Properties

Label 5445.2.a.bi
Level $5445$
Weight $2$
Character orbit 5445.a
Self dual yes
Analytic conductor $43.479$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5445.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(43.4785439006\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
Defining polynomial: \(x^{4} - x^{3} - 3 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{2} + ( -1 + \beta_{1} + \beta_{2} ) q^{4} + q^{5} + ( \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{7} + ( \beta_{1} - \beta_{2} - \beta_{3} ) q^{8} +O(q^{10})\) \( q -\beta_{1} q^{2} + ( -1 + \beta_{1} + \beta_{2} ) q^{4} + q^{5} + ( \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{7} + ( \beta_{1} - \beta_{2} - \beta_{3} ) q^{8} -\beta_{1} q^{10} + ( -3 \beta_{1} + 2 \beta_{3} ) q^{13} + ( 1 - 2 \beta_{1} - 2 \beta_{3} ) q^{14} + ( -\beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{16} + ( 1 + \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{17} + ( 5 + 2 \beta_{1} - \beta_{2} ) q^{19} + ( -1 + \beta_{1} + \beta_{2} ) q^{20} + ( -2 + \beta_{1} + \beta_{2} ) q^{23} + q^{25} + ( 3 + \beta_{1} + \beta_{2} ) q^{26} + ( 2 + \beta_{1} + 2 \beta_{3} ) q^{28} + ( -5 + 2 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{29} -5 \beta_{1} q^{31} + ( -1 + 2 \beta_{2} + 4 \beta_{3} ) q^{32} + ( 2 \beta_{2} - \beta_{3} ) q^{34} + ( \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{35} + ( 3 + 3 \beta_{1} + 3 \beta_{2} - 7 \beta_{3} ) q^{37} + ( -3 - 6 \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{38} + ( \beta_{1} - \beta_{2} - \beta_{3} ) q^{40} + ( -1 + \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{41} + ( 6 - \beta_{1} - 2 \beta_{2} ) q^{43} + ( -\beta_{2} - \beta_{3} ) q^{46} + ( -3 + \beta_{1} + 3 \beta_{2} ) q^{47} + ( -1 - \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{49} -\beta_{1} q^{50} + ( \beta_{1} - \beta_{2} - 5 \beta_{3} ) q^{52} + ( 6 - \beta_{1} - 5 \beta_{2} - \beta_{3} ) q^{53} + ( -3 - \beta_{1} - 3 \beta_{2} + 4 \beta_{3} ) q^{56} + ( -1 - 4 \beta_{2} - \beta_{3} ) q^{58} + ( -2 + \beta_{1} + 4 \beta_{2} - 5 \beta_{3} ) q^{59} + ( 2 - 2 \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{61} + ( 5 + 5 \beta_{1} + 5 \beta_{2} ) q^{62} + ( 2 - 3 \beta_{1} - 4 \beta_{3} ) q^{64} + ( -3 \beta_{1} + 2 \beta_{3} ) q^{65} + ( -5 - 3 \beta_{1} - 4 \beta_{2} + 6 \beta_{3} ) q^{67} + ( -3 \beta_{1} - \beta_{2} + 4 \beta_{3} ) q^{68} + ( 1 - 2 \beta_{1} - 2 \beta_{3} ) q^{70} + ( -3 + 3 \beta_{1} + 2 \beta_{3} ) q^{71} + ( 1 + 3 \beta_{1} + 2 \beta_{2} ) q^{73} + ( -2 \beta_{1} + 4 \beta_{2} - 3 \beta_{3} ) q^{74} + ( -6 + 6 \beta_{1} + 7 \beta_{2} + 2 \beta_{3} ) q^{76} + ( 9 + 4 \beta_{1} + 3 \beta_{2} - 6 \beta_{3} ) q^{79} + ( -\beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{80} + ( -4 + 4 \beta_{1} + 3 \beta_{3} ) q^{82} + ( 1 + \beta_{1} - 3 \beta_{2} + 6 \beta_{3} ) q^{83} + ( 1 + \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{85} + ( -1 - 3 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{86} + ( -1 + 6 \beta_{2} ) q^{89} + ( 1 + 2 \beta_{2} - 8 \beta_{3} ) q^{91} + ( 3 - \beta_{2} + \beta_{3} ) q^{92} + ( 2 - \beta_{1} - \beta_{2} - 3 \beta_{3} ) q^{94} + ( 5 + 2 \beta_{1} - \beta_{2} ) q^{95} + ( 5 - 2 \beta_{2} + 8 \beta_{3} ) q^{97} + ( 4 - 2 \beta_{1} - 3 \beta_{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - q^{2} - q^{4} + 4q^{5} + 3q^{7} - 3q^{8} + O(q^{10}) \) \( 4q - q^{2} - q^{4} + 4q^{5} + 3q^{7} - 3q^{8} - q^{10} + q^{13} - 2q^{14} - 3q^{16} + q^{17} + 20q^{19} - q^{20} - 5q^{23} + 4q^{25} + 15q^{26} + 13q^{28} - 12q^{29} - 5q^{31} + 8q^{32} + 2q^{34} + 3q^{35} + 7q^{37} - 20q^{38} - 3q^{40} - 11q^{41} + 19q^{43} - 4q^{46} - 5q^{47} + 3q^{49} - q^{50} - 11q^{52} + 11q^{53} - 11q^{56} - 14q^{58} - 9q^{59} + 12q^{61} + 35q^{62} - 3q^{64} + q^{65} - 19q^{67} + 3q^{68} - 2q^{70} - 5q^{71} + 11q^{73} + 34q^{79} - 3q^{80} - 6q^{82} + 11q^{83} + q^{85} - q^{86} + 8q^{89} - 8q^{91} + 12q^{92} - q^{94} + 20q^{95} + 32q^{97} + 8q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} - 3 x^{2} + x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 1 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - \nu^{2} - 2 \nu + 1 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + \beta_{1} + 1\)
\(\nu^{3}\)\(=\)\(\beta_{3} + \beta_{2} + 3 \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.09529
0.737640
−0.477260
−1.35567
−2.09529 0 2.39026 1.00000 0 3.06719 −0.817703 0 −2.09529
1.2 −0.737640 0 −1.45589 1.00000 0 −1.03138 2.54920 0 −0.737640
1.3 0.477260 0 −1.77222 1.00000 0 −2.68522 −1.80033 0 0.477260
1.4 1.35567 0 −0.162147 1.00000 0 3.64941 −2.93117 0 1.35567
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5445.2.a.bi 4
3.b odd 2 1 605.2.a.k 4
11.b odd 2 1 5445.2.a.bp 4
11.d odd 10 2 495.2.n.e 8
12.b even 2 1 9680.2.a.cm 4
15.d odd 2 1 3025.2.a.w 4
33.d even 2 1 605.2.a.j 4
33.f even 10 2 55.2.g.b 8
33.f even 10 2 605.2.g.m 8
33.h odd 10 2 605.2.g.e 8
33.h odd 10 2 605.2.g.k 8
132.d odd 2 1 9680.2.a.cn 4
132.n odd 10 2 880.2.bo.h 8
165.d even 2 1 3025.2.a.bd 4
165.r even 10 2 275.2.h.a 8
165.u odd 20 4 275.2.z.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.g.b 8 33.f even 10 2
275.2.h.a 8 165.r even 10 2
275.2.z.a 16 165.u odd 20 4
495.2.n.e 8 11.d odd 10 2
605.2.a.j 4 33.d even 2 1
605.2.a.k 4 3.b odd 2 1
605.2.g.e 8 33.h odd 10 2
605.2.g.k 8 33.h odd 10 2
605.2.g.m 8 33.f even 10 2
880.2.bo.h 8 132.n odd 10 2
3025.2.a.w 4 15.d odd 2 1
3025.2.a.bd 4 165.d even 2 1
5445.2.a.bi 4 1.a even 1 1 trivial
5445.2.a.bp 4 11.b odd 2 1
9680.2.a.cm 4 12.b even 2 1
9680.2.a.cn 4 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5445))\):

\( T_{2}^{4} + T_{2}^{3} - 3 T_{2}^{2} - T_{2} + 1 \)
\( T_{7}^{4} - 3 T_{7}^{3} - 11 T_{7}^{2} + 23 T_{7} + 31 \)
\( T_{23}^{4} + 5 T_{23}^{3} + 4 T_{23}^{2} - 10 T_{23} - 11 \)
\( T_{53}^{4} - 11 T_{53}^{3} - 43 T_{53}^{2} + 311 T_{53} + 941 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T - 3 T^{2} + T^{3} + T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( -1 + T )^{4} \)
$7$ \( 31 + 23 T - 11 T^{2} - 3 T^{3} + T^{4} \)
$11$ \( T^{4} \)
$13$ \( 139 + 7 T - 25 T^{2} - T^{3} + T^{4} \)
$17$ \( 19 + 32 T - 20 T^{2} - T^{3} + T^{4} \)
$19$ \( 25 - 275 T + 130 T^{2} - 20 T^{3} + T^{4} \)
$23$ \( -11 - 10 T + 4 T^{2} + 5 T^{3} + T^{4} \)
$29$ \( -451 - 171 T + 20 T^{2} + 12 T^{3} + T^{4} \)
$31$ \( 625 - 125 T - 75 T^{2} + 5 T^{3} + T^{4} \)
$37$ \( -1151 + 826 T - 100 T^{2} - 7 T^{3} + T^{4} \)
$41$ \( -319 - 174 T + 6 T^{2} + 11 T^{3} + T^{4} \)
$43$ \( 211 - 289 T + 121 T^{2} - 19 T^{3} + T^{4} \)
$47$ \( 169 - 65 T - 21 T^{2} + 5 T^{3} + T^{4} \)
$53$ \( 941 + 311 T - 43 T^{2} - 11 T^{3} + T^{4} \)
$59$ \( -829 - 549 T - 73 T^{2} + 9 T^{3} + T^{4} \)
$61$ \( -169 + 78 T + 23 T^{2} - 12 T^{3} + T^{4} \)
$67$ \( -4079 - 1014 T + 22 T^{2} + 19 T^{3} + T^{4} \)
$71$ \( -131 - 170 T - 46 T^{2} + 5 T^{3} + T^{4} \)
$73$ \( -11 + 12 T + 10 T^{2} - 11 T^{3} + T^{4} \)
$79$ \( -6779 - 299 T + 336 T^{2} - 34 T^{3} + T^{4} \)
$83$ \( -1699 + 1239 T - 99 T^{2} - 11 T^{3} + T^{4} \)
$89$ \( 1861 + 472 T - 102 T^{2} - 8 T^{3} + T^{4} \)
$97$ \( -3011 + 896 T + 210 T^{2} - 32 T^{3} + T^{4} \)
show more
show less