Defining parameters
Level: | \( N \) | \(=\) | \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5445.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 56 \) | ||
Sturm bound: | \(1584\) | ||
Trace bound: | \(14\) | ||
Distinguishing \(T_p\): | \(2\), \(7\), \(23\), \(53\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5445))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 840 | 181 | 659 |
Cusp forms | 745 | 181 | 564 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(11\) | Fricke | Dim. |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(18\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(18\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(18\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(18\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(30\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(25\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(24\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(30\) |
Plus space | \(+\) | \(85\) | ||
Minus space | \(-\) | \(96\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5445))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5445))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5445)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(495))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1089))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1815))\)\(^{\oplus 2}\)