0.0955070
\(83\) 16.2939i 1.78849i 0.447575 + 0.894246i \(0.352288\pi\)
−0.447575 + 0.894246i \(0.647712\pi\)
\(84\) 0 0
\(85\) 2.22436i 0.241266i
\(86\) 5.08921i 0.548784i
\(87\) −3.56424 −0.382126
\(88\) −0.660123 −0.0703694
\(89\) 4.45539i 0.472271i −0.971720 0.236135i \(-0.924119\pi\)
0.971720 0.236135i \(-0.0758809\pi\)
\(90\) 0.339877 0.0358262
\(91\) 0 0
\(92\) 7.42909 0.774536
\(93\) 4.00000i 0.414781i
\(94\) −9.44872 −0.974561
\(95\) 2.06958 0.212335
\(96\) 1.00000i 0.102062i
\(97\) 16.1088i 1.63561i 0.575499 + 0.817803i \(0.304808\pi\)
−0.575499 + 0.817803i \(0.695192\pi\)
\(98\) 0 0
\(99\) 0.660123i 0.0663449i
\(100\) −4.88448 −0.488448
\(101\) 2.79527 0.278140 0.139070 0.990283i \(-0.455589\pi\)
0.139070 + 0.990283i \(0.455589\pi\)
\(102\) 6.54461i 0.648013i
\(103\) −7.53793 −0.742735 −0.371367 0.928486i \(-0.621111\pi\)
−0.371367 + 0.928486i \(0.621111\pi\)
\(104\) −3.54461 0.660123i −0.347577 0.0647304i
\(105\) 0 0
\(106\) 3.00000i 0.291386i
\(107\) −3.72971 −0.360564 −0.180282 0.983615i \(-0.557701\pi\)
−0.180282 + 0.983615i \(0.557701\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 14.4095i 1.38018i 0.723725 + 0.690088i \(0.242428\pi\)
−0.723725 + 0.690088i \(0.757572\pi\)
\(110\) 0.224361i 0.0213919i
\(111\) 3.54461i 0.336439i
\(112\) 0 0
\(113\) 15.5576 1.46353 0.731766 0.681556i \(-0.238696\pi\)
0.731766 + 0.681556i \(0.238696\pi\)
\(114\) −6.08921 −0.570307
\(115\) 2.52498i 0.235455i
\(116\) 3.56424 0.330931
\(117\) 0.660123 3.54461i 0.0610284 0.327699i
\(118\) 3.90411 0.359403
\(119\) 0 0
\(120\) −0.339877 −0.0310264
\(121\) 10.5642 0.960385
\(122\) 1.86485i 0.168836i
\(123\) 0.864853i 0.0779812i
\(124\) 4.00000i 0.359211i
\(125\) 3.35951i 0.300483i
\(126\) 0 0
\(127\) 14.4028 1.27804 0.639020 0.769190i \(-0.279340\pi\)
0.639020 + 0.769190i \(0.279340\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −5.08921 −0.448080
\(130\) 0.224361 1.20473i 0.0196777 0.105662i
\(131\) −20.6731 −1.80622 −0.903108 0.429414i \(-0.858720\pi\)
−0.903108 + 0.429414i \(0.858720\pi\)
\(132\) 0.660123i 0.0574563i
\(133\) 0 0
\(134\) −7.44872 −0.643472
\(135\) 0.339877i 0.0292519i
\(136\) 6.54461i 0.561195i
\(137\) 14.2244i 1.21527i −0.794217 0.607635i \(-0.792119\pi\)
0.794217 0.607635i \(-0.207881\pi\)
\(138\) 7.42909i 0.632406i
\(139\) 9.42909 0.799765 0.399883 0.916566i \(-0.369051\pi\)
0.399883 + 0.916566i \(0.369051\pi\)
\(140\) 0 0
\(141\) 9.44872i 0.795726i
\(142\) 0.884484 0.0742242
\(143\) −2.33988 0.435763i −0.195670 0.0364403i
\(144\) 1.00000 0.0833333
\(145\) 1.21140i 0.100601i
\(146\) −10.0696 −0.833365
\(147\) 0 0
\(148\) 3.54461i 0.291365i
\(149\) 8.10884i 0.664302i −0.943226 0.332151i \(-0.892226\pi\)
0.943226 0.332151i \(-0.107774\pi\)
\(150\) 4.88448i 0.398816i
\(151\) 5.30062i 0.431358i −0.976464 0.215679i \(-0.930804\pi\)
0.976464 0.215679i \(-0.0691965\pi\)
\(152\) 6.08921 0.493900
\(153\) −6.54461 −0.529100
\(154\) 0 0
\(155\) 1.35951 0.109198
\(156\) −0.660123 + 3.54461i −0.0528521 + 0.283796i
\(157\) −23.0562 −1.84009 −0.920044 0.391815i \(-0.871847\pi\)
−0.920044 + 0.391815i \(0.871847\pi\)
\(158\) 12.4487i 0.990367i
\(159\) 3.00000 0.237915
\(160\) 0.339877 0.0268696
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 13.5642i 1.06243i −0.847236 0.531217i \(-0.821735\pi\)
0.847236 0.531217i \(-0.178265\pi\)
\(164\) 0.864853i 0.0675337i
\(165\) −0.224361 −0.0174664
\(166\) −16.2939 −1.26466
\(167\) 15.7034i 1.21517i 0.794256 + 0.607583i \(0.207861\pi\)
−0.794256 + 0.607583i \(0.792139\pi\)
\(168\) 0 0
\(169\) −12.1285 4.67975i −0.932960 0.359981i
\(170\) −2.22436 −0.170601
\(171\) 6.08921i 0.465654i
\(172\) 5.08921 0.388049
\(173\) 13.6035 1.03425 0.517127 0.855908i \(-0.327001\pi\)
0.517127 + 0.855908i \(0.327001\pi\)
\(174\) 3.56424i 0.270204i
\(175\) 0 0
\(176\) 0.660123i 0.0497587i
\(177\) 3.90411i 0.293451i
\(178\) 4.45539 0.333946
\(179\) 0.448721 0.0335390 0.0167695 0.999859i \(-0.494662\pi\)
0.0167695 + 0.999859i \(0.494662\pi\)
\(180\) 0.339877i 0.0253329i
\(181\) −15.9041 −1.18214 −0.591072 0.806619i \(-0.701295\pi\)
−0.591072 + 0.806619i \(0.701295\pi\)
\(182\) 0 0
\(183\) 1.86485 0.137854
\(184\) 7.42909i 0.547680i
\(185\) 1.20473 0.0885735
\(186\) −4.00000 −0.293294
\(187\) 4.32025i 0.315928i
\(188\) 9.44872i 0.689119i
\(189\) 0 0
\(190\) 2.06958i 0.150143i
\(191\) −10.4095 −0.753202 −0.376601 0.926376i \(-0.622907\pi\)
−0.376601 + 0.926376i \(0.622907\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 7.69938i 0.554214i −0.960839 0.277107i \(-0.910624\pi\)
0.960839 0.277107i \(-0.0893756\pi\)
\(194\) −16.1088 −1.15655
\(195\) −1.20473 0.224361i −0.0862725 0.0160668i
\(196\) 0 0
\(197\) 8.98037i 0.639825i −0.947447 0.319912i \(-0.896347\pi\)
0.947447 0.319912i \(-0.103653\pi\)
\(198\) 0.660123 0.0469129
\(199\) −20.5946 −1.45991 −0.729955 0.683495i \(-0.760459\pi\)
−0.729955 + 0.683495i \(0.760459\pi\)
\(200\) 4.88448i 0.345385i
\(201\) 7.44872i 0.525392i
\(202\) 2.79527i 0.196675i
\(203\) 0 0
\(204\) 6.54461 0.458214
\(205\) 0.293944 0.0205299
\(206\) 7.53793i 0.525193i
\(207\) −7.42909 −0.516357
\(208\) 0.660123 3.54461i 0.0457713 0.245774i
\(209\) 4.01963 0.278044
\(210\) 0 0
\(211\) 15.3898 1.05948 0.529740 0.848160i \(-0.322290\pi\)
0.529740 + 0.848160i \(0.322290\pi\)
\(212\) −3.00000 −0.206041
\(213\) 0.884484i 0.0606038i
\(214\) 3.72971i 0.254957i
\(215\) 1.72971i 0.117965i
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) −14.4095 −0.975932
\(219\) 10.0696i 0.680439i
\(220\) 0.224361 0.0151264
\(221\) −4.32025 + 23.1981i −0.290611 + 1.56047i
\(222\) −3.54461 −0.237898
\(223\) 18.0196i 1.20668i −0.797483 0.603342i \(-0.793835\pi\)
0.797483 0.603342i \(-0.206165\pi\)
\(224\) 0 0
\(225\) 4.88448 0.325632
\(226\) 15.5576i 1.03487i
\(227\) 0.231033i 0.0153342i 0.999971 + 0.00766709i \(0.00244053\pi\)
−0.999971 + 0.00766709i \(0.997559\pi\)
\(228\) 6.08921i 0.403268i
\(229\) 6.64049i 0.438816i 0.975633 + 0.219408i \(0.0704126\pi\)
−0.975633 + 0.219408i \(0.929587\pi\)
\(230\) −2.52498 −0.166492
\(231\) 0 0
\(232\) 3.56424i 0.234004i
\(233\) −29.5183 −1.93381 −0.966904 0.255140i \(-0.917879\pi\)
−0.966904 + 0.255140i \(0.917879\pi\)
\(234\) 3.54461 + 0.660123i 0.231718 + 0.0431536i
\(235\) 3.21140 0.209489
\(236\) 3.90411i 0.254136i
\(237\) −12.4487 −0.808631
\(238\) 0 0
\(239\) 15.0236i 0.971799i −0.874015 0.485900i \(-0.838492\pi\)
0.874015 0.485900i \(-0.161508\pi\)
\(240\) 0.339877i 0.0219390i
\(241\) 4.44872i 0.286567i −0.989682 0.143284i \(-0.954234\pi\)
0.989682 0.143284i \(-0.0457661\pi\)
\(242\) 10.5642i 0.679095i
\(243\) 1.00000 0.0641500
\(244\) −1.86485 −0.119385
\(245\) 0 0
\(246\) −0.864853 −0.0551410
\(247\) 21.5839 + 4.01963i 1.37335 + 0.255763i
\(248\) 4.00000 0.254000
\(249\) 16.2939i 1.03259i
\(250\) 3.35951 0.212474
\(251\) −24.3961 −1.53987 −0.769935 0.638123i \(-0.779711\pi\)
−0.769935 + 0.638123i \(0.779711\pi\)
\(252\) 0 0
\(253\) 4.90411i 0.308319i
\(254\) 14.4028i 0.903711i
\(255\) 2.22436i 0.139295i
\(256\) 1.00000 0.0625000
\(257\) 18.4487 1.15080 0.575400 0.817872i \(-0.304846\pi\)
0.575400 + 0.817872i \(0.304846\pi\)
\(258\) 5.08921i 0.316841i
\(259\) 0 0
\(260\) 1.20473 + 0.224361i 0.0747142 + 0.0139143i
\(261\) −3.56424 −0.220621
\(262\) 20.6731i 1.27719i
\(263\) −6.30062 −0.388513 −0.194256 0.980951i \(-0.562229\pi\)
−0.194256 + 0.980951i \(0.562229\pi\)
\(264\) −0.660123 −0.0406278
\(265\) 1.01963i 0.0626354i
\(266\) 0 0
\(267\) 4.45539i 0.272666i
\(268\) 7.44872i 0.455003i
\(269\) −9.89517 −0.603319 −0.301660 0.953416i \(-0.597541\pi\)
−0.301660 + 0.953416i \(0.597541\pi\)
\(270\) 0.339877 0.0206842
\(271\) 12.6994i 0.771433i −0.922617 0.385716i \(-0.873954\pi\)
0.922617 0.385716i \(-0.126046\pi\)
\(272\) −6.54461 −0.396825
\(273\) 0 0
\(274\) 14.2244 0.859325
\(275\) 3.22436i 0.194436i
\(276\) 7.42909 0.447179
\(277\) 28.0433 1.68496 0.842479 0.538730i \(-0.181096\pi\)
0.842479 + 0.538730i \(0.181096\pi\)
\(278\) 9.42909i 0.565519i
\(279\) 4.00000i 0.239474i
\(280\) 0 0
\(281\) 1.82157i 0.108666i 0.998523 + 0.0543330i \(0.0173032\pi\)
−0.998523 + 0.0543330i \(0.982697\pi\)
\(282\) −9.44872 −0.562663
\(283\) 8.98037 0.533828 0.266914 0.963720i \(-0.413996\pi\)
0.266914 + 0.963720i \(0.413996\pi\)
\(284\) 0.884484i 0.0524845i
\(285\) 2.06958 0.122592
\(286\) 0.435763 2.33988i 0.0257672 0.138360i
\(287\) 0 0
\(288\) 1.00000i 0.0589256i
\(289\) 25.8319 1.51952
\(290\) −1.21140 −0.0711360
\(291\) 16.1088i 0.944317i
\(292\) 10.0696i 0.589278i
\(293\) 2.80194i 0.163691i 0.996645 + 0.0818456i \(0.0260814\pi\)
−0.996645 + 0.0818456i \(0.973919\pi\)
\(294\) 0 0
\(295\) −1.32692 −0.0772562
\(296\) 3.54461 0.206026
\(297\) 0.660123i 0.0383042i
\(298\) 8.10884 0.469733
\(299\) −4.90411 + 26.3332i −0.283612 + 1.52289i
\(300\) −4.88448 −0.282006
\(301\) 0 0
\(302\) 5.30062 0.305016
\(303\) 2.79527 0.160584
\(304\) 6.08921i 0.349240i
\(305\) 0.633820i 0.0362925i
\(306\) 6.54461i 0.374130i
\(307\) 9.21769i 0.526081i 0.964785 + 0.263041i \(0.0847253\pi\)
−0.964785 + 0.263041i \(0.915275\pi\)
\(308\) 0 0
\(309\) −7.53793 −0.428818
\(310\) 1.35951i 0.0772148i
\(311\) −11.4684 −0.650311 −0.325155 0.945661i \(-0.605417\pi\)
−0.325155 + 0.945661i \(0.605417\pi\)
\(312\) −3.54461 0.660123i −0.200674 0.0373721i
\(313\) −22.5642 −1.27541 −0.637703 0.770282i \(-0.720115\pi\)
−0.637703 + 0.770282i \(0.720115\pi\)
\(314\) 23.0562i 1.30114i
\(315\) 0 0
\(316\) 12.4487 0.700295
\(317\) 12.6271i 0.709211i −0.935016 0.354606i \(-0.884615\pi\)
0.935016 0.354606i \(-0.115385\pi\)
\(318\) 3.00000i 0.168232i
\(319\) 2.35284i 0.131733i
\(320\) 0.339877i 0.0189997i
\(321\) −3.72971 −0.208172
\(322\) 0 0
\(323\) 39.8515i 2.21740i
\(324\) −1.00000 −0.0555556
\(325\) 3.22436 17.3136i 0.178855 0.960384i
\(326\) 13.5642 0.751254
\(327\) 14.4095i 0.796845i
\(328\) 0.864853 0.0477535
\(329\) 0 0
\(330\) 0.224361i 0.0123506i
\(331\) 26.8212i 1.47423i 0.675770 + 0.737113i \(0.263811\pi\)
−0.675770 + 0.737113i \(0.736189\pi\)
\(332\) 16.2939i 0.894246i
\(333\) 3.54461i 0.194243i
\(334\) −15.7034 −0.859252
\(335\) 2.53165 0.138319
\(336\) 0 0
\(337\) 9.81892 0.534871 0.267435 0.963576i \(-0.413824\pi\)
0.267435 + 0.963576i \(0.413824\pi\)
\(338\) 4.67975 12.1285i 0.254545 0.659702i
\(339\) 15.5576 0.844971
\(340\) 2.22436i 0.120633i
\(341\) 2.64049 0.142991
\(342\) −6.08921 −0.329267
\(343\) 0 0
\(344\) 5.08921i 0.274392i
\(345\) 2.52498i 0.135940i
\(346\) 13.6035i 0.731329i
\(347\) 19.0959 1.02512 0.512560 0.858651i \(-0.328697\pi\)
0.512560 + 0.858651i \(0.328697\pi\)
\(348\) 3.56424 0.191063
\(349\) 0.416132i 0.0222750i −0.999938 0.0111375i \(-0.996455\pi\)
0.999938 0.0111375i \(-0.00354525\pi\)
\(350\) 0 0
\(351\) 0.660123 3.54461i 0.0352348 0.189197i
\(352\) 0.660123 0.0351847
\(353\) 16.4880i 0.877567i 0.898593 + 0.438783i \(0.144590\pi\)
−0.898593 + 0.438783i \(0.855410\pi\)
\(354\) 3.90411 0.207501
\(355\) −0.300616 −0.0159550
\(356\) 4.45539i 0.236135i
\(357\) 0 0
\(358\) 0.448721i 0.0237157i
\(359\) 24.4724i 1.29160i 0.763506 + 0.645801i \(0.223477\pi\)
−0.763506 + 0.645801i \(0.776523\pi\)
\(360\) −0.339877 −0.0179131
\(361\) −18.0785 −0.951501
\(362\) 15.9041i 0.835902i
\(363\) 10.5642 0.554479
\(364\) 0 0
\(365\) 3.42242 0.179138
\(366\) 1.86485i 0.0974774i
\(367\) −12.4880 −0.651867 −0.325934 0.945393i \(-0.605679\pi\)
−0.325934 + 0.945393i \(0.605679\pi\)
\(368\) −7.42909 −0.387268
\(369\) 0.864853i 0.0450225i
\(370\) 1.20473i 0.0626309i
\(371\) 0 0
\(372\) 4.00000i 0.207390i
\(373\) −7.82786 −0.405311 −0.202656 0.979250i \(-0.564957\pi\)
−0.202656 + 0.979250i \(0.564957\pi\)
\(374\) −4.32025 −0.223395
\(375\) 3.35951i 0.173484i
\(376\) 9.44872 0.487281
\(377\) −2.35284 + 12.6338i −0.121177 + 0.650675i
\(378\) 0 0
\(379\) 8.67975i 0.445849i 0.974836 + 0.222925i \(0.0715603\pi\)
−0.974836 + 0.222925i \(0.928440\pi\)
\(380\) −2.06958 −0.106167
\(381\) 14.4028 0.737877
\(382\) 10.4095i 0.532594i
\(383\) 23.4224i 1.19683i −0.801186 0.598415i \(-0.795797\pi\)
0.801186 0.598415i \(-0.204203\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 0 0
\(386\) 7.69938 0.391888
\(387\) −5.08921 −0.258699
\(388\) 16.1088i 0.817803i
\(389\) −30.1914 −1.53076 −0.765382 0.643576i \(-0.777450\pi\)
−0.765382 + 0.643576i \(0.777450\pi\)
\(390\) 0.224361 1.20473i 0.0113609 0.0610039i
\(391\) 48.6205 2.45884
\(392\) 0 0
\(393\) −20.6731 −1.04282
\(394\) 8.98037 0.452424
\(395\) 4.23103i 0.212886i
\(396\) 0.660123i 0.0331724i
\(397\) 8.49465i 0.426334i 0.977016 + 0.213167i \(0.0683779\pi\)
−0.977016 + 0.213167i \(0.931622\pi\)
\(398\) 20.5946i 1.03231i
\(399\) 0 0
\(400\) 4.88448 0.244224
\(401\) 20.1718i 1.00733i −0.863899 0.503665i \(-0.831985\pi\)
0.863899 0.503665i \(-0.168015\pi\)
\(402\) −7.44872 −0.371508
\(403\) 14.1784 + 2.64049i 0.706278 + 0.131532i
\(404\) −2.79527 −0.139070
\(405\) 0.339877i 0.0168886i
\(406\) 0 0
\(407\) 2.33988 0.115983
\(408\) 6.54461i 0.324006i
\(409\) 4.30062i 0.212652i 0.994331 + 0.106326i \(0.0339087\pi\)
−0.994331 + 0.106326i \(0.966091\pi\)
\(410\) 0.293944i 0.0145168i
\(411\) 14.2244i 0.701636i
\(412\) 7.53793 0.371367
\(413\) 0 0
\(414\) 7.42909i 0.365120i
\(415\) 5.53793 0.271847
\(416\) 3.54461 + 0.660123i 0.173789 + 0.0323652i
\(417\) 9.42909 0.461745
\(418\) 4.01963i 0.196607i
\(419\) −32.8974 −1.60715 −0.803573 0.595207i \(-0.797070\pi\)
−0.803573 + 0.595207i \(0.797070\pi\)
\(420\) 0 0
\(421\) 21.7230i 1.05872i 0.848399 + 0.529358i \(0.177567\pi\)
−0.848399 + 0.529358i \(0.822433\pi\)
\(422\) 15.3898i 0.749165i
\(423\) 9.44872i 0.459413i
\(424\) 3.00000i 0.145693i
\(425\) −31.9670 −1.55063
\(426\) 0.884484 0.0428534
\(427\) 0 0
\(428\) 3.72971 0.180282
\(429\) −2.33988 0.435763i −0.112970 0.0210388i
\(430\) −1.72971 −0.0834138
\(431\) 6.06291i 0.292040i −0.989282 0.146020i \(-0.953354\pi\)
0.989282 0.146020i \(-0.0466464\pi\)
\(432\) 1.00000 0.0481125
\(433\) 11.1392 0.535314 0.267657 0.963514i \(-0.413751\pi\)
0.267657 + 0.963514i \(0.413751\pi\)
\(434\) 0 0
\(435\) 1.21140i 0.0580823i
\(436\) 14.4095i 0.690088i
\(437\) 45.2373i 2.16399i
\(438\) −10.0696 −0.481143
\(439\) 11.6231 0.554742 0.277371 0.960763i \(-0.410537\pi\)
0.277371 + 0.960763i \(0.410537\pi\)
\(440\) 0.224361i 0.0106960i
\(441\) 0 0
\(442\) −23.1981 4.32025i −1.10342 0.205493i
\(443\) −4.67308 −0.222025 −0.111012 0.993819i \(-0.535409\pi\)
−0.111012 + 0.993819i \(0.535409\pi\)
\(444\) 3.54461i 0.168220i
\(445\) −1.51429 −0.0717840
\(446\) 18.0196 0.853254
\(447\) 8.10884i 0.383535i
\(448\) 0 0
\(449\) 36.6271i 1.72854i −0.503026 0.864271i \(-0.667780\pi\)
0.503026 0.864271i \(-0.332220\pi\)
\(450\) 4.88448i 0.230257i
\(451\) 0.570909 0.0268831
\(452\) −15.5576 −0.731766
\(453\) 5.30062i 0.249045i
\(454\) −0.231033 −0.0108429
\(455\) 0 0
\(456\) 6.08921 0.285154
\(457\) 31.3372i 1.46589i −0.680286 0.732947i \(-0.738144\pi\)
0.680286 0.732947i \(-0.261856\pi\)
\(458\) −6.64049 −0.310290
\(459\) −6.54461 −0.305476
\(460\) 2.52498i 0.117728i
\(461\) 0.601231i 0.0280021i −0.999902 0.0140011i \(-0.995543\pi\)
0.999902 0.0140011i \(-0.00445682\pi\)
\(462\) 0 0
\(463\) 10.5013i 0.488038i 0.969770 + 0.244019i \(0.0784659\pi\)
−0.969770 + 0.244019i \(0.921534\pi\)
\(464\) −3.56424 −0.165466
\(465\) 1.35951 0.0630457
\(466\) 29.5183i 1.36741i
\(467\) 27.2217 1.25967 0.629835 0.776729i \(-0.283122\pi\)
0.629835 + 0.776729i \(0.283122\pi\)
\(468\) −0.660123 + 3.54461i −0.0305142 + 0.163850i
\(469\) 0 0
\(470\) 3.21140i 0.148131i
\(471\) −23.0562 −1.06238
\(472\) −3.90411 −0.179701
\(473\) 3.35951i 0.154470i
\(474\) 12.4487i 0.571789i
\(475\) 29.7427i 1.36469i
\(476\) 0 0
\(477\) 3.00000 0.137361
\(478\) 15.0236 0.687166
\(479\) 28.8711i 1.31916i 0.751636 + 0.659578i \(0.229265\pi\)
−0.751636 + 0.659578i \(0.770735\pi\)
\(480\) 0.339877 0.0155132
\(481\) 12.5642 + 2.33988i 0.572880 + 0.106689i
\(482\) 4.44872 0.202634
\(483\) 0 0
\(484\) −10.5642 −0.480193
\(485\) 5.47502 0.248608
\(486\) 1.00000i 0.0453609i
\(487\) 3.91746i 0.177517i −0.996053 0.0887585i \(-0.971710\pi\)
0.996053 0.0887585i \(-0.0282899\pi\)
\(488\) 1.86485i 0.0844179i
\(489\) 13.5642i 0.613396i
\(490\) 0 0
\(491\) −13.4202 −0.605643 −0.302821 0.953047i \(-0.597929\pi\)
−0.302821 + 0.953047i \(0.597929\pi\)
\(492\) 0.864853i 0.0389906i
\(493\) 23.3265 1.05057
\(494\) −4.01963 + 21.5839i −0.180852 + 0.971104i
\(495\) −0.224361 −0.0100843
\(496\) 4.00000i 0.179605i
\(497\) 0 0
\(498\) −16.2939 −0.730149
\(499\) 32.7819i 1.46752i −0.679408 0.733760i \(-0.737764\pi\)
0.679408 0.733760i \(-0.262236\pi\)
\(500\) 3.35951i 0.150242i
\(501\) 15.7034i 0.701576i
\(502\) 24.3961i 1.08885i
\(503\) 22.8582 1.01920 0.509598 0.860413i \(-0.329794\pi\)
0.509598 + 0.860413i \(0.329794\pi\)
\(504\) 0 0
\(505\) 0.950048i 0.0422766i
\(506\) −4.90411 −0.218014
\(507\) −12.1285 4.67975i −0.538644 0.207835i
\(508\) −14.4028 −0.639020
\(509\) 32.8448i 1.45582i −0.685672 0.727911i \(-0.740491\pi\)
0.685672 0.727911i \(-0.259509\pi\)
\(510\) −2.22436 −0.0984963
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 6.08921i 0.268845i
\(514\) 18.4487i 0.813738i
\(515\) 2.56197i 0.112894i
\(516\) 5.08921 0.224040
\(517\) 6.23732 0.274317
\(518\) 0 0
\(519\) 13.6035 0.597127
\(520\) −0.224361 + 1.20473i −0.00983886 + 0.0528309i
\(521\) 2.81892 0.123499 0.0617496 0.998092i \(-0.480332\pi\)
0.0617496 + 0.998092i \(0.480332\pi\)
\(522\) 3.56424i 0.156002i
\(523\) −5.62980 −0.246174 −0.123087 0.992396i \(-0.539279\pi\)
−0.123087 + 0.992396i \(0.539279\pi\)
\(524\) 20.6731 0.903108
\(525\) 0 0
\(526\) 6.30062i 0.274720i
\(527\) 26.1784i 1.14035i
\(528\) 0.660123i 0.0287282i
\(529\) 32.1914 1.39963
\(530\) 1.01963 0.0442899
\(531\) 3.90411i 0.169424i
\(532\) 0 0
\(533\) 3.06556 + 0.570909i 0.132784 + 0.0247288i
\(534\) 4.45539 0.192804
\(535\) 1.26764i 0.0548049i
\(536\) 7.44872 0.321736
\(537\) 0.448721 0.0193637
\(538\) 9.89517i 0.426611i
\(539\) 0 0
\(540\) 0.339877i 0.0146260i
\(541\) 24.7123i 1.06247i 0.847226 + 0.531233i \(0.178271\pi\)
−0.847226 + 0.531233i \(0.821729\pi\)
\(542\) 12.6994 0.545485
\(543\) −15.9041 −0.682511
\(544\) 6.54461i 0.280598i
\(545\) 4.89744 0.209783
\(546\) 0 0
\(547\) 18.1874 0.777636 0.388818 0.921315i \(-0.372884\pi\)
0.388818 + 0.921315i \(0.372884\pi\)
\(548\) 14.2244i 0.607635i
\(549\) 1.86485 0.0795900
\(550\) 3.22436 0.137487
\(551\) 21.7034i 0.924596i
\(552\) 7.42909i 0.316203i
\(553\) 0 0
\(554\) 28.0433i 1.19144i
\(555\) 1.20473 0.0511379
\(556\) −9.42909 −0.399883
\(557\) 26.6405i 1.12879i −0.825504 0.564397i \(-0.809109\pi\)
0.825504 0.564397i \(-0.190891\pi\)
\(558\) −4.00000 −0.169334
\(559\) −3.35951 + 18.0393i −0.142092 + 0.762979i
\(560\) 0 0
\(561\) 4.32025i 0.182401i
\(562\) −1.82157 −0.0768384
\(563\) 27.6771 1.16645 0.583225 0.812310i \(-0.301790\pi\)
0.583225 + 0.812310i \(0.301790\pi\)
\(564\) 9.44872i 0.397863i
\(565\) 5.28766i 0.222453i
\(566\) 8.98037i 0.377473i
\(567\) 0 0
\(568\) −0.884484 −0.0371121
\(569\) −20.3898 −0.854786 −0.427393 0.904066i \(-0.640568\pi\)
−0.427393 + 0.904066i \(0.640568\pi\)
\(570\) 2.06958i 0.0866853i
\(571\) 38.2043 1.59880 0.799401 0.600798i \(-0.205150\pi\)
0.799401 + 0.600798i \(0.205150\pi\)
\(572\) 2.33988 + 0.435763i 0.0978352 + 0.0182201i
\(573\) −10.4095 −0.434861
\(574\) 0 0
\(575\) −36.2873 −1.51328
\(576\) −1.00000 −0.0416667
\(577\) 11.3595i 0.472902i 0.971643 + 0.236451i \(0.0759844\pi\)
−0.971643 + 0.236451i \(0.924016\pi\)
\(578\) 25.8319i 1.07446i
\(579\) 7.69938i 0.319975i
\(580\) 1.21140i 0.0503007i
\(581\) 0 0
\(582\) −16.1088 −0.667733
\(583\) 1.98037i 0.0820185i
\(584\) 10.0696 0.416682
\(585\) −1.20473 0.224361i −0.0498095 0.00927617i
\(586\) −2.80194 −0.115747
\(587\) 37.2347i 1.53684i 0.639946 + 0.768420i \(0.278957\pi\)
−0.639946 + 0.768420i \(0.721043\pi\)
\(588\) 0 0
\(589\) −24.3569 −1.00361
\(590\) 1.32692i 0.0546284i
\(591\) 8.98037i 0.369403i
\(592\) 3.54461i 0.145682i
\(593\) 24.2110i 0.994227i 0.867685 + 0.497114i \(0.165607\pi\)
−0.867685 + 0.497114i \(0.834393\pi\)
\(594\) 0.660123 0.0270852
\(595\) 0 0
\(596\) 8.10884i 0.332151i
\(597\) −20.5946 −0.842879
\(598\) −26.3332 4.90411i −1.07684 0.200544i
\(599\) −6.47904 −0.264727 −0.132363 0.991201i \(-0.542257\pi\)
−0.132363 + 0.991201i \(0.542257\pi\)
\(600\) 4.88448i 0.199408i
\(601\) 41.4354 1.69018 0.845092 0.534621i \(-0.179546\pi\)
0.845092 + 0.534621i \(0.179546\pi\)
\(602\) 0 0
\(603\) 7.44872i 0.303335i
\(604\) 5.30062i 0.215679i
\(605\) 3.59054i 0.145976i
\(606\) 2.79527i 0.113550i
\(607\) −8.40279 −0.341059 −0.170529 0.985353i \(-0.554548\pi\)
−0.170529 + 0.985353i \(0.554548\pi\)
\(608\) −6.08921 −0.246950
\(609\) 0 0
\(610\) 0.633820 0.0256626
\(611\) 33.4920 + 6.23732i 1.35494 + 0.252335i
\(612\) 6.54461 0.264550
\(613\) 46.8974i 1.89417i 0.320983 + 0.947085i \(0.395987\pi\)
−0.320983 + 0.947085i \(0.604013\pi\)
\(614\) −9.21769 −0.371996
\(615\) 0.293944 0.0118529
\(616\) 0 0
\(617\) 32.6271i 1.31352i 0.754100 + 0.656760i \(0.228073\pi\)
−0.754100 + 0.656760i \(0.771927\pi\)
\(618\) 7.53793i 0.303220i
\(619\) 5.46168i 0.219523i −0.993958 0.109762i \(-0.964991\pi\)
0.993958 0.109762i \(-0.0350088\pi\)
\(620\) −1.35951 −0.0545991
\(621\) −7.42909 −0.298119
\(622\) 11.4684i 0.459839i
\(623\) 0 0
\(624\) 0.660123 3.54461i 0.0264261 0.141898i
\(625\) 23.2806 0.931224
\(626\) 22.5642i 0.901848i
\(627\) 4.01963 0.160529
\(628\) 23.0562 0.920044
\(629\) 23.1981i 0.924967i
\(630\) 0 0
\(631\) 41.8845i 1.66739i −0.552221 0.833697i \(-0.686220\pi\)
0.552221 0.833697i \(-0.313780\pi\)
\(632\) 12.4487i 0.495184i
\(633\) 15.3898 0.611691
\(634\) 12.6271 0.501488
\(635\) 4.89517i 0.194259i
\(636\) −3.00000 −0.118958
\(637\) 0 0
\(638\) −2.35284 −0.0931497
\(639\) 0.884484i 0.0349896i
\(640\) −0.339877 −0.0134348
\(641\) 6.61684 0.261350 0.130675 0.991425i \(-0.458286\pi\)
0.130675 + 0.991425i \(0.458286\pi\)
\(642\) 3.72971i 0.147200i
\(643\) 23.7427i 0.936319i −0.883644 0.468160i \(-0.844917\pi\)
0.883644 0.468160i \(-0.155083\pi\)
\(644\) 0 0
\(645\) 1.72971i 0.0681071i
\(646\) 39.8515 1.56794
\(647\) 39.1285 1.53830 0.769150 0.639069i \(-0.220680\pi\)
0.769150 + 0.639069i \(0.220680\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −2.57720 −0.101164
\(650\) 17.3136 + 3.22436i 0.679094 + 0.126470i
\(651\) 0 0
\(652\) 13.5642i 0.531217i
\(653\) 5.51429 0.215791 0.107895 0.994162i \(-0.465589\pi\)
0.107895 + 0.994162i \(0.465589\pi\)
\(654\) −14.4095 −0.563454
\(655\) 7.02630i 0.274540i
\(656\) 0.864853i 0.0337668i
\(657\) 10.0696i 0.392852i
\(658\) 0 0
\(659\) −49.2217 −1.91741 −0.958703 0.284410i \(-0.908202\pi\)
−0.958703 + 0.284410i \(0.908202\pi\)
\(660\) 0.224361 0.00873322
\(661\) 12.3243i 0.479358i −0.970852 0.239679i \(-0.922958\pi\)
0.970852 0.239679i \(-0.0770423\pi\)
\(662\) −26.8212 −1.04244
\(663\) −4.32025 + 23.1981i −0.167784 + 0.900938i
\(664\) 16.2939 0.632328
\(665\) 0 0
\(666\) −3.54461 −0.137351
\(667\) 26.4790 1.02527
\(668\) 15.7034i 0.607583i
\(669\) 18.0196i 0.696679i
\(670\) 2.53165i 0.0978061i
\(671\) 1.23103i 0.0475235i
\(672\) 0 0
\(673\) 6.79527 0.261938 0.130969 0.991386i \(-0.458191\pi\)
0.130969 + 0.991386i \(0.458191\pi\)
\(674\) 9.81892i 0.378211i
\(675\) 4.88448 0.188004
\(676\) 12.1285 + 4.67975i 0.466480 + 0.179991i
\(677\) 16.6927 0.641553 0.320777 0.947155i \(-0.396056\pi\)
0.320777 + 0.947155i \(0.396056\pi\)
\(678\) 15.5576i 0.597485i
\(679\) 0 0
\(680\) 2.22436 0.0853003
\(681\) 0.231033i 0.00885319i
\(682\) 2.64049i 0.101110i
\(683\) 21.7164i 0.830954i −0.909604 0.415477i \(-0.863615\pi\)
0.909604 0.415477i \(-0.136385\pi\)
\(684\) 6.08921i 0.232827i
\(685\) −4.83453 −0.184718
\(686\) 0 0
\(687\) 6.64049i 0.253351i
\(688\) −5.08921 −0.194024
\(689\) 1.98037 10.6338i 0.0754461 0.405116i
\(690\) −2.52498 −0.0961242
\(691\) 46.9341i 1.78546i 0.450597 + 0.892728i \(0.351211\pi\)
−0.450597 + 0.892728i \(0.648789\pi\)
\(692\) −13.6035 −0.517127
\(693\) 0 0
\(694\) 19.0959i 0.724870i
\(695\) 3.20473i 0.121562i
\(696\) 3.56424i 0.135102i
\(697\) 5.66012i 0.214392i
\(698\) 0.416132 0.0157508
\(699\) −29.5183 −1.11648
\(700\) 0 0
\(701\) −7.32251 −0.276568 −0.138284 0.990393i \(-0.544159\pi\)
−0.138284 + 0.990393i \(0.544159\pi\)
\(702\) 3.54461 + 0.660123i 0.133783 + 0.0249147i
\(703\) −21.5839 −0.814051
\(704\) 0.660123i 0.0248793i
\(705\) 3.21140 0.120948
\(706\) −16.4880 −0.620533
\(707\) 0 0
\(708\) 3.90411i 0.146726i
\(709\) 6.64716i 0.249640i −0.992179 0.124820i \(-0.960165\pi\)
0.992179 0.124820i \(-0.0398353\pi\)
\(710\) 0.300616i 0.0112819i
\(711\) −12.4487 −0.466864
\(712\) −4.45539 −0.166973
\(713\) 29.7164i 1.11289i
\(714\) 0 0
\(715\) −0.148106 + 0.795270i −0.00553884 + 0.0297414i
\(716\) −0.448721 −0.0167695
\(717\) 15.0236i 0.561068i
\(718\) −24.4724 −0.913301
\(719\) −4.87153 −0.181677 −0.0908386 0.995866i \(-0.528955\pi\)
−0.0908386 + 0.995866i \(0.528955\pi\)
\(720\) 0.339877i 0.0126665i
\(721\) 0 0
\(722\) 18.0785i 0.672813i
\(723\) 4.44872i 0.165450i
\(724\) 15.9041 0.591072
\(725\) −17.4095 −0.646571
\(726\) 10.5642i 0.392076i
\(727\) −4.98931 −0.185043 −0.0925216 0.995711i \(-0.529493\pi\)
−0.0925216 + 0.995711i \(0.529493\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 3.42242i 0.126669i
\(731\) 33.3069 1.23190
\(732\) −1.86485 −0.0689270
\(733\) 7.46608i 0.275766i 0.990449 + 0.137883i \(0.0440298\pi\)
−0.990449 + 0.137883i \(0.955970\pi\)
\(734\) 12.4880i 0.460940i
\(735\) 0 0
\(736\) 7.42909i 0.273840i
\(737\) 4.91707 0.181123
\(738\) −0.864853 −0.0318357
\(739\) 1.46168i 0.0537688i 0.999639 + 0.0268844i \(0.00855860\pi\)
−0.999639 + 0.0268844i \(0.991441\pi\)
\(740\) −1.20473 −0.0442868
\(741\) 21.5839 + 4.01963i 0.792903 + 0.147665i
\(742\) 0 0
\(743\) 5.67975i 0.208370i 0.994558 + 0.104185i \(0.0332234\pi\)
−0.994558 + 0.104185i \(0.966777\pi\)
\(744\) 4.00000 0.146647
\(745\) −2.75601 −0.100972
\(746\) 7.82786i 0.286598i
\(747\) 16.2939i 0.596164i
\(748\) 4.32025i 0.157964i
\(749\) 0 0
\(750\) 3.35951 0.122672
\(751\) 4.39612 0.160417 0.0802083 0.996778i \(-0.474441\pi\)
0.0802083 + 0.996778i \(0.474441\pi\)
\(752\) 9.44872i 0.344559i
\(753\) −24.3961 −0.889044
\(754\) −12.6338 2.35284i −0.460097 0.0856852i
\(755\) −1.80156 −0.0655654
\(756\) 0 0
\(757\) 21.0326 0.764442 0.382221 0.924071i \(-0.375159\pi\)
0.382221 + 0.924071i \(0.375159\pi\)
\(758\) −8.67975 −0.315263
\(759\) 4.90411i 0.178008i
\(760\) 2.06958i 0.0750717i
\(761\) 12.6012i 0.456794i −0.973568 0.228397i \(-0.926652\pi\)
0.973568 0.228397i \(-0.0733485\pi\)
\(762\) 14.4028i 0.521758i
\(763\) 0 0
\(764\) 10.4095 0.376601
\(765\) 2.22436i 0.0804219i
\(766\) 23.4224 0.846286
\(767\) −13.8386 2.57720i −0.499681 0.0930572i
\(768\) 1.00000 0.0360844
\(769\) 34.4398i 1.24193i −0.783838 0.620965i \(-0.786741\pi\)
0.783838 0.620965i \(-0.213259\pi\)
\(770\) 0 0
\(771\) 18.4487 0.664414
\(772\) 7.69938i 0.277107i
\(773\) 16.7975i 0.604165i 0.953282 + 0.302083i \(0.0976819\pi\)
−0.953282 + 0.302083i \(0.902318\pi\)
\(774\) 5.08921i 0.182928i
\(775\) 19.5379i 0.701823i
\(776\) 16.1088 0.578274
\(777\) 0 0
\(778\) 30.1914i 1.08241i
\(779\) −5.26627 −0.188684
\(780\) 1.20473 + 0.224361i 0.0431363 + 0.00803340i
\(781\) −0.583868 −0.0208924
\(782\) 48.6205i 1.73866i
\(783\) −3.56424 −0.127375
\(784\) 0 0
\(785\) 7.83628i 0.279689i
\(786\) 20.6731i 0.737384i
\(787\) 36.9474i 1.31703i 0.752567 + 0.658516i \(0.228816\pi\)
−0.752567 + 0.658516i \(0.771184\pi\)
\(788\) 8.98037i 0.319912i
\(789\) −6.30062 −0.224308
\(790\) −4.23103 −0.150533
\(791\) 0 0
\(792\) −0.660123 −0.0234565
\(793\) 1.23103 6.61017i 0.0437152 0.234734i
\(794\) −8.49465 −0.301464
\(795\) 1.01963i 0.0361626i
\(796\) 20.5946 0.729955
\(797\) 38.7819 1.37373 0.686863 0.726787i \(-0.258987\pi\)
0.686863 + 0.726787i \(0.258987\pi\)
\(798\) 0 0
\(799\) 61.8382i 2.18768i
\(800\) 4.88448i 0.172693i
\(801\) 4.45539i 0.157424i
\(802\) 20.1718 0.712289
\(803\) 6.64716 0.234573
\(804\) 7.44872i 0.262696i
\(805\) 0 0
\(806\) −2.64049 + 14.1784i −0.0930074 + 0.499414i
\(807\) −9.89517 −0.348327
\(808\) 2.79527i 0.0983373i
\(809\) 2.12180 0.0745986 0.0372993 0.999304i \(-0.488125\pi\)
0.0372993 + 0.999304i \(0.488125\pi\)
\(810\) 0.339877 0.0119421
\(811\) 3.66680i 0.128759i −0.997926 0.0643793i \(-0.979493\pi\)
0.997926 0.0643793i \(-0.0205067\pi\)
\(812\) 0 0
\(813\) 12.6994i 0.445387i
\(814\) 2.33988i 0.0820126i
\(815\) −4.61017 −0.161487
\(816\) −6.54461 −0.229107
\(817\) 30.9893i 1.08418i
\(818\) −4.30062 −0.150367
\(819\) 0 0
\(820\) −0.293944 −0.0102650
\(821\) 21.5076i 0.750621i −0.926899 0.375310i \(-0.877536\pi\)
0.926899 0.375310i \(-0.122464\pi\)
\(822\) 14.2244 0.496132
\(823\) −35.9541 −1.25328 −0.626640 0.779309i \(-0.715570\pi\)
−0.626640 + 0.779309i \(0.715570\pi\)
\(824\) 7.53793i 0.262596i
\(825\) 3.22436i 0.112258i
\(826\) 0 0
\(827\) 32.8778i 1.14327i 0.820507 + 0.571637i \(0.193691\pi\)
−0.820507 + 0.571637i \(0.806309\pi\)
\(828\) 7.42909 0.258179
\(829\) −9.82559 −0.341257 −0.170628 0.985335i \(-0.554580\pi\)
−0.170628 + 0.985335i \(0.554580\pi\)
\(830\) 5.53793i 0.192225i
\(831\) 28.0433 0.972811
\(832\) −0.660123 + 3.54461i −0.0228857 + 0.122887i
\(833\) 0 0
\(834\) 9.42909i 0.326503i
\(835\) 5.33722 0.184702
\(836\) −4.01963 −0.139022
\(837\) 4.00000i 0.138260i
\(838\) 32.8974i 1.13642i
\(839\) 42.6008i 1.47074i 0.677663 + 0.735372i \(0.262993\pi\)
−0.677663 + 0.735372i \(0.737007\pi\)
\(840\) 0 0
\(841\) −16.2962 −0.561938
\(842\) −21.7230 −0.748625
\(843\) 1.82157i 0.0627383i
\(844\) −15.3898 −0.529740
\(845\) −1.59054 + 4.12219i −0.0547162 + 0.141808i
\(846\) −9.44872 −0.324854
\(847\) 0 0
\(848\) 3.00000 0.103020
\(849\) 8.98037 0.308205
\(850\) 31.9670i 1.09646i
\(851\) 26.3332i 0.902691i
\(852\) 0.884484i 0.0303019i
\(853\) 47.7490i 1.63489i −0.576005 0.817446i \(-0.695389\pi\)
0.576005 0.817446i \(-0.304611\pi\)
\(854\) 0 0
\(855\) 2.06958 0.0707782
\(856\) 3.72971i 0.127479i
\(857\) −6.89342 −0.235475 −0.117737 0.993045i \(-0.537564\pi\)
−0.117737 + 0.993045i \(0.537564\pi\)
\(858\) 0.435763 2.33988i 0.0148767 0.0798821i
\(859\) 28.7797 0.981949 0.490975 0.871174i \(-0.336641\pi\)
0.490975 + 0.871174i \(0.336641\pi\)
\(860\) 1.72971i 0.0589825i
\(861\) 0 0
\(862\) 6.06291 0.206504
\(863\) 48.5745i 1.65350i 0.562572 + 0.826748i \(0.309812\pi\)
−0.562572 + 0.826748i \(0.690188\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 4.62351i 0.157204i
\(866\) 11.1392i 0.378524i
\(867\) 25.8319 0.877297
\(868\) 0 0
\(869\) 8.21769i 0.278766i
\(870\) −1.21140 −0.0410704
\(871\) 26.4028 + 4.91707i 0.894624 + 0.166609i
\(872\) 14.4095 0.487966
\(873\) 16.1088i 0.545202i
\(874\) 45.2373 1.53018
\(875\) 0 0
\(876\) 10.0696i 0.340220i
\(877\) 9.23505i 0.311846i −0.987769 0.155923i \(-0.950165\pi\)
0.987769 0.155923i \(-0.0498351\pi\)
\(878\) 11.6231i 0.392262i
\(879\) 2.80194i 0.0945072i
\(880\) −0.224361 −0.00756319
\(881\) −14.9108 −0.502357 −0.251179 0.967941i \(-0.580818\pi\)
−0.251179 + 0.967941i \(0.580818\pi\)
\(882\) 0 0
\(883\) −37.9171 −1.27601 −0.638006 0.770032i \(-0.720240\pi\)
−0.638006 + 0.770032i \(0.720240\pi\)
\(884\) 4.32025 23.1981i 0.145306 0.780235i
\(885\) −1.32692 −0.0446039
\(886\) 4.67308i 0.156995i
\(887\) 11.1285 0.373658 0.186829 0.982392i \(-0.440179\pi\)
0.186829 + 0.982392i \(0.440179\pi\)
\(888\) 3.54461 0.118949
\(889\) 0 0
\(890\) 1.51429i 0.0507590i
\(891\) 0.660123i 0.0221150i
\(892\) 18.0196i 0.603342i
\(893\) −57.5353 −1.92534
\(894\) 8.10884 0.271200
\(895\) 0.152510i 0.00509785i
\(896\) 0 0
\(897\) −4.90411 + 26.3332i −0.163744 + 0.879240i
\(898\) 36.6271 1.22226
\(899\) 14.2569i 0.475496i
\(900\) −4.88448 −0.162816
\(901\) −19.6338 −0.654097
\(902\) 0.570909i 0.0190092i
\(903\) 0 0
\(904\) 15.5576i 0.517437i
\(905\) 5.40544i 0.179683i
\(906\) 5.30062 0.176101
\(907\) −12.1088 −0.402068 −0.201034 0.979584i \(-0.564430\pi\)
−0.201034 + 0.979584i \(0.564430\pi\)
\(908\) 0.231033i 0.00766709i
\(909\) 2.79527 0.0927133
\(910\) 0 0
\(911\) −46.4354 −1.53847 −0.769236 0.638964i \(-0.779363\pi\)
−0.769236 + 0.638964i \(0.779363\pi\)
\(912\) 6.08921i 0.201634i
\(913\) 10.7560 0.355972
\(914\) 31.3372 1.03654
\(915\) 0.633820i 0.0209535i
\(916\) 6.64049i 0.219408i
\(917\) 0 0
\(918\) 6.54461i 0.216004i
\(919\) 36.7797 1.21325 0.606624 0.794989i \(-0.292523\pi\)
0.606624 + 0.794989i \(0.292523\pi\)
\(920\) 2.52498 0.0832460
\(921\) 9.21769i 0.303733i
\(922\) 0.601231 0.0198005
\(923\) −3.13515 0.583868i −0.103195 0.0192183i
\(924\) 0 0
\(925\) 17.3136i 0.569267i
\(926\) −10.5013 −0.345095
\(927\) −7.53793 −0.247578
\(928\) 3.56424i 0.117002i
\(929\) 4.13917i 0.135802i 0.997692 + 0.0679008i \(0.0216301\pi\)
−0.997692 + 0.0679008i \(0.978370\pi\)
\(930\) 1.35951i 0.0445800i
\(931\) 0 0
\(932\) 29.5183 0.966904
\(933\) −11.4684 −0.375457
\(934\) 27.2217i 0.890721i
\(935\) 1.46835 0.0480202
\(936\) −3.54461 0.660123i −0.115859 0.0215768i
\(937\) 45.2939 1.47969 0.739844 0.672778i \(-0.234899\pi\)
0.739844 + 0.672778i \(0.234899\pi\)
\(938\) 0 0
\(939\) −22.5642 −0.736356
\(940\) −3.21140 −0.104744
\(941\) 47.8948i 1.56133i 0.624953 + 0.780663i \(0.285118\pi\)
−0.624953 + 0.780663i \(0.714882\pi\)
\(942\) 23.0562i 0.751213i
\(943\) 6.42507i 0.209229i
\(944\) 3.90411i 0.127068i
\(945\) 0 0
\(946\) −3.35951 −0.109227
\(947\) 21.4554i 0.697207i 0.937270 + 0.348603i \(0.113344\pi\)
−0.937270 + 0.348603i \(0.886656\pi\)
\(948\) 12.4487 0.404316
\(949\) 35.6927 + 6.64716i 1.15863 + 0.215776i
\(950\) −29.7427 −0.964979
\(951\) 12.6271i 0.409463i
\(952\) 0 0
\(953\) 48.0433 1.55627 0.778137 0.628094i \(-0.216165\pi\)
0.778137 + 0.628094i \(0.216165\pi\)
\(954\) 3.00000i 0.0971286i
\(955\) 3.53793i 0.114485i
\(956\) 15.0236i 0.485900i
\(957\) 2.35284i 0.0760564i
\(958\) −28.8711 −0.932784
\(959\) 0 0
\(960\) 0.339877i 0.0109695i
\(961\) 15.0000 0.483871
\(962\) −2.33988 + 12.5642i −0.0754407 + 0.405087i
\(963\) −3.72971 −0.120188
\(964\) 4.44872i 0.143284i
\(965\) −2.61684 −0.0842392
\(966\) 0 0
\(967\) 4.91481i 0.158049i −0.996873 0.0790247i \(-0.974819\pi\)
0.996873 0.0790247i \(-0.0251806\pi\)
\(968\) 10.5642i 0.339547i
\(969\) 39.8515i 1.28021i
\(970\) 5.47502i 0.175792i
\(971\) 30.1584 0.967829 0.483915 0.875115i \(-0.339214\pi\)
0.483915 + 0.875115i \(0.339214\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) 3.91746 0.125523
\(975\) 3.22436 17.3136i 0.103262 0.554478i
\(976\) 1.86485 0.0596925
\(977\) 34.4095i 1.10086i 0.834883 + 0.550428i \(0.185535\pi\)
−0.834883 + 0.550428i \(0.814465\pi\)
\(978\) 13.5642 0.433736
\(979\) −2.94111 −0.0939982
\(980\) 0 0
\(981\) 14.4095i 0.460059i
\(982\) 13.4202i 0.428254i
\(983\) 19.9500i 0.636308i −0.948039 0.318154i \(-0.896937\pi\)
0.948039 0.318154i \(-0.103063\pi\)
\(984\) 0.864853 0.0275705
\(985\) −3.05222 −0.0972518
\(986\) 23.3265i 0.742868i
\(987\) 0 0
\(988\) −21.5839 4.01963i −0.686674 0.127881i
\(989\) 37.8082 1.20223
\(990\) 0.224361i 0.00713065i
\(991\) −23.8948 −0.759043 −0.379521 0.925183i \(-0.623911\pi\)
−0.379521 + 0.925183i \(0.623911\pi\)
\(992\) −4.00000 −0.127000
\(993\) 26.8212i 0.851145i
\(994\) 0 0
\(995\) 6.99961i 0.221903i
\(996\) 16.2939i 0.516293i
\(997\) 6.14545 0.194628 0.0973142 0.995254i \(-0.468975\pi\)
0.0973142 + 0.995254i \(0.468975\pi\)
\(998\) 32.7819 1.03769
\(999\) 3.54461i 0.112146i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3822.2.c.k.883.5 6
7.2 even 3 546.2.bk.b.25.5 yes 12
7.4 even 3 546.2.bk.b.415.2 yes 12
7.6 odd 2 3822.2.c.j.883.5 6
13.12 even 2 inner 3822.2.c.k.883.2 6
21.2 odd 6 1638.2.dm.c.1117.2 12
21.11 odd 6 1638.2.dm.c.415.5 12
91.25 even 6 546.2.bk.b.415.5 yes 12
91.51 even 6 546.2.bk.b.25.2 12
91.90 odd 2 3822.2.c.j.883.2 6
273.116 odd 6 1638.2.dm.c.415.2 12
273.233 odd 6 1638.2.dm.c.1117.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.bk.b.25.2 12 91.51 even 6
546.2.bk.b.25.5 yes 12 7.2 even 3
546.2.bk.b.415.2 yes 12 7.4 even 3
546.2.bk.b.415.5 yes 12 91.25 even 6
1638.2.dm.c.415.2 12 273.116 odd 6
1638.2.dm.c.415.5 12 21.11 odd 6
1638.2.dm.c.1117.2 12 21.2 odd 6
1638.2.dm.c.1117.5 12 273.233 odd 6
3822.2.c.j.883.2 6 91.90 odd 2
3822.2.c.j.883.5 6 7.6 odd 2
3822.2.c.k.883.2 6 13.12 even 2 inner
3822.2.c.k.883.5 6 1.1 even 1 trivial