Properties

Label 5445.2.a.bi.1.4
Level $5445$
Weight $2$
Character 5445.1
Self dual yes
Analytic conductor $43.479$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5445,2,Mod(1,5445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5445.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5445.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,-1,4,0,3,-3,0,-1,0,0,1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4785439006\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.35567\) of defining polynomial
Character \(\chi\) \(=\) 5445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.35567 q^{2} -0.162147 q^{4} +1.00000 q^{5} +3.64941 q^{7} -2.93117 q^{8} +1.35567 q^{10} +2.83095 q^{13} +4.94742 q^{14} -3.64941 q^{16} +3.69195 q^{17} +0.0951243 q^{19} -0.162147 q^{20} -1.16215 q^{23} +1.00000 q^{25} +3.83785 q^{26} -0.591742 q^{28} -6.75389 q^{29} +6.77837 q^{31} +0.914918 q^{32} +5.00509 q^{34} +3.64941 q^{35} +9.83980 q^{37} +0.128958 q^{38} -2.93117 q^{40} -8.31822 q^{41} +2.96862 q^{43} -1.57549 q^{46} +2.22491 q^{47} +6.31822 q^{49} +1.35567 q^{50} -0.459031 q^{52} -2.99393 q^{53} -10.6970 q^{56} -9.15607 q^{58} +8.50860 q^{59} +8.48037 q^{61} +9.18926 q^{62} +8.53916 q^{64} +2.83095 q^{65} -13.4153 q^{67} -0.598640 q^{68} +4.94742 q^{70} -8.30309 q^{71} +1.32003 q^{73} +13.3396 q^{74} -0.0154241 q^{76} +13.8661 q^{79} -3.64941 q^{80} -11.2768 q^{82} -10.6445 q^{83} +3.69195 q^{85} +4.02448 q^{86} +12.1612 q^{89} +10.3313 q^{91} +0.188439 q^{92} +3.01625 q^{94} +0.0951243 q^{95} -4.33133 q^{97} +8.56545 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} + 4 q^{5} + 3 q^{7} - 3 q^{8} - q^{10} + q^{13} - 2 q^{14} - 3 q^{16} + q^{17} + 20 q^{19} - q^{20} - 5 q^{23} + 4 q^{25} + 15 q^{26} + 13 q^{28} - 12 q^{29} - 5 q^{31} + 8 q^{32}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35567 0.958606 0.479303 0.877649i \(-0.340889\pi\)
0.479303 + 0.877649i \(0.340889\pi\)
\(3\) 0 0
\(4\) −0.162147 −0.0810736
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.64941 1.37935 0.689674 0.724120i \(-0.257754\pi\)
0.689674 + 0.724120i \(0.257754\pi\)
\(8\) −2.93117 −1.03632
\(9\) 0 0
\(10\) 1.35567 0.428702
\(11\) 0 0
\(12\) 0 0
\(13\) 2.83095 0.785166 0.392583 0.919717i \(-0.371582\pi\)
0.392583 + 0.919717i \(0.371582\pi\)
\(14\) 4.94742 1.32225
\(15\) 0 0
\(16\) −3.64941 −0.912353
\(17\) 3.69195 0.895431 0.447715 0.894176i \(-0.352238\pi\)
0.447715 + 0.894176i \(0.352238\pi\)
\(18\) 0 0
\(19\) 0.0951243 0.0218230 0.0109115 0.999940i \(-0.496527\pi\)
0.0109115 + 0.999940i \(0.496527\pi\)
\(20\) −0.162147 −0.0362572
\(21\) 0 0
\(22\) 0 0
\(23\) −1.16215 −0.242324 −0.121162 0.992633i \(-0.538662\pi\)
−0.121162 + 0.992633i \(0.538662\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 3.83785 0.752665
\(27\) 0 0
\(28\) −0.591742 −0.111829
\(29\) −6.75389 −1.25417 −0.627083 0.778953i \(-0.715751\pi\)
−0.627083 + 0.778953i \(0.715751\pi\)
\(30\) 0 0
\(31\) 6.77837 1.21743 0.608716 0.793388i \(-0.291685\pi\)
0.608716 + 0.793388i \(0.291685\pi\)
\(32\) 0.914918 0.161736
\(33\) 0 0
\(34\) 5.00509 0.858366
\(35\) 3.64941 0.616864
\(36\) 0 0
\(37\) 9.83980 1.61765 0.808826 0.588048i \(-0.200103\pi\)
0.808826 + 0.588048i \(0.200103\pi\)
\(38\) 0.128958 0.0209197
\(39\) 0 0
\(40\) −2.93117 −0.463458
\(41\) −8.31822 −1.29909 −0.649544 0.760324i \(-0.725040\pi\)
−0.649544 + 0.760324i \(0.725040\pi\)
\(42\) 0 0
\(43\) 2.96862 0.452710 0.226355 0.974045i \(-0.427319\pi\)
0.226355 + 0.974045i \(0.427319\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.57549 −0.232294
\(47\) 2.22491 0.324536 0.162268 0.986747i \(-0.448119\pi\)
0.162268 + 0.986747i \(0.448119\pi\)
\(48\) 0 0
\(49\) 6.31822 0.902603
\(50\) 1.35567 0.191721
\(51\) 0 0
\(52\) −0.459031 −0.0636562
\(53\) −2.99393 −0.411248 −0.205624 0.978631i \(-0.565922\pi\)
−0.205624 + 0.978631i \(0.565922\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −10.6970 −1.42945
\(57\) 0 0
\(58\) −9.15607 −1.20225
\(59\) 8.50860 1.10773 0.553863 0.832608i \(-0.313153\pi\)
0.553863 + 0.832608i \(0.313153\pi\)
\(60\) 0 0
\(61\) 8.48037 1.08580 0.542900 0.839797i \(-0.317326\pi\)
0.542900 + 0.839797i \(0.317326\pi\)
\(62\) 9.18926 1.16704
\(63\) 0 0
\(64\) 8.53916 1.06739
\(65\) 2.83095 0.351137
\(66\) 0 0
\(67\) −13.4153 −1.63894 −0.819469 0.573123i \(-0.805732\pi\)
−0.819469 + 0.573123i \(0.805732\pi\)
\(68\) −0.598640 −0.0725958
\(69\) 0 0
\(70\) 4.94742 0.591329
\(71\) −8.30309 −0.985396 −0.492698 0.870200i \(-0.663989\pi\)
−0.492698 + 0.870200i \(0.663989\pi\)
\(72\) 0 0
\(73\) 1.32003 0.154498 0.0772490 0.997012i \(-0.475386\pi\)
0.0772490 + 0.997012i \(0.475386\pi\)
\(74\) 13.3396 1.55069
\(75\) 0 0
\(76\) −0.0154241 −0.00176927
\(77\) 0 0
\(78\) 0 0
\(79\) 13.8661 1.56006 0.780028 0.625744i \(-0.215205\pi\)
0.780028 + 0.625744i \(0.215205\pi\)
\(80\) −3.64941 −0.408017
\(81\) 0 0
\(82\) −11.2768 −1.24531
\(83\) −10.6445 −1.16838 −0.584191 0.811616i \(-0.698588\pi\)
−0.584191 + 0.811616i \(0.698588\pi\)
\(84\) 0 0
\(85\) 3.69195 0.400449
\(86\) 4.02448 0.433971
\(87\) 0 0
\(88\) 0 0
\(89\) 12.1612 1.28908 0.644540 0.764570i \(-0.277049\pi\)
0.644540 + 0.764570i \(0.277049\pi\)
\(90\) 0 0
\(91\) 10.3313 1.08302
\(92\) 0.188439 0.0196461
\(93\) 0 0
\(94\) 3.01625 0.311102
\(95\) 0.0951243 0.00975955
\(96\) 0 0
\(97\) −4.33133 −0.439780 −0.219890 0.975525i \(-0.570570\pi\)
−0.219890 + 0.975525i \(0.570570\pi\)
\(98\) 8.56545 0.865241
\(99\) 0 0
\(100\) −0.162147 −0.0162147
\(101\) 9.90570 0.985654 0.492827 0.870127i \(-0.335964\pi\)
0.492827 + 0.870127i \(0.335964\pi\)
\(102\) 0 0
\(103\) 4.06590 0.400625 0.200313 0.979732i \(-0.435804\pi\)
0.200313 + 0.979732i \(0.435804\pi\)
\(104\) −8.29800 −0.813686
\(105\) 0 0
\(106\) −4.05879 −0.394225
\(107\) 1.93858 0.187409 0.0937046 0.995600i \(-0.470129\pi\)
0.0937046 + 0.995600i \(0.470129\pi\)
\(108\) 0 0
\(109\) −6.12664 −0.586825 −0.293413 0.955986i \(-0.594791\pi\)
−0.293413 + 0.955986i \(0.594791\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −13.3182 −1.25845
\(113\) −5.78527 −0.544232 −0.272116 0.962264i \(-0.587724\pi\)
−0.272116 + 0.962264i \(0.587724\pi\)
\(114\) 0 0
\(115\) −1.16215 −0.108371
\(116\) 1.09512 0.101680
\(117\) 0 0
\(118\) 11.5349 1.06187
\(119\) 13.4735 1.23511
\(120\) 0 0
\(121\) 0 0
\(122\) 11.4966 1.04085
\(123\) 0 0
\(124\) −1.09909 −0.0987016
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −2.43783 −0.216322 −0.108161 0.994133i \(-0.534496\pi\)
−0.108161 + 0.994133i \(0.534496\pi\)
\(128\) 9.74648 0.861475
\(129\) 0 0
\(130\) 3.83785 0.336602
\(131\) 7.04156 0.615224 0.307612 0.951512i \(-0.400470\pi\)
0.307612 + 0.951512i \(0.400470\pi\)
\(132\) 0 0
\(133\) 0.347148 0.0301016
\(134\) −18.1868 −1.57110
\(135\) 0 0
\(136\) −10.8217 −0.927956
\(137\) 9.57286 0.817864 0.408932 0.912565i \(-0.365901\pi\)
0.408932 + 0.912565i \(0.365901\pi\)
\(138\) 0 0
\(139\) −0.515502 −0.0437243 −0.0218621 0.999761i \(-0.506959\pi\)
−0.0218621 + 0.999761i \(0.506959\pi\)
\(140\) −0.591742 −0.0500113
\(141\) 0 0
\(142\) −11.2563 −0.944607
\(143\) 0 0
\(144\) 0 0
\(145\) −6.75389 −0.560880
\(146\) 1.78953 0.148103
\(147\) 0 0
\(148\) −1.59550 −0.131149
\(149\) −8.15983 −0.668479 −0.334240 0.942488i \(-0.608479\pi\)
−0.334240 + 0.942488i \(0.608479\pi\)
\(150\) 0 0
\(151\) −1.94023 −0.157893 −0.0789466 0.996879i \(-0.525156\pi\)
−0.0789466 + 0.996879i \(0.525156\pi\)
\(152\) −0.278825 −0.0226157
\(153\) 0 0
\(154\) 0 0
\(155\) 6.77837 0.544452
\(156\) 0 0
\(157\) 21.2745 1.69789 0.848944 0.528483i \(-0.177239\pi\)
0.848944 + 0.528483i \(0.177239\pi\)
\(158\) 18.7979 1.49548
\(159\) 0 0
\(160\) 0.914918 0.0723306
\(161\) −4.24116 −0.334250
\(162\) 0 0
\(163\) −15.9810 −1.25173 −0.625863 0.779933i \(-0.715253\pi\)
−0.625863 + 0.779933i \(0.715253\pi\)
\(164\) 1.34878 0.105322
\(165\) 0 0
\(166\) −14.4304 −1.12002
\(167\) 17.7090 1.37037 0.685183 0.728371i \(-0.259722\pi\)
0.685183 + 0.728371i \(0.259722\pi\)
\(168\) 0 0
\(169\) −4.98569 −0.383515
\(170\) 5.00509 0.383873
\(171\) 0 0
\(172\) −0.481353 −0.0367029
\(173\) 15.8855 1.20775 0.603875 0.797079i \(-0.293622\pi\)
0.603875 + 0.797079i \(0.293622\pi\)
\(174\) 0 0
\(175\) 3.64941 0.275870
\(176\) 0 0
\(177\) 0 0
\(178\) 16.4866 1.23572
\(179\) 16.8810 1.26175 0.630874 0.775885i \(-0.282696\pi\)
0.630874 + 0.775885i \(0.282696\pi\)
\(180\) 0 0
\(181\) −24.0874 −1.79040 −0.895200 0.445664i \(-0.852968\pi\)
−0.895200 + 0.445664i \(0.852968\pi\)
\(182\) 14.0059 1.03819
\(183\) 0 0
\(184\) 3.40645 0.251127
\(185\) 9.83980 0.723436
\(186\) 0 0
\(187\) 0 0
\(188\) −0.360762 −0.0263113
\(189\) 0 0
\(190\) 0.128958 0.00935557
\(191\) −5.38279 −0.389485 −0.194743 0.980854i \(-0.562387\pi\)
−0.194743 + 0.980854i \(0.562387\pi\)
\(192\) 0 0
\(193\) −18.2840 −1.31611 −0.658057 0.752968i \(-0.728622\pi\)
−0.658057 + 0.752968i \(0.728622\pi\)
\(194\) −5.87187 −0.421576
\(195\) 0 0
\(196\) −1.02448 −0.0731773
\(197\) 2.64566 0.188496 0.0942478 0.995549i \(-0.469955\pi\)
0.0942478 + 0.995549i \(0.469955\pi\)
\(198\) 0 0
\(199\) 6.52800 0.462757 0.231379 0.972864i \(-0.425676\pi\)
0.231379 + 0.972864i \(0.425676\pi\)
\(200\) −2.93117 −0.207265
\(201\) 0 0
\(202\) 13.4289 0.944854
\(203\) −24.6477 −1.72993
\(204\) 0 0
\(205\) −8.31822 −0.580970
\(206\) 5.51204 0.384042
\(207\) 0 0
\(208\) −10.3313 −0.716349
\(209\) 0 0
\(210\) 0 0
\(211\) 27.4478 1.88958 0.944792 0.327671i \(-0.106264\pi\)
0.944792 + 0.327671i \(0.106264\pi\)
\(212\) 0.485457 0.0333413
\(213\) 0 0
\(214\) 2.62808 0.179652
\(215\) 2.96862 0.202458
\(216\) 0 0
\(217\) 24.7371 1.67926
\(218\) −8.30573 −0.562535
\(219\) 0 0
\(220\) 0 0
\(221\) 10.4518 0.703061
\(222\) 0 0
\(223\) −5.08194 −0.340312 −0.170156 0.985417i \(-0.554427\pi\)
−0.170156 + 0.985417i \(0.554427\pi\)
\(224\) 3.33892 0.223091
\(225\) 0 0
\(226\) −7.84294 −0.521705
\(227\) 3.73980 0.248219 0.124110 0.992269i \(-0.460393\pi\)
0.124110 + 0.992269i \(0.460393\pi\)
\(228\) 0 0
\(229\) 26.9241 1.77920 0.889598 0.456745i \(-0.150985\pi\)
0.889598 + 0.456745i \(0.150985\pi\)
\(230\) −1.57549 −0.103885
\(231\) 0 0
\(232\) 19.7968 1.29972
\(233\) 18.3167 1.19997 0.599984 0.800012i \(-0.295174\pi\)
0.599984 + 0.800012i \(0.295174\pi\)
\(234\) 0 0
\(235\) 2.22491 0.145137
\(236\) −1.37965 −0.0898073
\(237\) 0 0
\(238\) 18.2656 1.18399
\(239\) −10.9559 −0.708676 −0.354338 0.935117i \(-0.615294\pi\)
−0.354338 + 0.935117i \(0.615294\pi\)
\(240\) 0 0
\(241\) 9.99444 0.643798 0.321899 0.946774i \(-0.395679\pi\)
0.321899 + 0.946774i \(0.395679\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −1.37507 −0.0880297
\(245\) 6.31822 0.403656
\(246\) 0 0
\(247\) 0.269293 0.0171347
\(248\) −19.8685 −1.26165
\(249\) 0 0
\(250\) 1.35567 0.0857404
\(251\) −9.65743 −0.609572 −0.304786 0.952421i \(-0.598585\pi\)
−0.304786 + 0.952421i \(0.598585\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −3.30490 −0.207368
\(255\) 0 0
\(256\) −3.86526 −0.241579
\(257\) −10.4276 −0.650454 −0.325227 0.945636i \(-0.605441\pi\)
−0.325227 + 0.945636i \(0.605441\pi\)
\(258\) 0 0
\(259\) 35.9095 2.23131
\(260\) −0.459031 −0.0284679
\(261\) 0 0
\(262\) 9.54606 0.589757
\(263\) −10.9619 −0.675937 −0.337968 0.941157i \(-0.609740\pi\)
−0.337968 + 0.941157i \(0.609740\pi\)
\(264\) 0 0
\(265\) −2.99393 −0.183915
\(266\) 0.470620 0.0288555
\(267\) 0 0
\(268\) 2.17525 0.132875
\(269\) 0.0893449 0.00544746 0.00272373 0.999996i \(-0.499133\pi\)
0.00272373 + 0.999996i \(0.499133\pi\)
\(270\) 0 0
\(271\) 13.3996 0.813965 0.406982 0.913436i \(-0.366581\pi\)
0.406982 + 0.913436i \(0.366581\pi\)
\(272\) −13.4735 −0.816949
\(273\) 0 0
\(274\) 12.9777 0.784010
\(275\) 0 0
\(276\) 0 0
\(277\) 3.90669 0.234730 0.117365 0.993089i \(-0.462555\pi\)
0.117365 + 0.993089i \(0.462555\pi\)
\(278\) −0.698853 −0.0419144
\(279\) 0 0
\(280\) −10.6970 −0.639271
\(281\) −1.53743 −0.0917155 −0.0458577 0.998948i \(-0.514602\pi\)
−0.0458577 + 0.998948i \(0.514602\pi\)
\(282\) 0 0
\(283\) 5.41170 0.321692 0.160846 0.986980i \(-0.448578\pi\)
0.160846 + 0.986980i \(0.448578\pi\)
\(284\) 1.34632 0.0798896
\(285\) 0 0
\(286\) 0 0
\(287\) −30.3566 −1.79190
\(288\) 0 0
\(289\) −3.36947 −0.198204
\(290\) −9.15607 −0.537663
\(291\) 0 0
\(292\) −0.214039 −0.0125257
\(293\) 11.4165 0.666958 0.333479 0.942757i \(-0.391777\pi\)
0.333479 + 0.942757i \(0.391777\pi\)
\(294\) 0 0
\(295\) 8.50860 0.495390
\(296\) −28.8421 −1.67641
\(297\) 0 0
\(298\) −11.0621 −0.640808
\(299\) −3.28999 −0.190265
\(300\) 0 0
\(301\) 10.8337 0.624445
\(302\) −2.63031 −0.151358
\(303\) 0 0
\(304\) −0.347148 −0.0199103
\(305\) 8.48037 0.485585
\(306\) 0 0
\(307\) 4.25008 0.242565 0.121282 0.992618i \(-0.461299\pi\)
0.121282 + 0.992618i \(0.461299\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 9.18926 0.521915
\(311\) 16.6195 0.942404 0.471202 0.882025i \(-0.343820\pi\)
0.471202 + 0.882025i \(0.343820\pi\)
\(312\) 0 0
\(313\) −26.5770 −1.50222 −0.751109 0.660178i \(-0.770481\pi\)
−0.751109 + 0.660178i \(0.770481\pi\)
\(314\) 28.8413 1.62761
\(315\) 0 0
\(316\) −2.24835 −0.126479
\(317\) −5.79694 −0.325589 −0.162794 0.986660i \(-0.552051\pi\)
−0.162794 + 0.986660i \(0.552051\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 8.53916 0.477353
\(321\) 0 0
\(322\) −5.74963 −0.320414
\(323\) 0.351195 0.0195410
\(324\) 0 0
\(325\) 2.83095 0.157033
\(326\) −21.6650 −1.19991
\(327\) 0 0
\(328\) 24.3821 1.34628
\(329\) 8.11961 0.447648
\(330\) 0 0
\(331\) −12.9230 −0.710311 −0.355155 0.934807i \(-0.615572\pi\)
−0.355155 + 0.934807i \(0.615572\pi\)
\(332\) 1.72597 0.0947249
\(333\) 0 0
\(334\) 24.0077 1.31364
\(335\) −13.4153 −0.732956
\(336\) 0 0
\(337\) −13.3854 −0.729148 −0.364574 0.931174i \(-0.618785\pi\)
−0.364574 + 0.931174i \(0.618785\pi\)
\(338\) −6.75898 −0.367640
\(339\) 0 0
\(340\) −0.598640 −0.0324658
\(341\) 0 0
\(342\) 0 0
\(343\) −2.48809 −0.134344
\(344\) −8.70152 −0.469155
\(345\) 0 0
\(346\) 21.5355 1.15776
\(347\) −8.44899 −0.453565 −0.226783 0.973945i \(-0.572821\pi\)
−0.226783 + 0.973945i \(0.572821\pi\)
\(348\) 0 0
\(349\) 10.3988 0.556636 0.278318 0.960489i \(-0.410223\pi\)
0.278318 + 0.960489i \(0.410223\pi\)
\(350\) 4.94742 0.264451
\(351\) 0 0
\(352\) 0 0
\(353\) −19.1073 −1.01698 −0.508489 0.861069i \(-0.669796\pi\)
−0.508489 + 0.861069i \(0.669796\pi\)
\(354\) 0 0
\(355\) −8.30309 −0.440682
\(356\) −1.97190 −0.104510
\(357\) 0 0
\(358\) 22.8852 1.20952
\(359\) −4.41417 −0.232971 −0.116486 0.993192i \(-0.537163\pi\)
−0.116486 + 0.993192i \(0.537163\pi\)
\(360\) 0 0
\(361\) −18.9910 −0.999524
\(362\) −32.6546 −1.71629
\(363\) 0 0
\(364\) −1.67520 −0.0878041
\(365\) 1.32003 0.0690936
\(366\) 0 0
\(367\) −29.3617 −1.53267 −0.766335 0.642442i \(-0.777922\pi\)
−0.766335 + 0.642442i \(0.777922\pi\)
\(368\) 4.24116 0.221086
\(369\) 0 0
\(370\) 13.3396 0.693491
\(371\) −10.9261 −0.567254
\(372\) 0 0
\(373\) 4.96478 0.257067 0.128533 0.991705i \(-0.458973\pi\)
0.128533 + 0.991705i \(0.458973\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.52157 −0.336325
\(377\) −19.1200 −0.984728
\(378\) 0 0
\(379\) 7.92315 0.406985 0.203492 0.979077i \(-0.434771\pi\)
0.203492 + 0.979077i \(0.434771\pi\)
\(380\) −0.0154241 −0.000791242 0
\(381\) 0 0
\(382\) −7.29731 −0.373363
\(383\) 24.5155 1.25268 0.626342 0.779549i \(-0.284551\pi\)
0.626342 + 0.779549i \(0.284551\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −24.7872 −1.26164
\(387\) 0 0
\(388\) 0.702312 0.0356545
\(389\) −5.46094 −0.276881 −0.138440 0.990371i \(-0.544209\pi\)
−0.138440 + 0.990371i \(0.544209\pi\)
\(390\) 0 0
\(391\) −4.29059 −0.216985
\(392\) −18.5198 −0.935389
\(393\) 0 0
\(394\) 3.58665 0.180693
\(395\) 13.8661 0.697679
\(396\) 0 0
\(397\) −6.43455 −0.322941 −0.161470 0.986878i \(-0.551624\pi\)
−0.161470 + 0.986878i \(0.551624\pi\)
\(398\) 8.84984 0.443602
\(399\) 0 0
\(400\) −3.64941 −0.182471
\(401\) 14.7026 0.734213 0.367107 0.930179i \(-0.380348\pi\)
0.367107 + 0.930179i \(0.380348\pi\)
\(402\) 0 0
\(403\) 19.1893 0.955885
\(404\) −1.60618 −0.0799105
\(405\) 0 0
\(406\) −33.4143 −1.65832
\(407\) 0 0
\(408\) 0 0
\(409\) −4.39576 −0.217356 −0.108678 0.994077i \(-0.534662\pi\)
−0.108678 + 0.994077i \(0.534662\pi\)
\(410\) −11.2768 −0.556921
\(411\) 0 0
\(412\) −0.659275 −0.0324802
\(413\) 31.0514 1.52794
\(414\) 0 0
\(415\) −10.6445 −0.522516
\(416\) 2.59009 0.126990
\(417\) 0 0
\(418\) 0 0
\(419\) −17.8526 −0.872159 −0.436079 0.899908i \(-0.643633\pi\)
−0.436079 + 0.899908i \(0.643633\pi\)
\(420\) 0 0
\(421\) −4.82854 −0.235328 −0.117664 0.993053i \(-0.537541\pi\)
−0.117664 + 0.993053i \(0.537541\pi\)
\(422\) 37.2103 1.81137
\(423\) 0 0
\(424\) 8.77570 0.426186
\(425\) 3.69195 0.179086
\(426\) 0 0
\(427\) 30.9484 1.49770
\(428\) −0.314335 −0.0151939
\(429\) 0 0
\(430\) 4.02448 0.194078
\(431\) −24.8739 −1.19814 −0.599068 0.800698i \(-0.704462\pi\)
−0.599068 + 0.800698i \(0.704462\pi\)
\(432\) 0 0
\(433\) −21.2502 −1.02122 −0.510611 0.859812i \(-0.670581\pi\)
−0.510611 + 0.859812i \(0.670581\pi\)
\(434\) 33.5354 1.60975
\(435\) 0 0
\(436\) 0.993417 0.0475761
\(437\) −0.110548 −0.00528825
\(438\) 0 0
\(439\) 15.9119 0.759434 0.379717 0.925103i \(-0.376021\pi\)
0.379717 + 0.925103i \(0.376021\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 14.1692 0.673959
\(443\) −26.2876 −1.24896 −0.624481 0.781040i \(-0.714690\pi\)
−0.624481 + 0.781040i \(0.714690\pi\)
\(444\) 0 0
\(445\) 12.1612 0.576494
\(446\) −6.88945 −0.326225
\(447\) 0 0
\(448\) 31.1629 1.47231
\(449\) 8.18961 0.386492 0.193246 0.981150i \(-0.438098\pi\)
0.193246 + 0.981150i \(0.438098\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.938065 0.0441229
\(453\) 0 0
\(454\) 5.06995 0.237945
\(455\) 10.3313 0.484340
\(456\) 0 0
\(457\) −11.9164 −0.557425 −0.278713 0.960375i \(-0.589908\pi\)
−0.278713 + 0.960375i \(0.589908\pi\)
\(458\) 36.5003 1.70555
\(459\) 0 0
\(460\) 0.188439 0.00878601
\(461\) 6.96172 0.324240 0.162120 0.986771i \(-0.448167\pi\)
0.162120 + 0.986771i \(0.448167\pi\)
\(462\) 0 0
\(463\) 12.4762 0.579817 0.289909 0.957054i \(-0.406375\pi\)
0.289909 + 0.957054i \(0.406375\pi\)
\(464\) 24.6477 1.14424
\(465\) 0 0
\(466\) 24.8315 1.15030
\(467\) 6.14617 0.284411 0.142205 0.989837i \(-0.454581\pi\)
0.142205 + 0.989837i \(0.454581\pi\)
\(468\) 0 0
\(469\) −48.9579 −2.26067
\(470\) 3.01625 0.139129
\(471\) 0 0
\(472\) −24.9401 −1.14796
\(473\) 0 0
\(474\) 0 0
\(475\) 0.0951243 0.00436460
\(476\) −2.18469 −0.100135
\(477\) 0 0
\(478\) −14.8526 −0.679341
\(479\) 22.1942 1.01408 0.507039 0.861923i \(-0.330740\pi\)
0.507039 + 0.861923i \(0.330740\pi\)
\(480\) 0 0
\(481\) 27.8560 1.27013
\(482\) 13.5492 0.617149
\(483\) 0 0
\(484\) 0 0
\(485\) −4.33133 −0.196675
\(486\) 0 0
\(487\) −34.2306 −1.55114 −0.775569 0.631263i \(-0.782537\pi\)
−0.775569 + 0.631263i \(0.782537\pi\)
\(488\) −24.8574 −1.12524
\(489\) 0 0
\(490\) 8.56545 0.386948
\(491\) −16.9957 −0.767007 −0.383503 0.923539i \(-0.625283\pi\)
−0.383503 + 0.923539i \(0.625283\pi\)
\(492\) 0 0
\(493\) −24.9351 −1.12302
\(494\) 0.365073 0.0164254
\(495\) 0 0
\(496\) −24.7371 −1.11073
\(497\) −30.3014 −1.35920
\(498\) 0 0
\(499\) 5.22946 0.234103 0.117051 0.993126i \(-0.462656\pi\)
0.117051 + 0.993126i \(0.462656\pi\)
\(500\) −0.162147 −0.00725144
\(501\) 0 0
\(502\) −13.0923 −0.584339
\(503\) 41.9448 1.87023 0.935113 0.354350i \(-0.115298\pi\)
0.935113 + 0.354350i \(0.115298\pi\)
\(504\) 0 0
\(505\) 9.90570 0.440798
\(506\) 0 0
\(507\) 0 0
\(508\) 0.395287 0.0175380
\(509\) −20.3678 −0.902787 −0.451393 0.892325i \(-0.649073\pi\)
−0.451393 + 0.892325i \(0.649073\pi\)
\(510\) 0 0
\(511\) 4.81734 0.213107
\(512\) −24.7330 −1.09305
\(513\) 0 0
\(514\) −14.1364 −0.623529
\(515\) 4.06590 0.179165
\(516\) 0 0
\(517\) 0 0
\(518\) 48.6816 2.13895
\(519\) 0 0
\(520\) −8.29800 −0.363891
\(521\) −14.4779 −0.634287 −0.317143 0.948378i \(-0.602724\pi\)
−0.317143 + 0.948378i \(0.602724\pi\)
\(522\) 0 0
\(523\) −11.1601 −0.487998 −0.243999 0.969775i \(-0.578459\pi\)
−0.243999 + 0.969775i \(0.578459\pi\)
\(524\) −1.14177 −0.0498784
\(525\) 0 0
\(526\) −14.8607 −0.647958
\(527\) 25.0254 1.09013
\(528\) 0 0
\(529\) −21.6494 −0.941279
\(530\) −4.05879 −0.176303
\(531\) 0 0
\(532\) −0.0562891 −0.00244044
\(533\) −23.5485 −1.02000
\(534\) 0 0
\(535\) 1.93858 0.0838119
\(536\) 39.3225 1.69847
\(537\) 0 0
\(538\) 0.121123 0.00522197
\(539\) 0 0
\(540\) 0 0
\(541\) −10.6808 −0.459203 −0.229602 0.973285i \(-0.573742\pi\)
−0.229602 + 0.973285i \(0.573742\pi\)
\(542\) 18.1654 0.780272
\(543\) 0 0
\(544\) 3.37784 0.144824
\(545\) −6.12664 −0.262436
\(546\) 0 0
\(547\) −1.74760 −0.0747220 −0.0373610 0.999302i \(-0.511895\pi\)
−0.0373610 + 0.999302i \(0.511895\pi\)
\(548\) −1.55221 −0.0663072
\(549\) 0 0
\(550\) 0 0
\(551\) −0.642459 −0.0273697
\(552\) 0 0
\(553\) 50.6031 2.15186
\(554\) 5.29619 0.225014
\(555\) 0 0
\(556\) 0.0835872 0.00354489
\(557\) −19.4844 −0.825579 −0.412790 0.910826i \(-0.635446\pi\)
−0.412790 + 0.910826i \(0.635446\pi\)
\(558\) 0 0
\(559\) 8.40403 0.355453
\(560\) −13.3182 −0.562798
\(561\) 0 0
\(562\) −2.08426 −0.0879191
\(563\) −14.6892 −0.619074 −0.309537 0.950887i \(-0.600174\pi\)
−0.309537 + 0.950887i \(0.600174\pi\)
\(564\) 0 0
\(565\) −5.78527 −0.243388
\(566\) 7.33650 0.308376
\(567\) 0 0
\(568\) 24.3377 1.02119
\(569\) 19.9335 0.835658 0.417829 0.908526i \(-0.362791\pi\)
0.417829 + 0.908526i \(0.362791\pi\)
\(570\) 0 0
\(571\) −5.24422 −0.219464 −0.109732 0.993961i \(-0.534999\pi\)
−0.109732 + 0.993961i \(0.534999\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −41.1537 −1.71772
\(575\) −1.16215 −0.0484649
\(576\) 0 0
\(577\) 37.6004 1.56533 0.782663 0.622446i \(-0.213861\pi\)
0.782663 + 0.622446i \(0.213861\pi\)
\(578\) −4.56790 −0.190000
\(579\) 0 0
\(580\) 1.09512 0.0454726
\(581\) −38.8460 −1.61161
\(582\) 0 0
\(583\) 0 0
\(584\) −3.86923 −0.160110
\(585\) 0 0
\(586\) 15.4770 0.639351
\(587\) −25.5711 −1.05543 −0.527716 0.849421i \(-0.676952\pi\)
−0.527716 + 0.849421i \(0.676952\pi\)
\(588\) 0 0
\(589\) 0.644788 0.0265680
\(590\) 11.5349 0.474884
\(591\) 0 0
\(592\) −35.9095 −1.47587
\(593\) 40.2260 1.65188 0.825942 0.563754i \(-0.190644\pi\)
0.825942 + 0.563754i \(0.190644\pi\)
\(594\) 0 0
\(595\) 13.4735 0.552358
\(596\) 1.32309 0.0541960
\(597\) 0 0
\(598\) −4.46015 −0.182389
\(599\) −4.92997 −0.201433 −0.100716 0.994915i \(-0.532114\pi\)
−0.100716 + 0.994915i \(0.532114\pi\)
\(600\) 0 0
\(601\) −46.0896 −1.88003 −0.940017 0.341127i \(-0.889191\pi\)
−0.940017 + 0.341127i \(0.889191\pi\)
\(602\) 14.6870 0.598597
\(603\) 0 0
\(604\) 0.314602 0.0128010
\(605\) 0 0
\(606\) 0 0
\(607\) 45.1365 1.83203 0.916016 0.401141i \(-0.131386\pi\)
0.916016 + 0.401141i \(0.131386\pi\)
\(608\) 0.0870310 0.00352957
\(609\) 0 0
\(610\) 11.4966 0.465484
\(611\) 6.29861 0.254815
\(612\) 0 0
\(613\) −4.73418 −0.191212 −0.0956059 0.995419i \(-0.530479\pi\)
−0.0956059 + 0.995419i \(0.530479\pi\)
\(614\) 5.76172 0.232524
\(615\) 0 0
\(616\) 0 0
\(617\) −17.8468 −0.718486 −0.359243 0.933244i \(-0.616965\pi\)
−0.359243 + 0.933244i \(0.616965\pi\)
\(618\) 0 0
\(619\) 0.356952 0.0143471 0.00717356 0.999974i \(-0.497717\pi\)
0.00717356 + 0.999974i \(0.497717\pi\)
\(620\) −1.09909 −0.0441407
\(621\) 0 0
\(622\) 22.5306 0.903394
\(623\) 44.3811 1.77809
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −36.0297 −1.44004
\(627\) 0 0
\(628\) −3.44960 −0.137654
\(629\) 36.3281 1.44850
\(630\) 0 0
\(631\) −31.9922 −1.27359 −0.636795 0.771033i \(-0.719740\pi\)
−0.636795 + 0.771033i \(0.719740\pi\)
\(632\) −40.6438 −1.61672
\(633\) 0 0
\(634\) −7.85876 −0.312111
\(635\) −2.43783 −0.0967422
\(636\) 0 0
\(637\) 17.8866 0.708693
\(638\) 0 0
\(639\) 0 0
\(640\) 9.74648 0.385264
\(641\) −1.01285 −0.0400050 −0.0200025 0.999800i \(-0.506367\pi\)
−0.0200025 + 0.999800i \(0.506367\pi\)
\(642\) 0 0
\(643\) −14.9724 −0.590455 −0.295228 0.955427i \(-0.595395\pi\)
−0.295228 + 0.955427i \(0.595395\pi\)
\(644\) 0.687692 0.0270988
\(645\) 0 0
\(646\) 0.476106 0.0187321
\(647\) −17.8873 −0.703224 −0.351612 0.936146i \(-0.614366\pi\)
−0.351612 + 0.936146i \(0.614366\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 3.83785 0.150533
\(651\) 0 0
\(652\) 2.59127 0.101482
\(653\) −45.7642 −1.79089 −0.895446 0.445169i \(-0.853144\pi\)
−0.895446 + 0.445169i \(0.853144\pi\)
\(654\) 0 0
\(655\) 7.04156 0.275136
\(656\) 30.3566 1.18523
\(657\) 0 0
\(658\) 11.0075 0.429119
\(659\) −9.54036 −0.371640 −0.185820 0.982584i \(-0.559494\pi\)
−0.185820 + 0.982584i \(0.559494\pi\)
\(660\) 0 0
\(661\) 15.7769 0.613651 0.306825 0.951766i \(-0.400733\pi\)
0.306825 + 0.951766i \(0.400733\pi\)
\(662\) −17.5193 −0.680908
\(663\) 0 0
\(664\) 31.2007 1.21082
\(665\) 0.347148 0.0134618
\(666\) 0 0
\(667\) 7.84901 0.303915
\(668\) −2.87147 −0.111100
\(669\) 0 0
\(670\) −18.1868 −0.702616
\(671\) 0 0
\(672\) 0 0
\(673\) −47.3031 −1.82340 −0.911700 0.410856i \(-0.865230\pi\)
−0.911700 + 0.410856i \(0.865230\pi\)
\(674\) −18.1462 −0.698966
\(675\) 0 0
\(676\) 0.808416 0.0310929
\(677\) 27.5431 1.05857 0.529284 0.848445i \(-0.322461\pi\)
0.529284 + 0.848445i \(0.322461\pi\)
\(678\) 0 0
\(679\) −15.8068 −0.606609
\(680\) −10.8217 −0.414995
\(681\) 0 0
\(682\) 0 0
\(683\) 27.1617 1.03931 0.519656 0.854375i \(-0.326060\pi\)
0.519656 + 0.854375i \(0.326060\pi\)
\(684\) 0 0
\(685\) 9.57286 0.365760
\(686\) −3.37304 −0.128783
\(687\) 0 0
\(688\) −10.8337 −0.413032
\(689\) −8.47567 −0.322897
\(690\) 0 0
\(691\) −7.52680 −0.286333 −0.143166 0.989699i \(-0.545728\pi\)
−0.143166 + 0.989699i \(0.545728\pi\)
\(692\) −2.57579 −0.0979167
\(693\) 0 0
\(694\) −11.4541 −0.434791
\(695\) −0.515502 −0.0195541
\(696\) 0 0
\(697\) −30.7105 −1.16324
\(698\) 14.0974 0.533595
\(699\) 0 0
\(700\) −0.591742 −0.0223658
\(701\) −31.8207 −1.20185 −0.600926 0.799305i \(-0.705201\pi\)
−0.600926 + 0.799305i \(0.705201\pi\)
\(702\) 0 0
\(703\) 0.936004 0.0353021
\(704\) 0 0
\(705\) 0 0
\(706\) −25.9032 −0.974882
\(707\) 36.1500 1.35956
\(708\) 0 0
\(709\) −14.4381 −0.542235 −0.271118 0.962546i \(-0.587393\pi\)
−0.271118 + 0.962546i \(0.587393\pi\)
\(710\) −11.2563 −0.422441
\(711\) 0 0
\(712\) −35.6464 −1.33591
\(713\) −7.87747 −0.295013
\(714\) 0 0
\(715\) 0 0
\(716\) −2.73721 −0.102294
\(717\) 0 0
\(718\) −5.98418 −0.223328
\(719\) −5.41004 −0.201761 −0.100880 0.994899i \(-0.532166\pi\)
−0.100880 + 0.994899i \(0.532166\pi\)
\(720\) 0 0
\(721\) 14.8382 0.552602
\(722\) −25.7455 −0.958150
\(723\) 0 0
\(724\) 3.90570 0.145154
\(725\) −6.75389 −0.250833
\(726\) 0 0
\(727\) −16.7753 −0.622161 −0.311080 0.950384i \(-0.600691\pi\)
−0.311080 + 0.950384i \(0.600691\pi\)
\(728\) −30.2828 −1.12236
\(729\) 0 0
\(730\) 1.78953 0.0662336
\(731\) 10.9600 0.405371
\(732\) 0 0
\(733\) 14.0851 0.520243 0.260122 0.965576i \(-0.416237\pi\)
0.260122 + 0.965576i \(0.416237\pi\)
\(734\) −39.8049 −1.46923
\(735\) 0 0
\(736\) −1.06327 −0.0391926
\(737\) 0 0
\(738\) 0 0
\(739\) 36.3457 1.33700 0.668499 0.743713i \(-0.266937\pi\)
0.668499 + 0.743713i \(0.266937\pi\)
\(740\) −1.59550 −0.0586516
\(741\) 0 0
\(742\) −14.8122 −0.543773
\(743\) −1.95716 −0.0718012 −0.0359006 0.999355i \(-0.511430\pi\)
−0.0359006 + 0.999355i \(0.511430\pi\)
\(744\) 0 0
\(745\) −8.15983 −0.298953
\(746\) 6.73063 0.246426
\(747\) 0 0
\(748\) 0 0
\(749\) 7.07466 0.258503
\(750\) 0 0
\(751\) 18.7106 0.682759 0.341379 0.939926i \(-0.389106\pi\)
0.341379 + 0.939926i \(0.389106\pi\)
\(752\) −8.11961 −0.296092
\(753\) 0 0
\(754\) −25.9204 −0.943967
\(755\) −1.94023 −0.0706120
\(756\) 0 0
\(757\) −14.5470 −0.528721 −0.264361 0.964424i \(-0.585161\pi\)
−0.264361 + 0.964424i \(0.585161\pi\)
\(758\) 10.7412 0.390138
\(759\) 0 0
\(760\) −0.278825 −0.0101141
\(761\) 13.1406 0.476345 0.238173 0.971223i \(-0.423452\pi\)
0.238173 + 0.971223i \(0.423452\pi\)
\(762\) 0 0
\(763\) −22.3586 −0.809437
\(764\) 0.872805 0.0315770
\(765\) 0 0
\(766\) 33.2350 1.20083
\(767\) 24.0875 0.869748
\(768\) 0 0
\(769\) −38.9767 −1.40554 −0.702768 0.711419i \(-0.748053\pi\)
−0.702768 + 0.711419i \(0.748053\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.96471 0.106702
\(773\) 38.7539 1.39388 0.696940 0.717129i \(-0.254544\pi\)
0.696940 + 0.717129i \(0.254544\pi\)
\(774\) 0 0
\(775\) 6.77837 0.243486
\(776\) 12.6958 0.455754
\(777\) 0 0
\(778\) −7.40326 −0.265420
\(779\) −0.791265 −0.0283500
\(780\) 0 0
\(781\) 0 0
\(782\) −5.81665 −0.208003
\(783\) 0 0
\(784\) −23.0578 −0.823493
\(785\) 21.2745 0.759319
\(786\) 0 0
\(787\) 21.3842 0.762265 0.381132 0.924521i \(-0.375534\pi\)
0.381132 + 0.924521i \(0.375534\pi\)
\(788\) −0.428986 −0.0152820
\(789\) 0 0
\(790\) 18.7979 0.668799
\(791\) −21.1128 −0.750686
\(792\) 0 0
\(793\) 24.0075 0.852533
\(794\) −8.72315 −0.309573
\(795\) 0 0
\(796\) −1.05850 −0.0375174
\(797\) 2.22456 0.0787978 0.0393989 0.999224i \(-0.487456\pi\)
0.0393989 + 0.999224i \(0.487456\pi\)
\(798\) 0 0
\(799\) 8.21426 0.290599
\(800\) 0.914918 0.0323472
\(801\) 0 0
\(802\) 19.9319 0.703821
\(803\) 0 0
\(804\) 0 0
\(805\) −4.24116 −0.149481
\(806\) 26.0144 0.916318
\(807\) 0 0
\(808\) −29.0353 −1.02146
\(809\) 21.1682 0.744234 0.372117 0.928186i \(-0.378632\pi\)
0.372117 + 0.928186i \(0.378632\pi\)
\(810\) 0 0
\(811\) 36.7172 1.28932 0.644658 0.764471i \(-0.277000\pi\)
0.644658 + 0.764471i \(0.277000\pi\)
\(812\) 3.99656 0.140252
\(813\) 0 0
\(814\) 0 0
\(815\) −15.9810 −0.559788
\(816\) 0 0
\(817\) 0.282388 0.00987951
\(818\) −5.95922 −0.208359
\(819\) 0 0
\(820\) 1.34878 0.0471013
\(821\) −39.6693 −1.38447 −0.692235 0.721673i \(-0.743374\pi\)
−0.692235 + 0.721673i \(0.743374\pi\)
\(822\) 0 0
\(823\) −45.9283 −1.60096 −0.800480 0.599359i \(-0.795422\pi\)
−0.800480 + 0.599359i \(0.795422\pi\)
\(824\) −11.9178 −0.415178
\(825\) 0 0
\(826\) 42.0956 1.46469
\(827\) −39.6949 −1.38033 −0.690164 0.723653i \(-0.742462\pi\)
−0.690164 + 0.723653i \(0.742462\pi\)
\(828\) 0 0
\(829\) 7.65584 0.265898 0.132949 0.991123i \(-0.457555\pi\)
0.132949 + 0.991123i \(0.457555\pi\)
\(830\) −14.4304 −0.500887
\(831\) 0 0
\(832\) 24.1740 0.838082
\(833\) 23.3266 0.808218
\(834\) 0 0
\(835\) 17.7090 0.612846
\(836\) 0 0
\(837\) 0 0
\(838\) −24.2024 −0.836057
\(839\) −27.5886 −0.952465 −0.476233 0.879319i \(-0.657998\pi\)
−0.476233 + 0.879319i \(0.657998\pi\)
\(840\) 0 0
\(841\) 16.6150 0.572932
\(842\) −6.54592 −0.225587
\(843\) 0 0
\(844\) −4.45058 −0.153195
\(845\) −4.98569 −0.171513
\(846\) 0 0
\(847\) 0 0
\(848\) 10.9261 0.375203
\(849\) 0 0
\(850\) 5.00509 0.171673
\(851\) −11.4353 −0.391997
\(852\) 0 0
\(853\) −42.1496 −1.44318 −0.721588 0.692323i \(-0.756587\pi\)
−0.721588 + 0.692323i \(0.756587\pi\)
\(854\) 41.9559 1.43570
\(855\) 0 0
\(856\) −5.68229 −0.194217
\(857\) −45.0850 −1.54008 −0.770038 0.637998i \(-0.779763\pi\)
−0.770038 + 0.637998i \(0.779763\pi\)
\(858\) 0 0
\(859\) −11.8257 −0.403488 −0.201744 0.979438i \(-0.564661\pi\)
−0.201744 + 0.979438i \(0.564661\pi\)
\(860\) −0.481353 −0.0164140
\(861\) 0 0
\(862\) −33.7210 −1.14854
\(863\) −27.8713 −0.948750 −0.474375 0.880323i \(-0.657326\pi\)
−0.474375 + 0.880323i \(0.657326\pi\)
\(864\) 0 0
\(865\) 15.8855 0.540123
\(866\) −28.8084 −0.978950
\(867\) 0 0
\(868\) −4.01105 −0.136144
\(869\) 0 0
\(870\) 0 0
\(871\) −37.9781 −1.28684
\(872\) 17.9582 0.608141
\(873\) 0 0
\(874\) −0.149868 −0.00506935
\(875\) 3.64941 0.123373
\(876\) 0 0
\(877\) 11.4471 0.386543 0.193271 0.981145i \(-0.438090\pi\)
0.193271 + 0.981145i \(0.438090\pi\)
\(878\) 21.5714 0.727998
\(879\) 0 0
\(880\) 0 0
\(881\) −47.0037 −1.58360 −0.791798 0.610783i \(-0.790855\pi\)
−0.791798 + 0.610783i \(0.790855\pi\)
\(882\) 0 0
\(883\) −46.9146 −1.57880 −0.789401 0.613877i \(-0.789609\pi\)
−0.789401 + 0.613877i \(0.789609\pi\)
\(884\) −1.69472 −0.0569997
\(885\) 0 0
\(886\) −35.6374 −1.19726
\(887\) −27.8427 −0.934866 −0.467433 0.884029i \(-0.654821\pi\)
−0.467433 + 0.884029i \(0.654821\pi\)
\(888\) 0 0
\(889\) −8.89664 −0.298384
\(890\) 16.4866 0.552631
\(891\) 0 0
\(892\) 0.824022 0.0275903
\(893\) 0.211643 0.00708236
\(894\) 0 0
\(895\) 16.8810 0.564271
\(896\) 35.5689 1.18828
\(897\) 0 0
\(898\) 11.1024 0.370494
\(899\) −45.7804 −1.52686
\(900\) 0 0
\(901\) −11.0534 −0.368244
\(902\) 0 0
\(903\) 0 0
\(904\) 16.9576 0.564001
\(905\) −24.0874 −0.800691
\(906\) 0 0
\(907\) −28.6233 −0.950421 −0.475210 0.879872i \(-0.657628\pi\)
−0.475210 + 0.879872i \(0.657628\pi\)
\(908\) −0.606398 −0.0201240
\(909\) 0 0
\(910\) 14.0059 0.464292
\(911\) −5.12823 −0.169906 −0.0849529 0.996385i \(-0.527074\pi\)
−0.0849529 + 0.996385i \(0.527074\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −16.1547 −0.534351
\(915\) 0 0
\(916\) −4.36567 −0.144246
\(917\) 25.6976 0.848608
\(918\) 0 0
\(919\) −35.2810 −1.16381 −0.581906 0.813256i \(-0.697693\pi\)
−0.581906 + 0.813256i \(0.697693\pi\)
\(920\) 3.40645 0.112307
\(921\) 0 0
\(922\) 9.43783 0.310818
\(923\) −23.5057 −0.773699
\(924\) 0 0
\(925\) 9.83980 0.323531
\(926\) 16.9136 0.555817
\(927\) 0 0
\(928\) −6.17926 −0.202844
\(929\) 59.1427 1.94041 0.970204 0.242289i \(-0.0778981\pi\)
0.970204 + 0.242289i \(0.0778981\pi\)
\(930\) 0 0
\(931\) 0.601017 0.0196975
\(932\) −2.97000 −0.0972857
\(933\) 0 0
\(934\) 8.33220 0.272638
\(935\) 0 0
\(936\) 0 0
\(937\) −14.4425 −0.471817 −0.235909 0.971775i \(-0.575807\pi\)
−0.235909 + 0.971775i \(0.575807\pi\)
\(938\) −66.3710 −2.16709
\(939\) 0 0
\(940\) −0.360762 −0.0117668
\(941\) −18.6591 −0.608269 −0.304135 0.952629i \(-0.598367\pi\)
−0.304135 + 0.952629i \(0.598367\pi\)
\(942\) 0 0
\(943\) 9.66700 0.314801
\(944\) −31.0514 −1.01064
\(945\) 0 0
\(946\) 0 0
\(947\) 0.991391 0.0322159 0.0161079 0.999870i \(-0.494872\pi\)
0.0161079 + 0.999870i \(0.494872\pi\)
\(948\) 0 0
\(949\) 3.73695 0.121306
\(950\) 0.128958 0.00418394
\(951\) 0 0
\(952\) −39.4930 −1.27998
\(953\) −8.26404 −0.267699 −0.133849 0.991002i \(-0.542734\pi\)
−0.133849 + 0.991002i \(0.542734\pi\)
\(954\) 0 0
\(955\) −5.38279 −0.174183
\(956\) 1.77646 0.0574549
\(957\) 0 0
\(958\) 30.0881 0.972101
\(959\) 34.9353 1.12812
\(960\) 0 0
\(961\) 14.9463 0.482139
\(962\) 37.7637 1.21755
\(963\) 0 0
\(964\) −1.62057 −0.0521950
\(965\) −18.2840 −0.588584
\(966\) 0 0
\(967\) −7.36029 −0.236691 −0.118345 0.992972i \(-0.537759\pi\)
−0.118345 + 0.992972i \(0.537759\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −5.87187 −0.188534
\(971\) 4.97733 0.159730 0.0798650 0.996806i \(-0.474551\pi\)
0.0798650 + 0.996806i \(0.474551\pi\)
\(972\) 0 0
\(973\) −1.88128 −0.0603111
\(974\) −46.4056 −1.48693
\(975\) 0 0
\(976\) −30.9484 −0.990633
\(977\) −10.3368 −0.330704 −0.165352 0.986235i \(-0.552876\pi\)
−0.165352 + 0.986235i \(0.552876\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.02448 −0.0327259
\(981\) 0 0
\(982\) −23.0407 −0.735258
\(983\) 29.0614 0.926913 0.463457 0.886120i \(-0.346609\pi\)
0.463457 + 0.886120i \(0.346609\pi\)
\(984\) 0 0
\(985\) 2.64566 0.0842978
\(986\) −33.8038 −1.07653
\(987\) 0 0
\(988\) −0.0436651 −0.00138917
\(989\) −3.44997 −0.109703
\(990\) 0 0
\(991\) 7.70381 0.244719 0.122360 0.992486i \(-0.460954\pi\)
0.122360 + 0.992486i \(0.460954\pi\)
\(992\) 6.20166 0.196903
\(993\) 0 0
\(994\) −41.0788 −1.30294
\(995\) 6.52800 0.206951
\(996\) 0 0
\(997\) 2.86418 0.0907095 0.0453547 0.998971i \(-0.485558\pi\)
0.0453547 + 0.998971i \(0.485558\pi\)
\(998\) 7.08945 0.224413
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5445.2.a.bi.1.4 4
3.2 odd 2 605.2.a.k.1.1 4
11.2 odd 10 495.2.n.e.136.2 8
11.6 odd 10 495.2.n.e.91.2 8
11.10 odd 2 5445.2.a.bp.1.1 4
12.11 even 2 9680.2.a.cm.1.2 4
15.14 odd 2 3025.2.a.w.1.4 4
33.2 even 10 55.2.g.b.26.1 8
33.5 odd 10 605.2.g.k.366.2 8
33.8 even 10 605.2.g.m.251.2 8
33.14 odd 10 605.2.g.e.251.1 8
33.17 even 10 55.2.g.b.36.1 yes 8
33.20 odd 10 605.2.g.k.81.2 8
33.26 odd 10 605.2.g.e.511.1 8
33.29 even 10 605.2.g.m.511.2 8
33.32 even 2 605.2.a.j.1.4 4
132.35 odd 10 880.2.bo.h.81.1 8
132.83 odd 10 880.2.bo.h.641.1 8
132.131 odd 2 9680.2.a.cn.1.2 4
165.2 odd 20 275.2.z.a.224.4 16
165.17 odd 20 275.2.z.a.124.1 16
165.68 odd 20 275.2.z.a.224.1 16
165.83 odd 20 275.2.z.a.124.4 16
165.134 even 10 275.2.h.a.26.2 8
165.149 even 10 275.2.h.a.201.2 8
165.164 even 2 3025.2.a.bd.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.b.26.1 8 33.2 even 10
55.2.g.b.36.1 yes 8 33.17 even 10
275.2.h.a.26.2 8 165.134 even 10
275.2.h.a.201.2 8 165.149 even 10
275.2.z.a.124.1 16 165.17 odd 20
275.2.z.a.124.4 16 165.83 odd 20
275.2.z.a.224.1 16 165.68 odd 20
275.2.z.a.224.4 16 165.2 odd 20
495.2.n.e.91.2 8 11.6 odd 10
495.2.n.e.136.2 8 11.2 odd 10
605.2.a.j.1.4 4 33.32 even 2
605.2.a.k.1.1 4 3.2 odd 2
605.2.g.e.251.1 8 33.14 odd 10
605.2.g.e.511.1 8 33.26 odd 10
605.2.g.k.81.2 8 33.20 odd 10
605.2.g.k.366.2 8 33.5 odd 10
605.2.g.m.251.2 8 33.8 even 10
605.2.g.m.511.2 8 33.29 even 10
880.2.bo.h.81.1 8 132.35 odd 10
880.2.bo.h.641.1 8 132.83 odd 10
3025.2.a.w.1.4 4 15.14 odd 2
3025.2.a.bd.1.1 4 165.164 even 2
5445.2.a.bi.1.4 4 1.1 even 1 trivial
5445.2.a.bp.1.1 4 11.10 odd 2
9680.2.a.cm.1.2 4 12.11 even 2
9680.2.a.cn.1.2 4 132.131 odd 2