Properties

Label 1638.2.dm.c.415.5
Level $1638$
Weight $2$
Character 1638.415
Analytic conductor $13.079$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(415,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.415"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.dm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.5
Root \(-1.75780 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1638.415
Dual form 1638.2.dm.c.1117.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-0.294342 - 0.169938i) q^{5} +(0.420136 - 2.61218i) q^{7} +1.00000i q^{8} +(-0.169938 - 0.294342i) q^{10} +(0.571683 - 0.330062i) q^{11} +(0.660123 - 3.54461i) q^{13} +(1.66994 - 2.05215i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-3.27230 - 5.66780i) q^{17} +(-5.27341 - 3.04461i) q^{19} -0.339877i q^{20} +0.660123 q^{22} +(-3.71455 + 6.43378i) q^{23} +(-2.44224 - 4.23009i) q^{25} +(2.34399 - 2.73966i) q^{26} +(2.47228 - 0.942242i) q^{28} +3.56424 q^{29} +(3.46410 - 2.00000i) q^{31} +(-0.866025 + 0.500000i) q^{32} -6.54461i q^{34} +(-0.567573 + 0.697477i) q^{35} +(-3.06972 - 1.77230i) q^{37} +(-3.04461 - 5.27341i) q^{38} +(0.169938 - 0.294342i) q^{40} -0.864853i q^{41} -5.08921 q^{43} +(0.571683 + 0.330062i) q^{44} +(-6.43378 + 3.71455i) q^{46} +(8.18283 + 4.72436i) q^{47} +(-6.64697 - 2.19494i) q^{49} -4.88448i q^{50} +(3.39978 - 1.20062i) q^{52} +(1.50000 + 2.59808i) q^{53} -0.224361 q^{55} +(2.61218 + 0.420136i) q^{56} +(3.08672 + 1.78212i) q^{58} +(3.38106 - 1.95206i) q^{59} +(-0.932427 + 1.61501i) q^{61} +4.00000 q^{62} -1.00000 q^{64} +(-0.796667 + 0.931146i) q^{65} +(6.45078 - 3.72436i) q^{67} +(3.27230 - 5.66780i) q^{68} +(-0.840272 + 0.320246i) q^{70} +0.884484i q^{71} +(8.72051 - 5.03479i) q^{73} +(-1.77230 - 3.06972i) q^{74} -6.08921i q^{76} +(-0.621996 - 1.63201i) q^{77} +(6.22436 - 10.7809i) q^{79} +(0.294342 - 0.169938i) q^{80} +(0.432427 - 0.748985i) q^{82} -16.2939i q^{83} +2.22436i q^{85} +(-4.40739 - 2.54461i) q^{86} +(0.330062 + 0.571683i) q^{88} +(-3.85848 - 2.22770i) q^{89} +(-8.98181 - 3.21358i) q^{91} -7.42909 q^{92} +(4.72436 + 8.18283i) q^{94} +(1.03479 + 1.79231i) q^{95} +16.1088i q^{97} +(-4.65898 - 5.22436i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} + 12 q^{13} + 18 q^{14} - 6 q^{16} - 18 q^{17} + 12 q^{22} - 6 q^{25} - 12 q^{29} - 24 q^{35} + 6 q^{38} + 24 q^{43} - 18 q^{49} + 6 q^{52} + 18 q^{53} + 48 q^{55} + 6 q^{56} + 6 q^{61} + 48 q^{62}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.294342 0.169938i −0.131634 0.0759988i 0.432737 0.901520i \(-0.357548\pi\)
−0.564371 + 0.825521i \(0.690881\pi\)
\(6\) 0 0
\(7\) 0.420136 2.61218i 0.158796 0.987311i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.169938 0.294342i −0.0537393 0.0930791i
\(11\) 0.571683 0.330062i 0.172369 0.0995173i −0.411333 0.911485i \(-0.634937\pi\)
0.583702 + 0.811968i \(0.301603\pi\)
\(12\) 0 0
\(13\) 0.660123 3.54461i 0.183085 0.983097i
\(14\) 1.66994 2.05215i 0.446310 0.548459i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.27230 5.66780i −0.793650 1.37464i −0.923693 0.383134i \(-0.874845\pi\)
0.130043 0.991508i \(-0.458489\pi\)
\(18\) 0 0
\(19\) −5.27341 3.04461i −1.20980 0.698481i −0.247088 0.968993i \(-0.579474\pi\)
−0.962716 + 0.270512i \(0.912807\pi\)
\(20\) 0.339877i 0.0759988i
\(21\) 0 0
\(22\) 0.660123 0.140739
\(23\) −3.71455 + 6.43378i −0.774536 + 1.34154i 0.160519 + 0.987033i \(0.448683\pi\)
−0.935055 + 0.354503i \(0.884650\pi\)
\(24\) 0 0
\(25\) −2.44224 4.23009i −0.488448 0.846017i
\(26\) 2.34399 2.73966i 0.459694 0.537291i
\(27\) 0 0
\(28\) 2.47228 0.942242i 0.467217 0.178067i
\(29\) 3.56424 0.661862 0.330931 0.943655i \(-0.392637\pi\)
0.330931 + 0.943655i \(0.392637\pi\)
\(30\) 0 0
\(31\) 3.46410 2.00000i 0.622171 0.359211i −0.155543 0.987829i \(-0.549713\pi\)
0.777714 + 0.628619i \(0.216379\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 6.54461i 1.12239i
\(35\) −0.567573 + 0.697477i −0.0959374 + 0.117895i
\(36\) 0 0
\(37\) −3.06972 1.77230i −0.504659 0.291365i 0.225977 0.974133i \(-0.427443\pi\)
−0.730635 + 0.682768i \(0.760776\pi\)
\(38\) −3.04461 5.27341i −0.493900 0.855461i
\(39\) 0 0
\(40\) 0.169938 0.294342i 0.0268696 0.0465396i
\(41\) 0.864853i 0.135067i −0.997717 0.0675337i \(-0.978487\pi\)
0.997717 0.0675337i \(-0.0215130\pi\)
\(42\) 0 0
\(43\) −5.08921 −0.776098 −0.388049 0.921639i \(-0.626851\pi\)
−0.388049 + 0.921639i \(0.626851\pi\)
\(44\) 0.571683 + 0.330062i 0.0861845 + 0.0497587i
\(45\) 0 0
\(46\) −6.43378 + 3.71455i −0.948609 + 0.547680i
\(47\) 8.18283 + 4.72436i 1.19359 + 0.689119i 0.959119 0.283004i \(-0.0913311\pi\)
0.234470 + 0.972123i \(0.424664\pi\)
\(48\) 0 0
\(49\) −6.64697 2.19494i −0.949567 0.313563i
\(50\) 4.88448i 0.690770i
\(51\) 0 0
\(52\) 3.39978 1.20062i 0.471465 0.166496i
\(53\) 1.50000 + 2.59808i 0.206041 + 0.356873i 0.950464 0.310835i \(-0.100609\pi\)
−0.744423 + 0.667708i \(0.767275\pi\)
\(54\) 0 0
\(55\) −0.224361 −0.0302528
\(56\) 2.61218 + 0.420136i 0.349067 + 0.0561430i
\(57\) 0 0
\(58\) 3.08672 + 1.78212i 0.405306 + 0.234004i
\(59\) 3.38106 1.95206i 0.440177 0.254136i −0.263496 0.964661i \(-0.584876\pi\)
0.703673 + 0.710524i \(0.251542\pi\)
\(60\) 0 0
\(61\) −0.932427 + 1.61501i −0.119385 + 0.206781i −0.919524 0.393034i \(-0.871426\pi\)
0.800139 + 0.599814i \(0.204759\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −0.796667 + 0.931146i −0.0988144 + 0.115495i
\(66\) 0 0
\(67\) 6.45078 3.72436i 0.788088 0.455003i −0.0512007 0.998688i \(-0.516305\pi\)
0.839289 + 0.543685i \(0.182971\pi\)
\(68\) 3.27230 5.66780i 0.396825 0.687321i
\(69\) 0 0
\(70\) −0.840272 + 0.320246i −0.100432 + 0.0382767i
\(71\) 0.884484i 0.104969i 0.998622 + 0.0524845i \(0.0167140\pi\)
−0.998622 + 0.0524845i \(0.983286\pi\)
\(72\) 0 0
\(73\) 8.72051 5.03479i 1.02066 0.589278i 0.106364 0.994327i \(-0.466079\pi\)
0.914295 + 0.405049i \(0.132746\pi\)
\(74\) −1.77230 3.06972i −0.206026 0.356848i
\(75\) 0 0
\(76\) 6.08921i 0.698481i
\(77\) −0.621996 1.63201i −0.0708830 0.185985i
\(78\) 0 0
\(79\) 6.22436 10.7809i 0.700295 1.21295i −0.268067 0.963400i \(-0.586385\pi\)
0.968363 0.249547i \(-0.0802817\pi\)
\(80\) 0.294342 0.169938i 0.0329084 0.0189997i
\(81\) 0 0
\(82\) 0.432427 0.748985i 0.0477535 0.0827115i
\(83\) 16.2939i 1.78849i −0.447575 0.894246i \(-0.647712\pi\)
0.447575 0.894246i \(-0.352288\pi\)
\(84\) 0 0
\(85\) 2.22436i 0.241266i
\(86\) −4.40739 2.54461i −0.475261 0.274392i
\(87\) 0 0
\(88\) 0.330062 + 0.571683i 0.0351847 + 0.0609417i
\(89\) −3.85848 2.22770i −0.408998 0.236135i 0.281361 0.959602i \(-0.409214\pi\)
−0.690359 + 0.723467i \(0.742548\pi\)
\(90\) 0 0
\(91\) −8.98181 3.21358i −0.941550 0.336874i
\(92\) −7.42909 −0.774536
\(93\) 0 0
\(94\) 4.72436 + 8.18283i 0.487281 + 0.843995i
\(95\) 1.03479 + 1.79231i 0.106167 + 0.183887i
\(96\) 0 0
\(97\) 16.1088i 1.63561i 0.575499 + 0.817803i \(0.304808\pi\)
−0.575499 + 0.817803i \(0.695192\pi\)
\(98\) −4.65898 5.22436i −0.470628 0.527740i
\(99\) 0 0
\(100\) 2.44224 4.23009i 0.244224 0.423009i
\(101\) 1.39764 + 2.42077i 0.139070 + 0.240876i 0.927145 0.374703i \(-0.122255\pi\)
−0.788075 + 0.615579i \(0.788922\pi\)
\(102\) 0 0
\(103\) 3.76897 6.52804i 0.371367 0.643227i −0.618409 0.785857i \(-0.712222\pi\)
0.989776 + 0.142629i \(0.0455557\pi\)
\(104\) 3.54461 + 0.660123i 0.347577 + 0.0647304i
\(105\) 0 0
\(106\) 3.00000i 0.291386i
\(107\) −1.86485 + 3.23002i −0.180282 + 0.312258i −0.941977 0.335679i \(-0.891034\pi\)
0.761694 + 0.647936i \(0.224368\pi\)
\(108\) 0 0
\(109\) 12.4790 7.20473i 1.19527 0.690088i 0.235771 0.971809i \(-0.424238\pi\)
0.959496 + 0.281721i \(0.0909052\pi\)
\(110\) −0.194302 0.112180i −0.0185260 0.0106960i
\(111\) 0 0
\(112\) 2.05215 + 1.66994i 0.193910 + 0.157794i
\(113\) −15.5576 −1.46353 −0.731766 0.681556i \(-0.761304\pi\)
−0.731766 + 0.681556i \(0.761304\pi\)
\(114\) 0 0
\(115\) 2.18669 1.26249i 0.203910 0.117728i
\(116\) 1.78212 + 3.08672i 0.165466 + 0.286595i
\(117\) 0 0
\(118\) 3.90411 0.359403
\(119\) −16.1801 + 6.16660i −1.48323 + 0.565292i
\(120\) 0 0
\(121\) −5.28212 + 9.14890i −0.480193 + 0.831718i
\(122\) −1.61501 + 0.932427i −0.146216 + 0.0844179i
\(123\) 0 0
\(124\) 3.46410 + 2.00000i 0.311086 + 0.179605i
\(125\) 3.35951i 0.300483i
\(126\) 0 0
\(127\) 14.4028 1.27804 0.639020 0.769190i \(-0.279340\pi\)
0.639020 + 0.769190i \(0.279340\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −1.15551 + 0.408063i −0.101345 + 0.0357895i
\(131\) −10.3365 + 17.9034i −0.903108 + 1.56423i −0.0796705 + 0.996821i \(0.525387\pi\)
−0.823437 + 0.567407i \(0.807947\pi\)
\(132\) 0 0
\(133\) −10.1686 + 12.4960i −0.881730 + 1.08354i
\(134\) 7.44872 0.643472
\(135\) 0 0
\(136\) 5.66780 3.27230i 0.486009 0.280598i
\(137\) 12.3187 7.11218i 1.05245 0.607635i 0.129119 0.991629i \(-0.458785\pi\)
0.923335 + 0.383995i \(0.125452\pi\)
\(138\) 0 0
\(139\) 9.42909 0.799765 0.399883 0.916566i \(-0.369051\pi\)
0.399883 + 0.916566i \(0.369051\pi\)
\(140\) −0.887820 0.142794i −0.0750345 0.0120683i
\(141\) 0 0
\(142\) −0.442242 + 0.765985i −0.0371121 + 0.0642801i
\(143\) −0.792557 2.24427i −0.0662769 0.187676i
\(144\) 0 0
\(145\) −1.04910 0.605701i −0.0871234 0.0503007i
\(146\) 10.0696 0.833365
\(147\) 0 0
\(148\) 3.54461i 0.291365i
\(149\) −7.02247 4.05442i −0.575303 0.332151i 0.183962 0.982933i \(-0.441108\pi\)
−0.759264 + 0.650782i \(0.774441\pi\)
\(150\) 0 0
\(151\) −4.59047 + 2.65031i −0.373567 + 0.215679i −0.675016 0.737803i \(-0.735863\pi\)
0.301449 + 0.953482i \(0.402530\pi\)
\(152\) 3.04461 5.27341i 0.246950 0.427730i
\(153\) 0 0
\(154\) 0.277341 1.72436i 0.0223488 0.138953i
\(155\) −1.35951 −0.109198
\(156\) 0 0
\(157\) 11.5281 + 19.9673i 0.920044 + 1.59356i 0.799344 + 0.600874i \(0.205181\pi\)
0.120700 + 0.992689i \(0.461486\pi\)
\(158\) 10.7809 6.22436i 0.857683 0.495184i
\(159\) 0 0
\(160\) 0.339877 0.0268696
\(161\) 15.2456 + 12.4061i 1.20152 + 0.977740i
\(162\) 0 0
\(163\) 11.7470 + 6.78212i 0.920094 + 0.531217i 0.883665 0.468120i \(-0.155068\pi\)
0.0364290 + 0.999336i \(0.488402\pi\)
\(164\) 0.748985 0.432427i 0.0584859 0.0337668i
\(165\) 0 0
\(166\) 8.14697 14.1110i 0.632328 1.09522i
\(167\) 15.7034i 1.21517i −0.794256 0.607583i \(-0.792139\pi\)
0.794256 0.607583i \(-0.207861\pi\)
\(168\) 0 0
\(169\) −12.1285 4.67975i −0.932960 0.359981i
\(170\) −1.11218 + 1.92635i −0.0853003 + 0.147745i
\(171\) 0 0
\(172\) −2.54461 4.40739i −0.194024 0.336060i
\(173\) 6.80175 11.7810i 0.517127 0.895691i −0.482675 0.875800i \(-0.660335\pi\)
0.999802 0.0198913i \(-0.00633201\pi\)
\(174\) 0 0
\(175\) −12.0758 + 4.60236i −0.912846 + 0.347906i
\(176\) 0.660123i 0.0497587i
\(177\) 0 0
\(178\) −2.22770 3.85848i −0.166973 0.289206i
\(179\) 0.224361 + 0.388604i 0.0167695 + 0.0290456i 0.874288 0.485407i \(-0.161329\pi\)
−0.857519 + 0.514453i \(0.827995\pi\)
\(180\) 0 0
\(181\) −15.9041 −1.18214 −0.591072 0.806619i \(-0.701295\pi\)
−0.591072 + 0.806619i \(0.701295\pi\)
\(182\) −6.17169 7.27394i −0.457476 0.539181i
\(183\) 0 0
\(184\) −6.43378 3.71455i −0.474305 0.273840i
\(185\) 0.602365 + 1.04333i 0.0442868 + 0.0767069i
\(186\) 0 0
\(187\) −3.74144 2.16012i −0.273601 0.157964i
\(188\) 9.44872i 0.689119i
\(189\) 0 0
\(190\) 2.06958i 0.150143i
\(191\) −5.20473 + 9.01486i −0.376601 + 0.652292i −0.990565 0.137042i \(-0.956241\pi\)
0.613964 + 0.789334i \(0.289574\pi\)
\(192\) 0 0
\(193\) −6.66786 + 3.84969i −0.479963 + 0.277107i −0.720401 0.693558i \(-0.756042\pi\)
0.240438 + 0.970665i \(0.422709\pi\)
\(194\) −8.05442 + 13.9507i −0.578274 + 1.00160i
\(195\) 0 0
\(196\) −1.42261 6.85392i −0.101615 0.489565i
\(197\) 8.98037i 0.639825i 0.947447 + 0.319912i \(0.103653\pi\)
−0.947447 + 0.319912i \(0.896347\pi\)
\(198\) 0 0
\(199\) 10.2973 + 17.8354i 0.729955 + 1.26432i 0.956902 + 0.290412i \(0.0937922\pi\)
−0.226947 + 0.973907i \(0.572874\pi\)
\(200\) 4.23009 2.44224i 0.299112 0.172693i
\(201\) 0 0
\(202\) 2.79527i 0.196675i
\(203\) 1.49746 9.31043i 0.105101 0.653464i
\(204\) 0 0
\(205\) −0.146972 + 0.254563i −0.0102650 + 0.0177794i
\(206\) 6.52804 3.76897i 0.454830 0.262596i
\(207\) 0 0
\(208\) 2.73966 + 2.34399i 0.189961 + 0.162526i
\(209\) −4.01963 −0.278044
\(210\) 0 0
\(211\) 15.3898 1.05948 0.529740 0.848160i \(-0.322290\pi\)
0.529740 + 0.848160i \(0.322290\pi\)
\(212\) −1.50000 + 2.59808i −0.103020 + 0.178437i
\(213\) 0 0
\(214\) −3.23002 + 1.86485i −0.220800 + 0.127479i
\(215\) 1.49797 + 0.864853i 0.102161 + 0.0589825i
\(216\) 0 0
\(217\) −3.76897 9.88913i −0.255854 0.671318i
\(218\) 14.4095 0.975932
\(219\) 0 0
\(220\) −0.112180 0.194302i −0.00756319 0.0130998i
\(221\) −22.2502 + 7.85759i −1.49671 + 0.528558i
\(222\) 0 0
\(223\) 18.0196i 1.20668i −0.797483 0.603342i \(-0.793835\pi\)
0.797483 0.603342i \(-0.206165\pi\)
\(224\) 0.942242 + 2.47228i 0.0629562 + 0.165186i
\(225\) 0 0
\(226\) −13.4732 7.77878i −0.896227 0.517437i
\(227\) −0.200080 + 0.115516i −0.0132798 + 0.00766709i −0.506625 0.862166i \(-0.669107\pi\)
0.493345 + 0.869833i \(0.335774\pi\)
\(228\) 0 0
\(229\) −5.75084 3.32025i −0.380026 0.219408i 0.297804 0.954627i \(-0.403746\pi\)
−0.677830 + 0.735219i \(0.737079\pi\)
\(230\) 2.52498 0.166492
\(231\) 0 0
\(232\) 3.56424i 0.234004i
\(233\) −14.7592 + 25.5636i −0.966904 + 1.67473i −0.262495 + 0.964933i \(0.584545\pi\)
−0.704410 + 0.709794i \(0.748788\pi\)
\(234\) 0 0
\(235\) −1.60570 2.78116i −0.104744 0.181423i
\(236\) 3.38106 + 1.95206i 0.220088 + 0.127068i
\(237\) 0 0
\(238\) −17.0957 2.74962i −1.10815 0.178232i
\(239\) 15.0236i 0.971799i 0.874015 + 0.485900i \(0.161508\pi\)
−0.874015 + 0.485900i \(0.838492\pi\)
\(240\) 0 0
\(241\) −3.85271 + 2.22436i −0.248175 + 0.143284i −0.618928 0.785448i \(-0.712433\pi\)
0.370754 + 0.928731i \(0.379099\pi\)
\(242\) −9.14890 + 5.28212i −0.588113 + 0.339547i
\(243\) 0 0
\(244\) −1.86485 −0.119385
\(245\) 1.58348 + 1.77564i 0.101165 + 0.113441i
\(246\) 0 0
\(247\) −14.2730 + 16.6824i −0.908172 + 1.06147i
\(248\) 2.00000 + 3.46410i 0.127000 + 0.219971i
\(249\) 0 0
\(250\) −1.67975 + 2.90942i −0.106237 + 0.184008i
\(251\) 24.3961 1.53987 0.769935 0.638123i \(-0.220289\pi\)
0.769935 + 0.638123i \(0.220289\pi\)
\(252\) 0 0
\(253\) 4.90411i 0.308319i
\(254\) 12.4732 + 7.20139i 0.782637 + 0.451856i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 9.22436 15.9771i 0.575400 0.996622i −0.420598 0.907247i \(-0.638180\pi\)
0.995998 0.0893747i \(-0.0284869\pi\)
\(258\) 0 0
\(259\) −5.91928 + 7.27405i −0.367806 + 0.451988i
\(260\) −1.20473 0.224361i −0.0747142 0.0139143i
\(261\) 0 0
\(262\) −17.9034 + 10.3365i −1.10608 + 0.638594i
\(263\) −3.15031 5.45649i −0.194256 0.336462i 0.752400 0.658706i \(-0.228896\pi\)
−0.946656 + 0.322245i \(0.895563\pi\)
\(264\) 0 0
\(265\) 1.01963i 0.0626354i
\(266\) −15.0543 + 5.73751i −0.923036 + 0.351789i
\(267\) 0 0
\(268\) 6.45078 + 3.72436i 0.394044 + 0.227502i
\(269\) −4.94759 8.56947i −0.301660 0.522490i 0.674852 0.737953i \(-0.264207\pi\)
−0.976512 + 0.215463i \(0.930874\pi\)
\(270\) 0 0
\(271\) 10.9980 + 6.34969i 0.668080 + 0.385716i 0.795349 0.606152i \(-0.207288\pi\)
−0.127269 + 0.991868i \(0.540621\pi\)
\(272\) 6.54461 0.396825
\(273\) 0 0
\(274\) 14.2244 0.859325
\(275\) −2.79238 1.61218i −0.168387 0.0972181i
\(276\) 0 0
\(277\) −14.0216 24.2862i −0.842479 1.45922i −0.887793 0.460243i \(-0.847762\pi\)
0.0453142 0.998973i \(-0.485571\pi\)
\(278\) 8.16583 + 4.71455i 0.489754 + 0.282760i
\(279\) 0 0
\(280\) −0.697477 0.567573i −0.0416822 0.0339190i
\(281\) 1.82157i 0.108666i −0.998523 0.0543330i \(-0.982697\pi\)
0.998523 0.0543330i \(-0.0173032\pi\)
\(282\) 0 0
\(283\) −4.49018 7.77723i −0.266914 0.462308i 0.701149 0.713014i \(-0.252671\pi\)
−0.968063 + 0.250706i \(0.919337\pi\)
\(284\) −0.765985 + 0.442242i −0.0454529 + 0.0262422i
\(285\) 0 0
\(286\) 0.435763 2.33988i 0.0257672 0.138360i
\(287\) −2.25915 0.363356i −0.133354 0.0214482i
\(288\) 0 0
\(289\) −12.9159 + 22.3711i −0.759761 + 1.31594i
\(290\) −0.605701 1.04910i −0.0355680 0.0616056i
\(291\) 0 0
\(292\) 8.72051 + 5.03479i 0.510330 + 0.294639i
\(293\) 2.80194i 0.163691i −0.996645 0.0818456i \(-0.973919\pi\)
0.996645 0.0818456i \(-0.0260814\pi\)
\(294\) 0 0
\(295\) −1.32692 −0.0772562
\(296\) 1.77230 3.06972i 0.103013 0.178424i
\(297\) 0 0
\(298\) −4.05442 7.02247i −0.234866 0.406800i
\(299\) 20.3532 + 17.4137i 1.17705 + 1.00706i
\(300\) 0 0
\(301\) −2.13816 + 13.2939i −0.123242 + 0.766250i
\(302\) −5.30062 −0.305016
\(303\) 0 0
\(304\) 5.27341 3.04461i 0.302451 0.174620i
\(305\) 0.548905 0.316910i 0.0314302 0.0181462i
\(306\) 0 0
\(307\) 9.21769i 0.526081i 0.964785 + 0.263041i \(0.0847253\pi\)
−0.964785 + 0.263041i \(0.915275\pi\)
\(308\) 1.10236 1.35467i 0.0628131 0.0771895i
\(309\) 0 0
\(310\) −1.17737 0.679754i −0.0668700 0.0386074i
\(311\) −5.73418 9.93188i −0.325155 0.563185i 0.656388 0.754423i \(-0.272083\pi\)
−0.981544 + 0.191238i \(0.938750\pi\)
\(312\) 0 0
\(313\) 11.2821 19.5412i 0.637703 1.10453i −0.348233 0.937408i \(-0.613218\pi\)
0.985936 0.167126i \(-0.0534486\pi\)
\(314\) 23.0562i 1.30114i
\(315\) 0 0
\(316\) 12.4487 0.700295
\(317\) −10.9354 6.31357i −0.614195 0.354606i 0.160410 0.987050i \(-0.448718\pi\)
−0.774605 + 0.632445i \(0.782052\pi\)
\(318\) 0 0
\(319\) 2.03762 1.17642i 0.114085 0.0658667i
\(320\) 0.294342 + 0.169938i 0.0164542 + 0.00949985i
\(321\) 0 0
\(322\) 7.00000 + 18.3668i 0.390095 + 1.02354i
\(323\) 39.8515i 2.21740i
\(324\) 0 0
\(325\) −16.6062 + 5.86441i −0.921145 + 0.325299i
\(326\) 6.78212 + 11.7470i 0.375627 + 0.650605i
\(327\) 0 0
\(328\) 0.864853 0.0477535
\(329\) 15.7788 19.3902i 0.869912 1.06901i
\(330\) 0 0
\(331\) −23.2278 13.4106i −1.27672 0.737113i −0.300474 0.953790i \(-0.597145\pi\)
−0.976243 + 0.216677i \(0.930478\pi\)
\(332\) 14.1110 8.14697i 0.774440 0.447123i
\(333\) 0 0
\(334\) 7.85170 13.5995i 0.429626 0.744134i
\(335\) −2.53165 −0.138319
\(336\) 0 0
\(337\) 9.81892 0.534871 0.267435 0.963576i \(-0.413824\pi\)
0.267435 + 0.963576i \(0.413824\pi\)
\(338\) −8.16369 10.1170i −0.444046 0.550294i
\(339\) 0 0
\(340\) −1.92635 + 1.11218i −0.104471 + 0.0603164i
\(341\) 1.32025 2.28673i 0.0714953 0.123834i
\(342\) 0 0
\(343\) −8.52621 + 16.4409i −0.460372 + 0.887726i
\(344\) 5.08921i 0.274392i
\(345\) 0 0
\(346\) 11.7810 6.80175i 0.633349 0.365664i
\(347\) 9.54794 + 16.5375i 0.512560 + 0.887781i 0.999894 + 0.0145648i \(0.00463627\pi\)
−0.487334 + 0.873216i \(0.662030\pi\)
\(348\) 0 0
\(349\) 0.416132i 0.0222750i −0.999938 0.0111375i \(-0.996455\pi\)
0.999938 0.0111375i \(-0.00354525\pi\)
\(350\) −12.7592 2.05215i −0.682005 0.109692i
\(351\) 0 0
\(352\) −0.330062 + 0.571683i −0.0175923 + 0.0304708i
\(353\) −14.2790 + 8.24399i −0.759995 + 0.438783i −0.829294 0.558813i \(-0.811257\pi\)
0.0692989 + 0.997596i \(0.477924\pi\)
\(354\) 0 0
\(355\) 0.150308 0.260341i 0.00797751 0.0138175i
\(356\) 4.45539i 0.236135i
\(357\) 0 0
\(358\) 0.448721i 0.0237157i
\(359\) 21.1937 + 12.2362i 1.11856 + 0.645801i 0.941033 0.338315i \(-0.109857\pi\)
0.177527 + 0.984116i \(0.443190\pi\)
\(360\) 0 0
\(361\) 9.03926 + 15.6565i 0.475751 + 0.824024i
\(362\) −13.7734 7.95206i −0.723912 0.417951i
\(363\) 0 0
\(364\) −1.70787 9.38526i −0.0895165 0.491922i
\(365\) −3.42242 −0.179138
\(366\) 0 0
\(367\) 6.24399 + 10.8149i 0.325934 + 0.564534i 0.981701 0.190429i \(-0.0609880\pi\)
−0.655767 + 0.754963i \(0.727655\pi\)
\(368\) −3.71455 6.43378i −0.193634 0.335384i
\(369\) 0 0
\(370\) 1.20473i 0.0626309i
\(371\) 7.41685 2.82673i 0.385064 0.146756i
\(372\) 0 0
\(373\) 3.91393 6.77913i 0.202656 0.351010i −0.746728 0.665130i \(-0.768376\pi\)
0.949383 + 0.314120i \(0.101709\pi\)
\(374\) −2.16012 3.74144i −0.111697 0.193465i
\(375\) 0 0
\(376\) −4.72436 + 8.18283i −0.243640 + 0.421997i
\(377\) 2.35284 12.6338i 0.121177 0.650675i
\(378\) 0 0
\(379\) 8.67975i 0.445849i 0.974836 + 0.222925i \(0.0715603\pi\)
−0.974836 + 0.222925i \(0.928440\pi\)
\(380\) −1.03479 + 1.79231i −0.0530837 + 0.0919436i
\(381\) 0 0
\(382\) −9.01486 + 5.20473i −0.461240 + 0.266297i
\(383\) −20.2844 11.7112i −1.03648 0.598415i −0.117649 0.993055i \(-0.537536\pi\)
−0.918836 + 0.394640i \(0.870869\pi\)
\(384\) 0 0
\(385\) −0.0942619 + 0.586070i −0.00480403 + 0.0298689i
\(386\) −7.69938 −0.391888
\(387\) 0 0
\(388\) −13.9507 + 8.05442i −0.708238 + 0.408901i
\(389\) −15.0957 26.1465i −0.765382 1.32568i −0.940044 0.341052i \(-0.889217\pi\)
0.174662 0.984628i \(-0.444117\pi\)
\(390\) 0 0
\(391\) 48.6205 2.45884
\(392\) 2.19494 6.64697i 0.110861 0.335723i
\(393\) 0 0
\(394\) −4.49018 + 7.77723i −0.226212 + 0.391811i
\(395\) −3.66418 + 2.11552i −0.184365 + 0.106443i
\(396\) 0 0
\(397\) −7.35659 4.24733i −0.369216 0.213167i 0.303900 0.952704i \(-0.401711\pi\)
−0.673116 + 0.739537i \(0.735045\pi\)
\(398\) 20.5946i 1.03231i
\(399\) 0 0
\(400\) 4.88448 0.244224
\(401\) −17.4693 10.0859i −0.872373 0.503665i −0.00423681 0.999991i \(-0.501349\pi\)
−0.868136 + 0.496326i \(0.834682\pi\)
\(402\) 0 0
\(403\) −4.80248 13.5991i −0.239229 0.677421i
\(404\) −1.39764 + 2.42077i −0.0695349 + 0.120438i
\(405\) 0 0
\(406\) 5.95206 7.31434i 0.295396 0.363004i
\(407\) −2.33988 −0.115983
\(408\) 0 0
\(409\) 3.72444 2.15031i 0.184162 0.106326i −0.405085 0.914279i \(-0.632758\pi\)
0.589247 + 0.807953i \(0.299425\pi\)
\(410\) −0.254563 + 0.146972i −0.0125720 + 0.00725842i
\(411\) 0 0
\(412\) 7.53793 0.371367
\(413\) −3.67862 9.65207i −0.181013 0.474947i
\(414\) 0 0
\(415\) −2.76897 + 4.79599i −0.135923 + 0.235426i
\(416\) 1.20062 + 3.39978i 0.0588652 + 0.166688i
\(417\) 0 0
\(418\) −3.48110 2.00982i −0.170266 0.0983033i
\(419\) 32.8974 1.60715 0.803573 0.595207i \(-0.202930\pi\)
0.803573 + 0.595207i \(0.202930\pi\)
\(420\) 0 0
\(421\) 21.7230i 1.05872i 0.848399 + 0.529358i \(0.177567\pi\)
−0.848399 + 0.529358i \(0.822433\pi\)
\(422\) 13.3280 + 7.69491i 0.648796 + 0.374583i
\(423\) 0 0
\(424\) −2.59808 + 1.50000i −0.126174 + 0.0728464i
\(425\) −15.9835 + 27.6843i −0.775314 + 1.34288i
\(426\) 0 0
\(427\) 3.82695 + 3.11419i 0.185199 + 0.150706i
\(428\) −3.72971 −0.180282
\(429\) 0 0
\(430\) 0.864853 + 1.49797i 0.0417069 + 0.0722385i
\(431\) 5.25063 3.03146i 0.252914 0.146020i −0.368184 0.929753i \(-0.620020\pi\)
0.621098 + 0.783733i \(0.286687\pi\)
\(432\) 0 0
\(433\) 11.1392 0.535314 0.267657 0.963514i \(-0.413751\pi\)
0.267657 + 0.963514i \(0.413751\pi\)
\(434\) 1.68054 10.4487i 0.0806687 0.501555i
\(435\) 0 0
\(436\) 12.4790 + 7.20473i 0.597634 + 0.345044i
\(437\) 39.1767 22.6187i 1.87407 1.08200i
\(438\) 0 0
\(439\) −5.81156 + 10.0659i −0.277371 + 0.480420i −0.970731 0.240171i \(-0.922796\pi\)
0.693360 + 0.720592i \(0.256130\pi\)
\(440\) 0.224361i 0.0106960i
\(441\) 0 0
\(442\) −23.1981 4.32025i −1.10342 0.205493i
\(443\) −2.33654 + 4.04701i −0.111012 + 0.192279i −0.916179 0.400770i \(-0.868743\pi\)
0.805166 + 0.593049i \(0.202076\pi\)
\(444\) 0 0
\(445\) 0.757143 + 1.31141i 0.0358920 + 0.0621668i
\(446\) 9.00982 15.6055i 0.426627 0.738940i
\(447\) 0 0
\(448\) −0.420136 + 2.61218i −0.0198496 + 0.123414i
\(449\) 36.6271i 1.72854i 0.503026 + 0.864271i \(0.332220\pi\)
−0.503026 + 0.864271i \(0.667780\pi\)
\(450\) 0 0
\(451\) −0.285455 0.494422i −0.0134415 0.0232814i
\(452\) −7.77878 13.4732i −0.365883 0.633728i
\(453\) 0 0
\(454\) −0.231033 −0.0108429
\(455\) 2.09761 + 2.47225i 0.0983377 + 0.115901i
\(456\) 0 0
\(457\) 27.1388 + 15.6686i 1.26950 + 0.732947i 0.974894 0.222672i \(-0.0714778\pi\)
0.294607 + 0.955618i \(0.404811\pi\)
\(458\) −3.32025 5.75084i −0.155145 0.268719i
\(459\) 0 0
\(460\) 2.18669 + 1.26249i 0.101955 + 0.0588638i
\(461\) 0.601231i 0.0280021i 0.999902 + 0.0140011i \(0.00445682\pi\)
−0.999902 + 0.0140011i \(0.995543\pi\)
\(462\) 0 0
\(463\) 10.5013i 0.488038i 0.969770 + 0.244019i \(0.0784659\pi\)
−0.969770 + 0.244019i \(0.921534\pi\)
\(464\) −1.78212 + 3.08672i −0.0827328 + 0.143297i
\(465\) 0 0
\(466\) −25.5636 + 14.7592i −1.18421 + 0.683705i
\(467\) 13.6109 23.5747i 0.629835 1.09091i −0.357749 0.933818i \(-0.616456\pi\)
0.987584 0.157089i \(-0.0502109\pi\)
\(468\) 0 0
\(469\) −7.01850 18.4153i −0.324084 0.850341i
\(470\) 3.21140i 0.148131i
\(471\) 0 0
\(472\) 1.95206 + 3.38106i 0.0898507 + 0.155626i
\(473\) −2.90942 + 1.67975i −0.133775 + 0.0772352i
\(474\) 0 0
\(475\) 29.7427i 1.36469i
\(476\) −13.4305 10.9291i −0.615586 0.500934i
\(477\) 0 0
\(478\) −7.51182 + 13.0109i −0.343583 + 0.595103i
\(479\) −25.0031 + 14.4356i −1.14242 + 0.659578i −0.947029 0.321147i \(-0.895932\pi\)
−0.195393 + 0.980725i \(0.562598\pi\)
\(480\) 0 0
\(481\) −8.30851 + 9.71101i −0.378836 + 0.442784i
\(482\) −4.44872 −0.202634
\(483\) 0 0
\(484\) −10.5642 −0.480193
\(485\) 2.73751 4.74151i 0.124304 0.215301i
\(486\) 0 0
\(487\) −3.39262 + 1.95873i −0.153734 + 0.0887585i −0.574894 0.818228i \(-0.694957\pi\)
0.421159 + 0.906987i \(0.361623\pi\)
\(488\) −1.61501 0.932427i −0.0731081 0.0422090i
\(489\) 0 0
\(490\) 0.483513 + 2.32949i 0.0218429 + 0.105236i
\(491\) 13.4202 0.605643 0.302821 0.953047i \(-0.402071\pi\)
0.302821 + 0.953047i \(0.402071\pi\)
\(492\) 0 0
\(493\) −11.6633 20.2014i −0.525287 0.909824i
\(494\) −20.7020 + 7.31083i −0.931427 + 0.328930i
\(495\) 0 0
\(496\) 4.00000i 0.179605i
\(497\) 2.31043 + 0.371603i 0.103637 + 0.0166687i
\(498\) 0 0
\(499\) 28.3900 + 16.3910i 1.27091 + 0.733760i 0.975159 0.221505i \(-0.0710969\pi\)
0.295751 + 0.955265i \(0.404430\pi\)
\(500\) −2.90942 + 1.67975i −0.130113 + 0.0751209i
\(501\) 0 0
\(502\) 21.1277 + 12.1981i 0.942973 + 0.544426i
\(503\) −22.8582 −1.01920 −0.509598 0.860413i \(-0.670206\pi\)
−0.509598 + 0.860413i \(0.670206\pi\)
\(504\) 0 0
\(505\) 0.950048i 0.0422766i
\(506\) −2.45206 + 4.24709i −0.109007 + 0.188806i
\(507\) 0 0
\(508\) 7.20139 + 12.4732i 0.319510 + 0.553408i
\(509\) −28.4445 16.4224i −1.26078 0.727911i −0.287553 0.957765i \(-0.592842\pi\)
−0.973225 + 0.229854i \(0.926175\pi\)
\(510\) 0 0
\(511\) −9.48798 24.8949i −0.419724 1.10128i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 15.9771 9.22436i 0.704718 0.406869i
\(515\) −2.21873 + 1.28098i −0.0977690 + 0.0564469i
\(516\) 0 0
\(517\) 6.23732 0.274317
\(518\) −8.76327 + 3.33988i −0.385036 + 0.146746i
\(519\) 0 0
\(520\) −0.931146 0.796667i −0.0408335 0.0349362i
\(521\) 1.40946 + 2.44126i 0.0617496 + 0.106953i 0.895248 0.445569i \(-0.146999\pi\)
−0.833498 + 0.552523i \(0.813665\pi\)
\(522\) 0 0
\(523\) 2.81490 4.87555i 0.123087 0.213193i −0.797897 0.602794i \(-0.794054\pi\)
0.920984 + 0.389601i \(0.127387\pi\)
\(524\) −20.6731 −0.903108
\(525\) 0 0
\(526\) 6.30062i 0.274720i
\(527\) −22.6712 13.0892i −0.987572 0.570175i
\(528\) 0 0
\(529\) −16.0957 27.8786i −0.699813 1.21211i
\(530\) 0.509815 0.883026i 0.0221450 0.0383562i
\(531\) 0 0
\(532\) −15.9061 2.55830i −0.689618 0.110916i
\(533\) −3.06556 0.570909i −0.132784 0.0247288i
\(534\) 0 0
\(535\) 1.09781 0.633820i 0.0474624 0.0274024i
\(536\) 3.72436 + 6.45078i 0.160868 + 0.278631i
\(537\) 0 0
\(538\) 9.89517i 0.426611i
\(539\) −4.52443 + 0.939099i −0.194881 + 0.0404498i
\(540\) 0 0
\(541\) −21.4015 12.3562i −0.920123 0.531233i −0.0364488 0.999336i \(-0.511605\pi\)
−0.883674 + 0.468102i \(0.844938\pi\)
\(542\) 6.34969 + 10.9980i 0.272743 + 0.472404i
\(543\) 0 0
\(544\) 5.66780 + 3.27230i 0.243005 + 0.140299i
\(545\) −4.89744 −0.209783
\(546\) 0 0
\(547\) 18.1874 0.777636 0.388818 0.921315i \(-0.372884\pi\)
0.388818 + 0.921315i \(0.372884\pi\)
\(548\) 12.3187 + 7.11218i 0.526227 + 0.303817i
\(549\) 0 0
\(550\) −1.61218 2.79238i −0.0687436 0.119067i
\(551\) −18.7957 10.8517i −0.800724 0.462298i
\(552\) 0 0
\(553\) −25.5466 20.7886i −1.08635 0.884021i
\(554\) 28.0433i 1.19144i
\(555\) 0 0
\(556\) 4.71455 + 8.16583i 0.199941 + 0.346308i
\(557\) 23.0713 13.3202i 0.977564 0.564397i 0.0760303 0.997106i \(-0.475775\pi\)
0.901534 + 0.432709i \(0.142442\pi\)
\(558\) 0 0
\(559\) −3.35951 + 18.0393i −0.142092 + 0.762979i
\(560\) −0.320246 0.840272i −0.0135329 0.0355080i
\(561\) 0 0
\(562\) 0.910786 1.57753i 0.0384192 0.0665440i
\(563\) 13.8386 + 23.9691i 0.583225 + 1.01018i 0.995094 + 0.0989328i \(0.0315429\pi\)
−0.411869 + 0.911243i \(0.635124\pi\)
\(564\) 0 0
\(565\) 4.57925 + 2.64383i 0.192650 + 0.111227i
\(566\) 8.98037i 0.377473i
\(567\) 0 0
\(568\) −0.884484 −0.0371121
\(569\) −10.1949 + 17.6581i −0.427393 + 0.740266i −0.996641 0.0818997i \(-0.973901\pi\)
0.569248 + 0.822166i \(0.307235\pi\)
\(570\) 0 0
\(571\) −19.1022 33.0859i −0.799401 1.38460i −0.920007 0.391903i \(-0.871817\pi\)
0.120606 0.992700i \(-0.461516\pi\)
\(572\) 1.54732 1.80851i 0.0646967 0.0756177i
\(573\) 0 0
\(574\) −1.77481 1.44425i −0.0740789 0.0602819i
\(575\) 36.2873 1.51328
\(576\) 0 0
\(577\) 9.83762 5.67975i 0.409546 0.236451i −0.281049 0.959693i \(-0.590682\pi\)
0.690594 + 0.723242i \(0.257349\pi\)
\(578\) −22.3711 + 12.9159i −0.930514 + 0.537232i
\(579\) 0 0
\(580\) 1.21140i 0.0503007i
\(581\) −42.5627 6.84567i −1.76580 0.284006i
\(582\) 0 0
\(583\) 1.71505 + 0.990185i 0.0710301 + 0.0410093i
\(584\) 5.03479 + 8.72051i 0.208341 + 0.360857i
\(585\) 0 0
\(586\) 1.40097 2.42655i 0.0578736 0.100240i
\(587\) 37.2347i 1.53684i −0.639946 0.768420i \(-0.721043\pi\)
0.639946 0.768420i \(-0.278957\pi\)
\(588\) 0 0
\(589\) −24.3569 −1.00361
\(590\) −1.14914 0.663459i −0.0473095 0.0273142i
\(591\) 0 0
\(592\) 3.06972 1.77230i 0.126165 0.0728412i
\(593\) 20.9674 + 12.1055i 0.861026 + 0.497114i 0.864356 0.502881i \(-0.167727\pi\)
−0.00332968 + 0.999994i \(0.501060\pi\)
\(594\) 0 0
\(595\) 5.81043 + 0.934534i 0.238204 + 0.0383121i
\(596\) 8.10884i 0.332151i
\(597\) 0 0
\(598\) 8.91951 + 25.2573i 0.364746 + 1.03285i
\(599\) −3.23952 5.61102i −0.132363 0.229260i 0.792224 0.610231i \(-0.208923\pi\)
−0.924587 + 0.380971i \(0.875590\pi\)
\(600\) 0 0
\(601\) 41.4354 1.69018 0.845092 0.534621i \(-0.179546\pi\)
0.845092 + 0.534621i \(0.179546\pi\)
\(602\) −8.49867 + 10.4438i −0.346380 + 0.425658i
\(603\) 0 0
\(604\) −4.59047 2.65031i −0.186783 0.107839i
\(605\) 3.10950 1.79527i 0.126419 0.0729881i
\(606\) 0 0
\(607\) 4.20139 7.27703i 0.170529 0.295365i −0.768076 0.640359i \(-0.778786\pi\)
0.938605 + 0.344994i \(0.112119\pi\)
\(608\) 6.08921 0.246950
\(609\) 0 0
\(610\) 0.633820 0.0256626
\(611\) 22.1477 25.8863i 0.895999 1.04725i
\(612\) 0 0
\(613\) 40.6144 23.4487i 1.64040 0.947085i 0.659708 0.751522i \(-0.270680\pi\)
0.980691 0.195563i \(-0.0626534\pi\)
\(614\) −4.60884 + 7.98275i −0.185998 + 0.322158i
\(615\) 0 0
\(616\) 1.63201 0.621996i 0.0657556 0.0250609i
\(617\) 32.6271i 1.31352i −0.754100 0.656760i \(-0.771927\pi\)
0.754100 0.656760i \(-0.228073\pi\)
\(618\) 0 0
\(619\) −4.72995 + 2.73084i −0.190113 + 0.109762i −0.592035 0.805912i \(-0.701675\pi\)
0.401923 + 0.915674i \(0.368342\pi\)
\(620\) −0.679754 1.17737i −0.0272996 0.0472842i
\(621\) 0 0
\(622\) 11.4684i 0.459839i
\(623\) −7.44023 + 9.14312i −0.298087 + 0.366311i
\(624\) 0 0
\(625\) −11.6403 + 20.1616i −0.465612 + 0.806464i
\(626\) 19.5412 11.2821i 0.781024 0.450924i
\(627\) 0 0
\(628\) −11.5281 + 19.9673i −0.460022 + 0.796782i
\(629\) 23.1981i 0.924967i
\(630\) 0 0
\(631\) 41.8845i 1.66739i −0.552221 0.833697i \(-0.686220\pi\)
0.552221 0.833697i \(-0.313780\pi\)
\(632\) 10.7809 + 6.22436i 0.428842 + 0.247592i
\(633\) 0 0
\(634\) −6.31357 10.9354i −0.250744 0.434301i
\(635\) −4.23935 2.44759i −0.168233 0.0971295i
\(636\) 0 0
\(637\) −12.1680 + 22.1120i −0.482115 + 0.876108i
\(638\) 2.35284 0.0931497
\(639\) 0 0
\(640\) 0.169938 + 0.294342i 0.00671741 + 0.0116349i
\(641\) 3.30842 + 5.73035i 0.130675 + 0.226335i 0.923937 0.382545i \(-0.124952\pi\)
−0.793262 + 0.608880i \(0.791619\pi\)
\(642\) 0 0
\(643\) 23.7427i 0.936319i −0.883644 0.468160i \(-0.844917\pi\)
0.883644 0.468160i \(-0.155083\pi\)
\(644\) −3.12123 + 19.4061i −0.122994 + 0.764708i
\(645\) 0 0
\(646\) −19.9258 + 34.5124i −0.783968 + 1.35787i
\(647\) 19.5642 + 33.8863i 0.769150 + 1.33221i 0.938025 + 0.346569i \(0.112653\pi\)
−0.168875 + 0.985637i \(0.554013\pi\)
\(648\) 0 0
\(649\) 1.28860 2.23192i 0.0505819 0.0876104i
\(650\) −17.3136 3.22436i −0.679094 0.126470i
\(651\) 0 0
\(652\) 13.5642i 0.531217i
\(653\) 2.75714 4.77551i 0.107895 0.186880i −0.807022 0.590521i \(-0.798922\pi\)
0.914917 + 0.403641i \(0.132256\pi\)
\(654\) 0 0
\(655\) 6.08496 3.51315i 0.237759 0.137270i
\(656\) 0.748985 + 0.432427i 0.0292429 + 0.0168834i
\(657\) 0 0
\(658\) 23.3599 8.90298i 0.910664 0.347074i
\(659\) 49.2217 1.91741 0.958703 0.284410i \(-0.0917977\pi\)
0.958703 + 0.284410i \(0.0917977\pi\)
\(660\) 0 0
\(661\) −10.6731 + 6.16213i −0.415137 + 0.239679i −0.692994 0.720943i \(-0.743709\pi\)
0.277858 + 0.960622i \(0.410376\pi\)
\(662\) −13.4106 23.2278i −0.521218 0.902775i
\(663\) 0 0
\(664\) 16.2939 0.632328
\(665\) 5.11659 1.95005i 0.198413 0.0756196i
\(666\) 0 0
\(667\) −13.2395 + 22.9315i −0.512636 + 0.887912i
\(668\) 13.5995 7.85170i 0.526182 0.303791i
\(669\) 0 0
\(670\) −2.19247 1.26582i −0.0847026 0.0489031i
\(671\) 1.23103i 0.0475235i
\(672\) 0 0
\(673\) 6.79527 0.261938 0.130969 0.991386i \(-0.458191\pi\)
0.130969 + 0.991386i \(0.458191\pi\)
\(674\) 8.50343 + 4.90946i 0.327540 + 0.189105i
\(675\) 0 0
\(676\) −2.01145 12.8434i −0.0773635 0.493979i
\(677\) 8.34636 14.4563i 0.320777 0.555601i −0.659872 0.751378i \(-0.729389\pi\)
0.980648 + 0.195777i \(0.0627228\pi\)
\(678\) 0 0
\(679\) 42.0792 + 6.76790i 1.61485 + 0.259728i
\(680\) −2.22436 −0.0853003
\(681\) 0 0
\(682\) 2.28673 1.32025i 0.0875636 0.0505548i
\(683\) 18.8069 10.8582i 0.719627 0.415477i −0.0949885 0.995478i \(-0.530281\pi\)
0.814615 + 0.580002i \(0.196948\pi\)
\(684\) 0 0
\(685\) −4.83453 −0.184718
\(686\) −15.6044 + 9.97514i −0.595778 + 0.380853i
\(687\) 0 0
\(688\) 2.54461 4.40739i 0.0970122 0.168030i
\(689\) 10.1993 3.60186i 0.388564 0.137220i
\(690\) 0 0
\(691\) −40.6461 23.4670i −1.54625 0.892728i −0.998423 0.0561358i \(-0.982122\pi\)
−0.547827 0.836592i \(-0.684545\pi\)
\(692\) 13.6035 0.517127
\(693\) 0 0
\(694\) 19.0959i 0.724870i
\(695\) −2.77538 1.60236i −0.105276 0.0607812i
\(696\) 0 0
\(697\) −4.90181 + 2.83006i −0.185669 + 0.107196i
\(698\) 0.208066 0.360381i 0.00787541 0.0136406i
\(699\) 0 0
\(700\) −10.0237 8.15679i −0.378859 0.308298i
\(701\) 7.32251 0.276568 0.138284 0.990393i \(-0.455841\pi\)
0.138284 + 0.990393i \(0.455841\pi\)
\(702\) 0 0
\(703\) 10.7919 + 18.6922i 0.407026 + 0.704989i
\(704\) −0.571683 + 0.330062i −0.0215461 + 0.0124397i
\(705\) 0 0
\(706\) −16.4880 −0.620533
\(707\) 6.91070 2.63382i 0.259904 0.0990550i
\(708\) 0 0
\(709\) 5.75661 + 3.32358i 0.216194 + 0.124820i 0.604187 0.796843i \(-0.293498\pi\)
−0.387993 + 0.921662i \(0.626831\pi\)
\(710\) 0.260341 0.150308i 0.00977041 0.00564095i
\(711\) 0 0
\(712\) 2.22770 3.85848i 0.0834865 0.144603i
\(713\) 29.7164i 1.11289i
\(714\) 0 0
\(715\) −0.148106 + 0.795270i −0.00553884 + 0.0297414i
\(716\) −0.224361 + 0.388604i −0.00838475 + 0.0145228i
\(717\) 0 0
\(718\) 12.2362 + 21.1937i 0.456650 + 0.790942i
\(719\) −2.43576 + 4.21886i −0.0908386 + 0.157337i −0.907864 0.419264i \(-0.862288\pi\)
0.817026 + 0.576601i \(0.195621\pi\)
\(720\) 0 0
\(721\) −15.4689 12.5879i −0.576094 0.468797i
\(722\) 18.0785i 0.672813i
\(723\) 0 0
\(724\) −7.95206 13.7734i −0.295536 0.511883i
\(725\) −8.70473 15.0770i −0.323286 0.559947i
\(726\) 0 0
\(727\) −4.98931 −0.185043 −0.0925216 0.995711i \(-0.529493\pi\)
−0.0925216 + 0.995711i \(0.529493\pi\)
\(728\) 3.21358 8.98181i 0.119103 0.332888i
\(729\) 0 0
\(730\) −2.96390 1.71121i −0.109699 0.0633347i
\(731\) 16.6535 + 28.8446i 0.615950 + 1.06686i
\(732\) 0 0
\(733\) −6.46582 3.73304i −0.238820 0.137883i 0.375814 0.926695i \(-0.377363\pi\)
−0.614634 + 0.788812i \(0.710696\pi\)
\(734\) 12.4880i 0.460940i
\(735\) 0 0
\(736\) 7.42909i 0.273840i
\(737\) 2.45854 4.25831i 0.0905614 0.156857i
\(738\) 0 0
\(739\) 1.26585 0.730840i 0.0465651 0.0268844i −0.476537 0.879155i \(-0.658108\pi\)
0.523102 + 0.852270i \(0.324775\pi\)
\(740\) −0.602365 + 1.04333i −0.0221434 + 0.0383535i
\(741\) 0 0
\(742\) 7.83654 + 1.26041i 0.287688 + 0.0462710i
\(743\) 5.67975i 0.208370i −0.994558 0.104185i \(-0.966777\pi\)
0.994558 0.104185i \(-0.0332234\pi\)
\(744\) 0 0
\(745\) 1.37800 + 2.38677i 0.0504862 + 0.0874446i
\(746\) 6.77913 3.91393i 0.248201 0.143299i
\(747\) 0 0
\(748\) 4.32025i 0.157964i
\(749\) 7.65390 + 6.22838i 0.279668 + 0.227580i
\(750\) 0 0
\(751\) −2.19806 + 3.80715i −0.0802083 + 0.138925i −0.903339 0.428927i \(-0.858892\pi\)
0.823131 + 0.567851i \(0.192225\pi\)
\(752\) −8.18283 + 4.72436i −0.298397 + 0.172280i
\(753\) 0 0
\(754\) 8.35453 9.76479i 0.304254 0.355613i
\(755\) 1.80156 0.0655654
\(756\) 0 0
\(757\) 21.0326 0.764442 0.382221 0.924071i \(-0.375159\pi\)
0.382221 + 0.924071i \(0.375159\pi\)
\(758\) −4.33988 + 7.51689i −0.157631 + 0.273026i
\(759\) 0 0
\(760\) −1.79231 + 1.03479i −0.0650140 + 0.0375358i
\(761\) −10.9130 6.30062i −0.395595 0.228397i 0.288986 0.957333i \(-0.406682\pi\)
−0.684582 + 0.728936i \(0.740015\pi\)
\(762\) 0 0
\(763\) −13.5772 35.6243i −0.491528 1.28968i
\(764\) −10.4095 −0.376601
\(765\) 0 0
\(766\) −11.7112 20.2844i −0.423143 0.732906i
\(767\) −4.68736 13.2731i −0.169251 0.479265i
\(768\) 0 0
\(769\) 34.4398i 1.24193i −0.783838 0.620965i \(-0.786741\pi\)
0.783838 0.620965i \(-0.213259\pi\)
\(770\) −0.374668 + 0.460421i −0.0135021 + 0.0165924i
\(771\) 0 0
\(772\) −6.66786 3.84969i −0.239982 0.138553i
\(773\) −14.5471 + 8.39877i −0.523223 + 0.302083i −0.738252 0.674525i \(-0.764349\pi\)
0.215030 + 0.976608i \(0.431015\pi\)
\(774\) 0 0
\(775\) −16.9203 9.76897i −0.607797 0.350912i
\(776\) −16.1088 −0.578274
\(777\) 0 0
\(778\) 30.1914i 1.08241i
\(779\) −2.63314 + 4.56073i −0.0943419 + 0.163405i
\(780\) 0 0
\(781\) 0.291934 + 0.505645i 0.0104462 + 0.0180934i
\(782\) 42.1066 + 24.3102i 1.50573 + 0.869332i
\(783\) 0 0
\(784\) 5.22436 4.65898i 0.186584 0.166392i
\(785\) 7.83628i 0.279689i
\(786\) 0 0
\(787\) 31.9974 18.4737i 1.14058 0.658516i 0.194008 0.981000i \(-0.437851\pi\)
0.946575 + 0.322484i \(0.104518\pi\)
\(788\) −7.77723 + 4.49018i −0.277052 + 0.159956i
\(789\) 0 0
\(790\) −4.23103 −0.150533
\(791\) −6.53629 + 40.6392i −0.232404 + 1.44496i
\(792\) 0 0
\(793\) 5.10906 + 4.37119i 0.181428 + 0.155226i
\(794\) −4.24733 7.35659i −0.150732 0.261075i
\(795\) 0 0
\(796\) −10.2973 + 17.8354i −0.364977 + 0.632159i
\(797\) −38.7819 −1.37373 −0.686863 0.726787i \(-0.741013\pi\)
−0.686863 + 0.726787i \(0.741013\pi\)
\(798\) 0 0
\(799\) 61.8382i 2.18768i
\(800\) 4.23009 + 2.44224i 0.149556 + 0.0863463i
\(801\) 0 0
\(802\) −10.0859 17.4693i −0.356145 0.616861i
\(803\) 3.32358 5.75661i 0.117287 0.203146i
\(804\) 0 0
\(805\) −2.37914 6.24245i −0.0838536 0.220018i
\(806\) 2.64049 14.1784i 0.0930074 0.499414i
\(807\) 0 0
\(808\) −2.42077 + 1.39764i −0.0851626 + 0.0491686i
\(809\) 1.06090 + 1.83754i 0.0372993 + 0.0646043i 0.884072 0.467350i \(-0.154791\pi\)
−0.846773 + 0.531954i \(0.821458\pi\)
\(810\) 0 0
\(811\) 3.66680i 0.128759i −0.997926 0.0643793i \(-0.979493\pi\)
0.997926 0.0643793i \(-0.0205067\pi\)
\(812\) 8.81180 3.35837i 0.309234 0.117856i
\(813\) 0 0
\(814\) −2.02639 1.16994i −0.0710250 0.0410063i
\(815\) −2.30509 3.99253i −0.0807436 0.139852i
\(816\) 0 0
\(817\) 26.8375 + 15.4947i 0.938926 + 0.542089i
\(818\) 4.30062 0.150367
\(819\) 0 0
\(820\) −0.293944 −0.0102650
\(821\) −18.6261 10.7538i −0.650057 0.375310i 0.138421 0.990373i \(-0.455797\pi\)
−0.788478 + 0.615063i \(0.789131\pi\)
\(822\) 0 0
\(823\) 17.9770 + 31.1371i 0.626640 + 1.08537i 0.988221 + 0.153032i \(0.0489037\pi\)
−0.361581 + 0.932341i \(0.617763\pi\)
\(824\) 6.52804 + 3.76897i 0.227415 + 0.131298i
\(825\) 0 0
\(826\) 1.64026 10.1983i 0.0570719 0.354843i
\(827\) 32.8778i 1.14327i −0.820507 0.571637i \(-0.806309\pi\)
0.820507 0.571637i \(-0.193691\pi\)
\(828\) 0 0
\(829\) 4.91280 + 8.50921i 0.170628 + 0.295537i 0.938640 0.344899i \(-0.112087\pi\)
−0.768011 + 0.640436i \(0.778754\pi\)
\(830\) −4.79599 + 2.76897i −0.166471 + 0.0961123i
\(831\) 0 0
\(832\) −0.660123 + 3.54461i −0.0228857 + 0.122887i
\(833\) 9.31043 + 44.8562i 0.322587 + 1.55417i
\(834\) 0 0
\(835\) −2.66861 + 4.62217i −0.0923511 + 0.159957i
\(836\) −2.00982 3.48110i −0.0695109 0.120396i
\(837\) 0 0
\(838\) 28.4900 + 16.4487i 0.984171 + 0.568212i
\(839\) 42.6008i 1.47074i −0.677663 0.735372i \(-0.737007\pi\)
0.677663 0.735372i \(-0.262993\pi\)
\(840\) 0 0
\(841\) −16.2962 −0.561938
\(842\) −10.8615 + 18.8127i −0.374313 + 0.648328i
\(843\) 0 0
\(844\) 7.69491 + 13.3280i 0.264870 + 0.458768i
\(845\) 2.77465 + 3.43854i 0.0954509 + 0.118289i
\(846\) 0 0
\(847\) 21.6794 + 17.6416i 0.744912 + 0.606173i
\(848\) −3.00000 −0.103020
\(849\) 0 0
\(850\) −27.6843 + 15.9835i −0.949562 + 0.548230i
\(851\) 22.8052 13.1666i 0.781753 0.451345i
\(852\) 0 0
\(853\) 47.7490i 1.63489i −0.576005 0.817446i \(-0.695389\pi\)
0.576005 0.817446i \(-0.304611\pi\)
\(854\) 1.75714 + 4.61044i 0.0601282 + 0.157766i
\(855\) 0 0
\(856\) −3.23002 1.86485i −0.110400 0.0637394i
\(857\) −3.44671 5.96988i −0.117737 0.203927i 0.801133 0.598486i \(-0.204231\pi\)
−0.918871 + 0.394559i \(0.870897\pi\)
\(858\) 0 0
\(859\) −14.3898 + 24.9239i −0.490975 + 0.850393i −0.999946 0.0103904i \(-0.996693\pi\)
0.508971 + 0.860783i \(0.330026\pi\)
\(860\) 1.72971i 0.0589825i
\(861\) 0 0
\(862\) 6.06291 0.206504
\(863\) 42.0668 + 24.2873i 1.43197 + 0.826748i 0.997271 0.0738274i \(-0.0235214\pi\)
0.434699 + 0.900576i \(0.356855\pi\)
\(864\) 0 0
\(865\) −4.00408 + 2.31176i −0.136143 + 0.0786021i
\(866\) 9.64680 + 5.56958i 0.327812 + 0.189262i
\(867\) 0 0
\(868\) 6.67975 8.20859i 0.226726 0.278618i
\(869\) 8.21769i 0.278766i
\(870\) 0 0
\(871\) −8.94308 25.3240i −0.303025 0.858072i
\(872\) 7.20473 + 12.4790i 0.243983 + 0.422591i
\(873\) 0 0
\(874\) 45.2373 1.53018
\(875\) 8.77564 + 1.41145i 0.296671 + 0.0477157i
\(876\) 0 0
\(877\) 7.99779 + 4.61753i 0.270066 + 0.155923i 0.628918 0.777472i \(-0.283498\pi\)
−0.358852 + 0.933395i \(0.616832\pi\)
\(878\) −10.0659 + 5.81156i −0.339709 + 0.196131i
\(879\) 0 0
\(880\) 0.112180 0.194302i 0.00378160 0.00654992i
\(881\) 14.9108 0.502357 0.251179 0.967941i \(-0.419182\pi\)
0.251179 + 0.967941i \(0.419182\pi\)
\(882\) 0 0
\(883\) −37.9171 −1.27601 −0.638006 0.770032i \(-0.720240\pi\)
−0.638006 + 0.770032i \(0.720240\pi\)
\(884\) −17.9300 15.3405i −0.603051 0.515956i
\(885\) 0 0
\(886\) −4.04701 + 2.33654i −0.135962 + 0.0784976i
\(887\) 5.56424 9.63754i 0.186829 0.323597i −0.757362 0.652995i \(-0.773512\pi\)
0.944191 + 0.329398i \(0.106846\pi\)
\(888\) 0 0
\(889\) 6.05113 37.6227i 0.202948 1.26182i
\(890\) 1.51429i 0.0507590i
\(891\) 0 0
\(892\) 15.6055 9.00982i 0.522509 0.301671i
\(893\) −28.7676 49.8270i −0.962672 1.66740i
\(894\) 0 0
\(895\) 0.152510i 0.00509785i
\(896\) −1.66994 + 2.05215i −0.0557887 + 0.0685574i
\(897\) 0 0
\(898\) −18.3136 + 31.7200i −0.611132 + 1.05851i
\(899\) 12.3469 7.12847i 0.411792 0.237748i
\(900\) 0 0
\(901\) 9.81691 17.0034i 0.327049 0.566465i
\(902\) 0.570909i 0.0190092i
\(903\) 0 0
\(904\) 15.5576i 0.517437i
\(905\) 4.68125 + 2.70272i 0.155610 + 0.0898415i
\(906\) 0 0
\(907\) 6.05442 + 10.4866i 0.201034 + 0.348201i 0.948862 0.315692i \(-0.102237\pi\)
−0.747828 + 0.663893i \(0.768903\pi\)
\(908\) −0.200080 0.115516i −0.00663989 0.00383354i
\(909\) 0 0
\(910\) 0.580464 + 3.18983i 0.0192422 + 0.105742i
\(911\) 46.4354 1.53847 0.769236 0.638964i \(-0.220637\pi\)
0.769236 + 0.638964i \(0.220637\pi\)
\(912\) 0 0
\(913\) −5.37800 9.31498i −0.177986 0.308281i
\(914\) 15.6686 + 27.1388i 0.518272 + 0.897673i
\(915\) 0 0
\(916\) 6.64049i 0.219408i
\(917\) 42.4242 + 34.5228i 1.40097 + 1.14004i
\(918\) 0 0
\(919\) −18.3898 + 31.8521i −0.606624 + 1.05070i 0.385168 + 0.922846i \(0.374143\pi\)
−0.991792 + 0.127858i \(0.959190\pi\)
\(920\) 1.26249 + 2.18669i 0.0416230 + 0.0720931i
\(921\) 0 0
\(922\) −0.300616 + 0.520681i −0.00990025 + 0.0171477i
\(923\) 3.13515 + 0.583868i 0.103195 + 0.0192183i
\(924\) 0 0
\(925\) 17.3136i 0.569267i
\(926\) −5.25066 + 9.09442i −0.172548 + 0.298861i
\(927\) 0 0
\(928\) −3.08672 + 1.78212i −0.101327 + 0.0585009i
\(929\) 3.58462 + 2.06958i 0.117608 + 0.0679008i 0.557650 0.830076i \(-0.311703\pi\)
−0.440042 + 0.897977i \(0.645037\pi\)
\(930\) 0 0
\(931\) 28.3695 + 31.8122i 0.929773 + 1.04260i
\(932\) −29.5183 −0.966904
\(933\) 0 0
\(934\) 23.5747 13.6109i 0.771387 0.445361i
\(935\) 0.734176 + 1.27163i 0.0240101 + 0.0415867i
\(936\) 0 0
\(937\) 45.2939 1.47969 0.739844 0.672778i \(-0.234899\pi\)
0.739844 + 0.672778i \(0.234899\pi\)
\(938\) 3.12947 19.4574i 0.102181 0.635307i
\(939\) 0 0
\(940\) 1.60570 2.78116i 0.0523722 0.0907113i
\(941\) −41.4781 + 23.9474i −1.35215 + 0.780663i −0.988550 0.150893i \(-0.951785\pi\)
−0.363598 + 0.931556i \(0.618452\pi\)
\(942\) 0 0
\(943\) 5.56428 + 3.21254i 0.181198 + 0.104615i
\(944\) 3.90411i 0.127068i
\(945\) 0 0
\(946\) −3.35951 −0.109227
\(947\) 18.5809 + 10.7277i 0.603799 + 0.348603i 0.770534 0.637398i \(-0.219989\pi\)
−0.166736 + 0.986002i \(0.553323\pi\)
\(948\) 0 0
\(949\) −12.0897 34.2344i −0.392450 1.11129i
\(950\) −14.8713 + 25.7579i −0.482490 + 0.835697i
\(951\) 0 0
\(952\) −6.16660 16.1801i −0.199861 0.524401i
\(953\) −48.0433 −1.55627 −0.778137 0.628094i \(-0.783835\pi\)
−0.778137 + 0.628094i \(0.783835\pi\)
\(954\) 0 0
\(955\) 3.06394 1.76897i 0.0991468 0.0572424i
\(956\) −13.0109 + 7.51182i −0.420801 + 0.242950i
\(957\) 0 0
\(958\) −28.8711 −0.932784
\(959\) −13.4028 35.1666i −0.432799 1.13559i
\(960\) 0 0
\(961\) −7.50000 + 12.9904i −0.241935 + 0.419045i
\(962\) −12.0509 + 4.25573i −0.388536 + 0.137210i
\(963\) 0 0
\(964\) −3.85271 2.22436i −0.124087 0.0716418i
\(965\) 2.61684 0.0842392
\(966\) 0 0
\(967\) 4.91481i 0.158049i −0.996873 0.0790247i \(-0.974819\pi\)
0.996873 0.0790247i \(-0.0251806\pi\)
\(968\) −9.14890 5.28212i −0.294057 0.169774i
\(969\) 0 0
\(970\) 4.74151 2.73751i 0.152241 0.0878962i
\(971\) 15.0792 26.1180i 0.483915 0.838165i −0.515915 0.856640i \(-0.672548\pi\)
0.999829 + 0.0184751i \(0.00588115\pi\)
\(972\) 0 0
\(973\) 3.96150 24.6305i 0.127000 0.789617i
\(974\) −3.91746 −0.125523
\(975\) 0 0
\(976\) −0.932427 1.61501i −0.0298462 0.0516952i
\(977\) −29.7995 + 17.2047i −0.953369 + 0.550428i −0.894126 0.447815i \(-0.852202\pi\)
−0.0592434 + 0.998244i \(0.518869\pi\)
\(978\) 0 0
\(979\) −2.94111 −0.0939982
\(980\) −0.746010 + 2.25915i −0.0238304 + 0.0721660i
\(981\) 0 0
\(982\) 11.6222 + 6.71008i 0.370879 + 0.214127i
\(983\) 17.2772 9.97502i 0.551059 0.318154i −0.198490 0.980103i \(-0.563604\pi\)
0.749549 + 0.661949i \(0.230270\pi\)
\(984\) 0 0
\(985\) 1.52611 2.64330i 0.0486259 0.0842225i
\(986\) 23.3265i 0.742868i
\(987\) 0 0
\(988\) −21.5839 4.01963i −0.686674 0.127881i
\(989\) 18.9041 32.7429i 0.601116 1.04116i
\(990\) 0 0
\(991\) 11.9474 + 20.6935i 0.379521 + 0.657351i 0.990993 0.133916i \(-0.0427553\pi\)
−0.611471 + 0.791267i \(0.709422\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) 1.81509 + 1.47703i 0.0575712 + 0.0468487i
\(995\) 6.99961i 0.221903i
\(996\) 0 0
\(997\) −3.07273 5.32212i −0.0973142 0.168553i 0.813258 0.581903i \(-0.197692\pi\)
−0.910572 + 0.413350i \(0.864359\pi\)
\(998\) 16.3910 + 28.3900i 0.518847 + 0.898669i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.dm.c.415.5 12
3.2 odd 2 546.2.bk.b.415.2 yes 12
7.4 even 3 inner 1638.2.dm.c.1117.2 12
13.12 even 2 inner 1638.2.dm.c.415.2 12
21.2 odd 6 3822.2.c.k.883.5 6
21.5 even 6 3822.2.c.j.883.5 6
21.11 odd 6 546.2.bk.b.25.5 yes 12
39.38 odd 2 546.2.bk.b.415.5 yes 12
91.25 even 6 inner 1638.2.dm.c.1117.5 12
273.116 odd 6 546.2.bk.b.25.2 12
273.194 even 6 3822.2.c.j.883.2 6
273.233 odd 6 3822.2.c.k.883.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.bk.b.25.2 12 273.116 odd 6
546.2.bk.b.25.5 yes 12 21.11 odd 6
546.2.bk.b.415.2 yes 12 3.2 odd 2
546.2.bk.b.415.5 yes 12 39.38 odd 2
1638.2.dm.c.415.2 12 13.12 even 2 inner
1638.2.dm.c.415.5 12 1.1 even 1 trivial
1638.2.dm.c.1117.2 12 7.4 even 3 inner
1638.2.dm.c.1117.5 12 91.25 even 6 inner
3822.2.c.j.883.2 6 273.194 even 6
3822.2.c.j.883.5 6 21.5 even 6
3822.2.c.k.883.2 6 273.233 odd 6
3822.2.c.k.883.5 6 21.2 odd 6