Properties

Label 544.2.c.b.273.6
Level $544$
Weight $2$
Character 544.273
Analytic conductor $4.344$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(273,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4469724736.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 2x^{5} - 4x^{4} + 4x^{3} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 273.6
Root \(0.733159 + 1.20933i\) of defining polynomial
Character \(\chi\) \(=\) 544.273
Dual form 544.2.c.b.273.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.826905i q^{3} -1.12786i q^{5} -1.74755 q^{7} +2.31623 q^{9} +5.05364i q^{11} +3.09887i q^{13} +0.932637 q^{15} +1.00000 q^{17} -1.04322i q^{19} -1.44506i q^{21} +7.54284 q^{23} +3.72792 q^{25} +4.39601i q^{27} +1.12786i q^{29} +2.68019 q^{31} -4.17888 q^{33} +1.97100i q^{35} +9.14869i q^{37} -2.56247 q^{39} -4.72792 q^{41} -1.52970i q^{43} -2.61239i q^{45} -7.66056 q^{47} -3.94606 q^{49} +0.826905i q^{51} +3.90954i q^{53} +5.69982 q^{55} +0.862647 q^{57} -11.0351i q^{59} +1.12786i q^{61} -4.04773 q^{63} +3.49510 q^{65} -2.86631i q^{67} +6.23721i q^{69} +3.01963 q^{71} +12.2230 q^{73} +3.08263i q^{75} -8.83150i q^{77} -3.95227 q^{79} +3.31360 q^{81} -9.34878i q^{83} -1.12786i q^{85} -0.932637 q^{87} -18.2672 q^{89} -5.41543i q^{91} +2.21626i q^{93} -1.17662 q^{95} -1.13735 q^{97} +11.7054i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{7} - 8 q^{9} - 12 q^{15} + 8 q^{17} + 16 q^{23} - 8 q^{25} - 24 q^{31} - 8 q^{33} + 12 q^{39} - 4 q^{47} + 8 q^{49} + 12 q^{55} + 8 q^{57} - 40 q^{63} - 24 q^{65} + 36 q^{71} + 8 q^{73} - 24 q^{79}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.826905i 0.477414i 0.971092 + 0.238707i \(0.0767235\pi\)
−0.971092 + 0.238707i \(0.923277\pi\)
\(4\) 0 0
\(5\) − 1.12786i − 0.504397i −0.967676 0.252198i \(-0.918846\pi\)
0.967676 0.252198i \(-0.0811535\pi\)
\(6\) 0 0
\(7\) −1.74755 −0.660513 −0.330256 0.943891i \(-0.607135\pi\)
−0.330256 + 0.943891i \(0.607135\pi\)
\(8\) 0 0
\(9\) 2.31623 0.772076
\(10\) 0 0
\(11\) 5.05364i 1.52373i 0.647736 + 0.761865i \(0.275716\pi\)
−0.647736 + 0.761865i \(0.724284\pi\)
\(12\) 0 0
\(13\) 3.09887i 0.859471i 0.902955 + 0.429736i \(0.141393\pi\)
−0.902955 + 0.429736i \(0.858607\pi\)
\(14\) 0 0
\(15\) 0.932637 0.240806
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) − 1.04322i − 0.239332i −0.992814 0.119666i \(-0.961818\pi\)
0.992814 0.119666i \(-0.0381824\pi\)
\(20\) 0 0
\(21\) − 1.44506i − 0.315338i
\(22\) 0 0
\(23\) 7.54284 1.57279 0.786395 0.617724i \(-0.211945\pi\)
0.786395 + 0.617724i \(0.211945\pi\)
\(24\) 0 0
\(25\) 3.72792 0.745584
\(26\) 0 0
\(27\) 4.39601i 0.846013i
\(28\) 0 0
\(29\) 1.12786i 0.209439i 0.994502 + 0.104720i \(0.0333945\pi\)
−0.994502 + 0.104720i \(0.966605\pi\)
\(30\) 0 0
\(31\) 2.68019 0.481376 0.240688 0.970603i \(-0.422627\pi\)
0.240688 + 0.970603i \(0.422627\pi\)
\(32\) 0 0
\(33\) −4.17888 −0.727449
\(34\) 0 0
\(35\) 1.97100i 0.333160i
\(36\) 0 0
\(37\) 9.14869i 1.50404i 0.659143 + 0.752018i \(0.270919\pi\)
−0.659143 + 0.752018i \(0.729081\pi\)
\(38\) 0 0
\(39\) −2.56247 −0.410323
\(40\) 0 0
\(41\) −4.72792 −0.738377 −0.369189 0.929355i \(-0.620364\pi\)
−0.369189 + 0.929355i \(0.620364\pi\)
\(42\) 0 0
\(43\) − 1.52970i − 0.233277i −0.993174 0.116638i \(-0.962788\pi\)
0.993174 0.116638i \(-0.0372119\pi\)
\(44\) 0 0
\(45\) − 2.61239i − 0.389433i
\(46\) 0 0
\(47\) −7.66056 −1.11741 −0.558704 0.829367i \(-0.688701\pi\)
−0.558704 + 0.829367i \(0.688701\pi\)
\(48\) 0 0
\(49\) −3.94606 −0.563723
\(50\) 0 0
\(51\) 0.826905i 0.115790i
\(52\) 0 0
\(53\) 3.90954i 0.537016i 0.963277 + 0.268508i \(0.0865307\pi\)
−0.963277 + 0.268508i \(0.913469\pi\)
\(54\) 0 0
\(55\) 5.69982 0.768564
\(56\) 0 0
\(57\) 0.862647 0.114260
\(58\) 0 0
\(59\) − 11.0351i − 1.43664i −0.695712 0.718321i \(-0.744911\pi\)
0.695712 0.718321i \(-0.255089\pi\)
\(60\) 0 0
\(61\) 1.12786i 0.144408i 0.997390 + 0.0722042i \(0.0230033\pi\)
−0.997390 + 0.0722042i \(0.976997\pi\)
\(62\) 0 0
\(63\) −4.04773 −0.509966
\(64\) 0 0
\(65\) 3.49510 0.433514
\(66\) 0 0
\(67\) − 2.86631i − 0.350176i −0.984553 0.175088i \(-0.943979\pi\)
0.984553 0.175088i \(-0.0560210\pi\)
\(68\) 0 0
\(69\) 6.23721i 0.750871i
\(70\) 0 0
\(71\) 3.01963 0.358364 0.179182 0.983816i \(-0.442655\pi\)
0.179182 + 0.983816i \(0.442655\pi\)
\(72\) 0 0
\(73\) 12.2230 1.43060 0.715298 0.698819i \(-0.246291\pi\)
0.715298 + 0.698819i \(0.246291\pi\)
\(74\) 0 0
\(75\) 3.08263i 0.355952i
\(76\) 0 0
\(77\) − 8.83150i − 1.00644i
\(78\) 0 0
\(79\) −3.95227 −0.444665 −0.222332 0.974971i \(-0.571367\pi\)
−0.222332 + 0.974971i \(0.571367\pi\)
\(80\) 0 0
\(81\) 3.31360 0.368178
\(82\) 0 0
\(83\) − 9.34878i − 1.02616i −0.858340 0.513081i \(-0.828504\pi\)
0.858340 0.513081i \(-0.171496\pi\)
\(84\) 0 0
\(85\) − 1.12786i − 0.122334i
\(86\) 0 0
\(87\) −0.932637 −0.0999891
\(88\) 0 0
\(89\) −18.2672 −1.93632 −0.968158 0.250339i \(-0.919458\pi\)
−0.968158 + 0.250339i \(0.919458\pi\)
\(90\) 0 0
\(91\) − 5.41543i − 0.567692i
\(92\) 0 0
\(93\) 2.21626i 0.229816i
\(94\) 0 0
\(95\) −1.17662 −0.120718
\(96\) 0 0
\(97\) −1.13735 −0.115481 −0.0577403 0.998332i \(-0.518390\pi\)
−0.0577403 + 0.998332i \(0.518390\pi\)
\(98\) 0 0
\(99\) 11.7054i 1.17644i
\(100\) 0 0
\(101\) − 15.1985i − 1.51231i −0.654393 0.756154i \(-0.727076\pi\)
0.654393 0.756154i \(-0.272924\pi\)
\(102\) 0 0
\(103\) 14.6325 1.44178 0.720889 0.693050i \(-0.243734\pi\)
0.720889 + 0.693050i \(0.243734\pi\)
\(104\) 0 0
\(105\) −1.62983 −0.159055
\(106\) 0 0
\(107\) 3.08263i 0.298010i 0.988836 + 0.149005i \(0.0476070\pi\)
−0.988836 + 0.149005i \(0.952393\pi\)
\(108\) 0 0
\(109\) − 17.6022i − 1.68598i −0.537929 0.842990i \(-0.680793\pi\)
0.537929 0.842990i \(-0.319207\pi\)
\(110\) 0 0
\(111\) −7.56509 −0.718047
\(112\) 0 0
\(113\) 5.49510 0.516936 0.258468 0.966020i \(-0.416782\pi\)
0.258468 + 0.966020i \(0.416782\pi\)
\(114\) 0 0
\(115\) − 8.50730i − 0.793310i
\(116\) 0 0
\(117\) 7.17769i 0.663577i
\(118\) 0 0
\(119\) −1.74755 −0.160198
\(120\) 0 0
\(121\) −14.5393 −1.32175
\(122\) 0 0
\(123\) − 3.90954i − 0.352511i
\(124\) 0 0
\(125\) − 9.84392i − 0.880467i
\(126\) 0 0
\(127\) −14.7279 −1.30689 −0.653446 0.756973i \(-0.726677\pi\)
−0.653446 + 0.756973i \(0.726677\pi\)
\(128\) 0 0
\(129\) 1.26492 0.111370
\(130\) 0 0
\(131\) − 10.5015i − 0.917524i −0.888559 0.458762i \(-0.848293\pi\)
0.888559 0.458762i \(-0.151707\pi\)
\(132\) 0 0
\(133\) 1.82309i 0.158082i
\(134\) 0 0
\(135\) 4.95811 0.426726
\(136\) 0 0
\(137\) 5.31623 0.454196 0.227098 0.973872i \(-0.427076\pi\)
0.227098 + 0.973872i \(0.427076\pi\)
\(138\) 0 0
\(139\) 2.36527i 0.200619i 0.994956 + 0.100310i \(0.0319834\pi\)
−0.994956 + 0.100310i \(0.968017\pi\)
\(140\) 0 0
\(141\) − 6.33455i − 0.533465i
\(142\) 0 0
\(143\) −15.6606 −1.30960
\(144\) 0 0
\(145\) 1.27208 0.105640
\(146\) 0 0
\(147\) − 3.26302i − 0.269129i
\(148\) 0 0
\(149\) − 21.4357i − 1.75608i −0.478585 0.878041i \(-0.658850\pi\)
0.478585 0.878041i \(-0.341150\pi\)
\(150\) 0 0
\(151\) 18.1276 1.47520 0.737600 0.675238i \(-0.235959\pi\)
0.737600 + 0.675238i \(0.235959\pi\)
\(152\) 0 0
\(153\) 2.31623 0.187256
\(154\) 0 0
\(155\) − 3.02289i − 0.242804i
\(156\) 0 0
\(157\) 14.6187i 1.16670i 0.812220 + 0.583351i \(0.198259\pi\)
−0.812220 + 0.583351i \(0.801741\pi\)
\(158\) 0 0
\(159\) −3.23282 −0.256379
\(160\) 0 0
\(161\) −13.1815 −1.03885
\(162\) 0 0
\(163\) 19.4090i 1.52023i 0.649788 + 0.760116i \(0.274858\pi\)
−0.649788 + 0.760116i \(0.725142\pi\)
\(164\) 0 0
\(165\) 4.71321i 0.366923i
\(166\) 0 0
\(167\) −11.8751 −0.918924 −0.459462 0.888197i \(-0.651958\pi\)
−0.459462 + 0.888197i \(0.651958\pi\)
\(168\) 0 0
\(169\) 3.39702 0.261309
\(170\) 0 0
\(171\) − 2.41635i − 0.184783i
\(172\) 0 0
\(173\) 18.0197i 1.37001i 0.728539 + 0.685005i \(0.240200\pi\)
−0.728539 + 0.685005i \(0.759800\pi\)
\(174\) 0 0
\(175\) −6.51474 −0.492468
\(176\) 0 0
\(177\) 9.12494 0.685872
\(178\) 0 0
\(179\) 15.8637i 1.18571i 0.805310 + 0.592855i \(0.201999\pi\)
−0.805310 + 0.592855i \(0.798001\pi\)
\(180\) 0 0
\(181\) 11.0659i 0.822519i 0.911518 + 0.411259i \(0.134911\pi\)
−0.911518 + 0.411259i \(0.865089\pi\)
\(182\) 0 0
\(183\) −0.932637 −0.0689425
\(184\) 0 0
\(185\) 10.3185 0.758630
\(186\) 0 0
\(187\) 5.05364i 0.369559i
\(188\) 0 0
\(189\) − 7.68226i − 0.558803i
\(190\) 0 0
\(191\) −14.2930 −1.03421 −0.517103 0.855923i \(-0.672990\pi\)
−0.517103 + 0.855923i \(0.672990\pi\)
\(192\) 0 0
\(193\) −21.3480 −1.53666 −0.768330 0.640054i \(-0.778912\pi\)
−0.768330 + 0.640054i \(0.778912\pi\)
\(194\) 0 0
\(195\) 2.89012i 0.206966i
\(196\) 0 0
\(197\) − 22.8269i − 1.62635i −0.582018 0.813176i \(-0.697737\pi\)
0.582018 0.813176i \(-0.302263\pi\)
\(198\) 0 0
\(199\) 8.81492 0.624873 0.312436 0.949939i \(-0.398855\pi\)
0.312436 + 0.949939i \(0.398855\pi\)
\(200\) 0 0
\(201\) 2.37017 0.167179
\(202\) 0 0
\(203\) − 1.97100i − 0.138337i
\(204\) 0 0
\(205\) 5.33246i 0.372435i
\(206\) 0 0
\(207\) 17.4709 1.21431
\(208\) 0 0
\(209\) 5.27208 0.364677
\(210\) 0 0
\(211\) − 8.67845i − 0.597449i −0.954339 0.298725i \(-0.903439\pi\)
0.954339 0.298725i \(-0.0965612\pi\)
\(212\) 0 0
\(213\) 2.49695i 0.171088i
\(214\) 0 0
\(215\) −1.72529 −0.117664
\(216\) 0 0
\(217\) −4.68377 −0.317955
\(218\) 0 0
\(219\) 10.1073i 0.682986i
\(220\) 0 0
\(221\) 3.09887i 0.208452i
\(222\) 0 0
\(223\) 4.33228 0.290111 0.145055 0.989424i \(-0.453664\pi\)
0.145055 + 0.989424i \(0.453664\pi\)
\(224\) 0 0
\(225\) 8.63472 0.575648
\(226\) 0 0
\(227\) − 25.6392i − 1.70173i −0.525381 0.850867i \(-0.676077\pi\)
0.525381 0.850867i \(-0.323923\pi\)
\(228\) 0 0
\(229\) 2.46448i 0.162857i 0.996679 + 0.0814287i \(0.0259483\pi\)
−0.996679 + 0.0814287i \(0.974052\pi\)
\(230\) 0 0
\(231\) 7.30281 0.480489
\(232\) 0 0
\(233\) −2.67172 −0.175030 −0.0875151 0.996163i \(-0.527893\pi\)
−0.0875151 + 0.996163i \(0.527893\pi\)
\(234\) 0 0
\(235\) 8.64007i 0.563616i
\(236\) 0 0
\(237\) − 3.26815i − 0.212289i
\(238\) 0 0
\(239\) 2.89337 0.187157 0.0935784 0.995612i \(-0.470169\pi\)
0.0935784 + 0.995612i \(0.470169\pi\)
\(240\) 0 0
\(241\) 13.8260 0.890612 0.445306 0.895379i \(-0.353095\pi\)
0.445306 + 0.895379i \(0.353095\pi\)
\(242\) 0 0
\(243\) 15.9281i 1.02179i
\(244\) 0 0
\(245\) 4.45062i 0.284340i
\(246\) 0 0
\(247\) 3.23282 0.205699
\(248\) 0 0
\(249\) 7.73055 0.489903
\(250\) 0 0
\(251\) − 26.7270i − 1.68700i −0.537132 0.843498i \(-0.680492\pi\)
0.537132 0.843498i \(-0.319508\pi\)
\(252\) 0 0
\(253\) 38.1188i 2.39651i
\(254\) 0 0
\(255\) 0.932637 0.0584040
\(256\) 0 0
\(257\) −0.460746 −0.0287405 −0.0143703 0.999897i \(-0.504574\pi\)
−0.0143703 + 0.999897i \(0.504574\pi\)
\(258\) 0 0
\(259\) − 15.9878i − 0.993435i
\(260\) 0 0
\(261\) 2.61239i 0.161703i
\(262\) 0 0
\(263\) 16.2623 1.00278 0.501388 0.865223i \(-0.332823\pi\)
0.501388 + 0.865223i \(0.332823\pi\)
\(264\) 0 0
\(265\) 4.40943 0.270869
\(266\) 0 0
\(267\) − 15.1052i − 0.924424i
\(268\) 0 0
\(269\) 20.0596i 1.22306i 0.791222 + 0.611529i \(0.209445\pi\)
−0.791222 + 0.611529i \(0.790555\pi\)
\(270\) 0 0
\(271\) −0.670347 −0.0407207 −0.0203604 0.999793i \(-0.506481\pi\)
−0.0203604 + 0.999793i \(0.506481\pi\)
\(272\) 0 0
\(273\) 4.47805 0.271024
\(274\) 0 0
\(275\) 18.8396i 1.13607i
\(276\) 0 0
\(277\) 3.58534i 0.215422i 0.994182 + 0.107711i \(0.0343522\pi\)
−0.994182 + 0.107711i \(0.965648\pi\)
\(278\) 0 0
\(279\) 6.20793 0.371659
\(280\) 0 0
\(281\) 0.397016 0.0236840 0.0118420 0.999930i \(-0.496230\pi\)
0.0118420 + 0.999930i \(0.496230\pi\)
\(282\) 0 0
\(283\) 9.96859i 0.592571i 0.955099 + 0.296286i \(0.0957481\pi\)
−0.955099 + 0.296286i \(0.904252\pi\)
\(284\) 0 0
\(285\) − 0.972950i − 0.0576326i
\(286\) 0 0
\(287\) 8.26229 0.487708
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) − 0.940482i − 0.0551320i
\(292\) 0 0
\(293\) − 5.39407i − 0.315125i −0.987509 0.157562i \(-0.949636\pi\)
0.987509 0.157562i \(-0.0503635\pi\)
\(294\) 0 0
\(295\) −12.4461 −0.724637
\(296\) 0 0
\(297\) −22.2159 −1.28910
\(298\) 0 0
\(299\) 23.3743i 1.35177i
\(300\) 0 0
\(301\) 2.67323i 0.154082i
\(302\) 0 0
\(303\) 12.5677 0.721997
\(304\) 0 0
\(305\) 1.27208 0.0728391
\(306\) 0 0
\(307\) 28.9614i 1.65291i 0.562999 + 0.826457i \(0.309647\pi\)
−0.562999 + 0.826457i \(0.690353\pi\)
\(308\) 0 0
\(309\) 12.0996i 0.688325i
\(310\) 0 0
\(311\) 13.5049 0.765795 0.382898 0.923791i \(-0.374926\pi\)
0.382898 + 0.923791i \(0.374926\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0 0
\(315\) 4.56529i 0.257225i
\(316\) 0 0
\(317\) − 14.7272i − 0.827161i −0.910468 0.413580i \(-0.864278\pi\)
0.910468 0.413580i \(-0.135722\pi\)
\(318\) 0 0
\(319\) −5.69982 −0.319129
\(320\) 0 0
\(321\) −2.54904 −0.142274
\(322\) 0 0
\(323\) − 1.04322i − 0.0580466i
\(324\) 0 0
\(325\) 11.5523i 0.640808i
\(326\) 0 0
\(327\) 14.5553 0.804910
\(328\) 0 0
\(329\) 13.3872 0.738062
\(330\) 0 0
\(331\) − 2.58159i − 0.141897i −0.997480 0.0709484i \(-0.977397\pi\)
0.997480 0.0709484i \(-0.0226026\pi\)
\(332\) 0 0
\(333\) 21.1905i 1.16123i
\(334\) 0 0
\(335\) −3.23282 −0.176628
\(336\) 0 0
\(337\) 7.00263 0.381457 0.190729 0.981643i \(-0.438915\pi\)
0.190729 + 0.981643i \(0.438915\pi\)
\(338\) 0 0
\(339\) 4.54393i 0.246792i
\(340\) 0 0
\(341\) 13.5447i 0.733487i
\(342\) 0 0
\(343\) 19.1288 1.03286
\(344\) 0 0
\(345\) 7.03473 0.378737
\(346\) 0 0
\(347\) − 1.76335i − 0.0946614i −0.998879 0.0473307i \(-0.984929\pi\)
0.998879 0.0473307i \(-0.0150715\pi\)
\(348\) 0 0
\(349\) − 36.8581i − 1.97297i −0.163851 0.986485i \(-0.552392\pi\)
0.163851 0.986485i \(-0.447608\pi\)
\(350\) 0 0
\(351\) −13.6227 −0.727124
\(352\) 0 0
\(353\) −32.9830 −1.75551 −0.877755 0.479109i \(-0.840960\pi\)
−0.877755 + 0.479109i \(0.840960\pi\)
\(354\) 0 0
\(355\) − 3.40574i − 0.180758i
\(356\) 0 0
\(357\) − 1.44506i − 0.0764806i
\(358\) 0 0
\(359\) −10.1093 −0.533546 −0.266773 0.963759i \(-0.585957\pi\)
−0.266773 + 0.963759i \(0.585957\pi\)
\(360\) 0 0
\(361\) 17.9117 0.942720
\(362\) 0 0
\(363\) − 12.0226i − 0.631022i
\(364\) 0 0
\(365\) − 13.7859i − 0.721588i
\(366\) 0 0
\(367\) −36.8261 −1.92230 −0.961152 0.276018i \(-0.910985\pi\)
−0.961152 + 0.276018i \(0.910985\pi\)
\(368\) 0 0
\(369\) −10.9509 −0.570083
\(370\) 0 0
\(371\) − 6.83212i − 0.354706i
\(372\) 0 0
\(373\) − 15.2775i − 0.791037i −0.918458 0.395518i \(-0.870565\pi\)
0.918458 0.395518i \(-0.129435\pi\)
\(374\) 0 0
\(375\) 8.13998 0.420347
\(376\) 0 0
\(377\) −3.49510 −0.180007
\(378\) 0 0
\(379\) 14.9805i 0.769498i 0.923021 + 0.384749i \(0.125712\pi\)
−0.923021 + 0.384749i \(0.874288\pi\)
\(380\) 0 0
\(381\) − 12.1786i − 0.623928i
\(382\) 0 0
\(383\) 5.19355 0.265378 0.132689 0.991158i \(-0.457639\pi\)
0.132689 + 0.991158i \(0.457639\pi\)
\(384\) 0 0
\(385\) −9.96074 −0.507646
\(386\) 0 0
\(387\) − 3.54313i − 0.180108i
\(388\) 0 0
\(389\) 9.29660i 0.471357i 0.971831 + 0.235678i \(0.0757312\pi\)
−0.971831 + 0.235678i \(0.924269\pi\)
\(390\) 0 0
\(391\) 7.54284 0.381458
\(392\) 0 0
\(393\) 8.68377 0.438038
\(394\) 0 0
\(395\) 4.45763i 0.224287i
\(396\) 0 0
\(397\) − 12.1177i − 0.608172i −0.952645 0.304086i \(-0.901649\pi\)
0.952645 0.304086i \(-0.0983511\pi\)
\(398\) 0 0
\(399\) −1.50752 −0.0754705
\(400\) 0 0
\(401\) 30.3506 1.51564 0.757818 0.652466i \(-0.226265\pi\)
0.757818 + 0.652466i \(0.226265\pi\)
\(402\) 0 0
\(403\) 8.30555i 0.413729i
\(404\) 0 0
\(405\) − 3.73730i − 0.185708i
\(406\) 0 0
\(407\) −46.2342 −2.29174
\(408\) 0 0
\(409\) 23.3015 1.15219 0.576093 0.817384i \(-0.304576\pi\)
0.576093 + 0.817384i \(0.304576\pi\)
\(410\) 0 0
\(411\) 4.39601i 0.216839i
\(412\) 0 0
\(413\) 19.2843i 0.948920i
\(414\) 0 0
\(415\) −10.5442 −0.517592
\(416\) 0 0
\(417\) −1.95585 −0.0957784
\(418\) 0 0
\(419\) 8.50917i 0.415700i 0.978161 + 0.207850i \(0.0666466\pi\)
−0.978161 + 0.207850i \(0.933353\pi\)
\(420\) 0 0
\(421\) − 31.3191i − 1.52640i −0.646162 0.763200i \(-0.723627\pi\)
0.646162 0.763200i \(-0.276373\pi\)
\(422\) 0 0
\(423\) −17.7436 −0.862724
\(424\) 0 0
\(425\) 3.72792 0.180831
\(426\) 0 0
\(427\) − 1.97100i − 0.0953835i
\(428\) 0 0
\(429\) − 12.9498i − 0.625222i
\(430\) 0 0
\(431\) −19.2734 −0.928366 −0.464183 0.885739i \(-0.653652\pi\)
−0.464183 + 0.885739i \(0.653652\pi\)
\(432\) 0 0
\(433\) 21.9363 1.05419 0.527095 0.849806i \(-0.323281\pi\)
0.527095 + 0.849806i \(0.323281\pi\)
\(434\) 0 0
\(435\) 1.05189i 0.0504342i
\(436\) 0 0
\(437\) − 7.86887i − 0.376419i
\(438\) 0 0
\(439\) 5.43358 0.259331 0.129665 0.991558i \(-0.458610\pi\)
0.129665 + 0.991558i \(0.458610\pi\)
\(440\) 0 0
\(441\) −9.13998 −0.435237
\(442\) 0 0
\(443\) 5.06043i 0.240428i 0.992748 + 0.120214i \(0.0383581\pi\)
−0.992748 + 0.120214i \(0.961642\pi\)
\(444\) 0 0
\(445\) 20.6029i 0.976671i
\(446\) 0 0
\(447\) 17.7253 0.838378
\(448\) 0 0
\(449\) −15.8653 −0.748729 −0.374364 0.927282i \(-0.622139\pi\)
−0.374364 + 0.927282i \(0.622139\pi\)
\(450\) 0 0
\(451\) − 23.8932i − 1.12509i
\(452\) 0 0
\(453\) 14.9898i 0.704281i
\(454\) 0 0
\(455\) −6.10788 −0.286342
\(456\) 0 0
\(457\) −10.1272 −0.473730 −0.236865 0.971543i \(-0.576120\pi\)
−0.236865 + 0.971543i \(0.576120\pi\)
\(458\) 0 0
\(459\) 4.39601i 0.205188i
\(460\) 0 0
\(461\) − 22.6244i − 1.05372i −0.849951 0.526862i \(-0.823368\pi\)
0.849951 0.526862i \(-0.176632\pi\)
\(462\) 0 0
\(463\) 7.18114 0.333736 0.166868 0.985979i \(-0.446635\pi\)
0.166868 + 0.985979i \(0.446635\pi\)
\(464\) 0 0
\(465\) 2.49964 0.115918
\(466\) 0 0
\(467\) − 38.2074i − 1.76803i −0.467459 0.884015i \(-0.654830\pi\)
0.467459 0.884015i \(-0.345170\pi\)
\(468\) 0 0
\(469\) 5.00903i 0.231296i
\(470\) 0 0
\(471\) −12.0883 −0.556999
\(472\) 0 0
\(473\) 7.73055 0.355451
\(474\) 0 0
\(475\) − 3.88906i − 0.178442i
\(476\) 0 0
\(477\) 9.05539i 0.414618i
\(478\) 0 0
\(479\) −0.136030 −0.00621538 −0.00310769 0.999995i \(-0.500989\pi\)
−0.00310769 + 0.999995i \(0.500989\pi\)
\(480\) 0 0
\(481\) −28.3506 −1.29268
\(482\) 0 0
\(483\) − 10.8998i − 0.495960i
\(484\) 0 0
\(485\) 1.28278i 0.0582481i
\(486\) 0 0
\(487\) 38.5514 1.74693 0.873464 0.486888i \(-0.161868\pi\)
0.873464 + 0.486888i \(0.161868\pi\)
\(488\) 0 0
\(489\) −16.0494 −0.725779
\(490\) 0 0
\(491\) 18.6889i 0.843418i 0.906731 + 0.421709i \(0.138570\pi\)
−0.906731 + 0.421709i \(0.861430\pi\)
\(492\) 0 0
\(493\) 1.12786i 0.0507965i
\(494\) 0 0
\(495\) 13.2021 0.593390
\(496\) 0 0
\(497\) −5.27697 −0.236704
\(498\) 0 0
\(499\) 18.3033i 0.819368i 0.912228 + 0.409684i \(0.134361\pi\)
−0.912228 + 0.409684i \(0.865639\pi\)
\(500\) 0 0
\(501\) − 9.81959i − 0.438707i
\(502\) 0 0
\(503\) 26.6030 1.18617 0.593085 0.805140i \(-0.297910\pi\)
0.593085 + 0.805140i \(0.297910\pi\)
\(504\) 0 0
\(505\) −17.1419 −0.762803
\(506\) 0 0
\(507\) 2.80901i 0.124752i
\(508\) 0 0
\(509\) − 7.57086i − 0.335572i −0.985823 0.167786i \(-0.946338\pi\)
0.985823 0.167786i \(-0.0536618\pi\)
\(510\) 0 0
\(511\) −21.3604 −0.944928
\(512\) 0 0
\(513\) 4.58603 0.202478
\(514\) 0 0
\(515\) − 16.5034i − 0.727228i
\(516\) 0 0
\(517\) − 38.7137i − 1.70263i
\(518\) 0 0
\(519\) −14.9005 −0.654061
\(520\) 0 0
\(521\) −22.4389 −0.983065 −0.491533 0.870859i \(-0.663563\pi\)
−0.491533 + 0.870859i \(0.663563\pi\)
\(522\) 0 0
\(523\) − 13.5755i − 0.593616i −0.954937 0.296808i \(-0.904078\pi\)
0.954937 0.296808i \(-0.0959221\pi\)
\(524\) 0 0
\(525\) − 5.38707i − 0.235111i
\(526\) 0 0
\(527\) 2.68019 0.116751
\(528\) 0 0
\(529\) 33.8944 1.47367
\(530\) 0 0
\(531\) − 25.5597i − 1.10920i
\(532\) 0 0
\(533\) − 14.6512i − 0.634614i
\(534\) 0 0
\(535\) 3.47680 0.150315
\(536\) 0 0
\(537\) −13.1178 −0.566074
\(538\) 0 0
\(539\) − 19.9420i − 0.858961i
\(540\) 0 0
\(541\) − 14.1426i − 0.608037i −0.952666 0.304019i \(-0.901671\pi\)
0.952666 0.304019i \(-0.0983285\pi\)
\(542\) 0 0
\(543\) −9.15041 −0.392682
\(544\) 0 0
\(545\) −19.8529 −0.850403
\(546\) 0 0
\(547\) 29.0623i 1.24261i 0.783567 + 0.621307i \(0.213398\pi\)
−0.783567 + 0.621307i \(0.786602\pi\)
\(548\) 0 0
\(549\) 2.61239i 0.111494i
\(550\) 0 0
\(551\) 1.17662 0.0501255
\(552\) 0 0
\(553\) 6.90680 0.293707
\(554\) 0 0
\(555\) 8.53241i 0.362180i
\(556\) 0 0
\(557\) 26.1386i 1.10753i 0.832674 + 0.553764i \(0.186809\pi\)
−0.832674 + 0.553764i \(0.813191\pi\)
\(558\) 0 0
\(559\) 4.74034 0.200495
\(560\) 0 0
\(561\) −4.17888 −0.176432
\(562\) 0 0
\(563\) − 17.8812i − 0.753602i −0.926294 0.376801i \(-0.877024\pi\)
0.926294 0.376801i \(-0.122976\pi\)
\(564\) 0 0
\(565\) − 6.19774i − 0.260741i
\(566\) 0 0
\(567\) −5.79069 −0.243186
\(568\) 0 0
\(569\) −21.4434 −0.898955 −0.449478 0.893292i \(-0.648390\pi\)
−0.449478 + 0.893292i \(0.648390\pi\)
\(570\) 0 0
\(571\) − 34.9469i − 1.46248i −0.682120 0.731240i \(-0.738942\pi\)
0.682120 0.731240i \(-0.261058\pi\)
\(572\) 0 0
\(573\) − 11.8190i − 0.493744i
\(574\) 0 0
\(575\) 28.1191 1.17265
\(576\) 0 0
\(577\) −8.95848 −0.372946 −0.186473 0.982460i \(-0.559706\pi\)
−0.186473 + 0.982460i \(0.559706\pi\)
\(578\) 0 0
\(579\) − 17.6527i − 0.733622i
\(580\) 0 0
\(581\) 16.3375i 0.677793i
\(582\) 0 0
\(583\) −19.7574 −0.818268
\(584\) 0 0
\(585\) 8.09546 0.334706
\(586\) 0 0
\(587\) − 6.94513i − 0.286656i −0.989675 0.143328i \(-0.954220\pi\)
0.989675 0.143328i \(-0.0457804\pi\)
\(588\) 0 0
\(589\) − 2.79604i − 0.115209i
\(590\) 0 0
\(591\) 18.8757 0.776443
\(592\) 0 0
\(593\) 18.5932 0.763531 0.381765 0.924259i \(-0.375316\pi\)
0.381765 + 0.924259i \(0.375316\pi\)
\(594\) 0 0
\(595\) 1.97100i 0.0808033i
\(596\) 0 0
\(597\) 7.28909i 0.298323i
\(598\) 0 0
\(599\) −31.7057 −1.29546 −0.647730 0.761870i \(-0.724282\pi\)
−0.647730 + 0.761870i \(0.724282\pi\)
\(600\) 0 0
\(601\) −29.2257 −1.19214 −0.596070 0.802933i \(-0.703272\pi\)
−0.596070 + 0.802933i \(0.703272\pi\)
\(602\) 0 0
\(603\) − 6.63904i − 0.270363i
\(604\) 0 0
\(605\) 16.3983i 0.666686i
\(606\) 0 0
\(607\) 4.90321 0.199015 0.0995077 0.995037i \(-0.468273\pi\)
0.0995077 + 0.995037i \(0.468273\pi\)
\(608\) 0 0
\(609\) 1.62983 0.0660441
\(610\) 0 0
\(611\) − 23.7391i − 0.960379i
\(612\) 0 0
\(613\) 33.8739i 1.36816i 0.729409 + 0.684078i \(0.239795\pi\)
−0.729409 + 0.684078i \(0.760205\pi\)
\(614\) 0 0
\(615\) −4.40943 −0.177805
\(616\) 0 0
\(617\) −34.5174 −1.38962 −0.694809 0.719194i \(-0.744511\pi\)
−0.694809 + 0.719194i \(0.744511\pi\)
\(618\) 0 0
\(619\) − 21.3435i − 0.857868i −0.903336 0.428934i \(-0.858889\pi\)
0.903336 0.428934i \(-0.141111\pi\)
\(620\) 0 0
\(621\) 33.1584i 1.33060i
\(622\) 0 0
\(623\) 31.9228 1.27896
\(624\) 0 0
\(625\) 7.53699 0.301480
\(626\) 0 0
\(627\) 4.35951i 0.174102i
\(628\) 0 0
\(629\) 9.14869i 0.364782i
\(630\) 0 0
\(631\) −44.3689 −1.76630 −0.883149 0.469093i \(-0.844581\pi\)
−0.883149 + 0.469093i \(0.844581\pi\)
\(632\) 0 0
\(633\) 7.17625 0.285230
\(634\) 0 0
\(635\) 16.6111i 0.659192i
\(636\) 0 0
\(637\) − 12.2283i − 0.484504i
\(638\) 0 0
\(639\) 6.99416 0.276685
\(640\) 0 0
\(641\) −3.68151 −0.145411 −0.0727055 0.997353i \(-0.523163\pi\)
−0.0727055 + 0.997353i \(0.523163\pi\)
\(642\) 0 0
\(643\) 30.6988i 1.21064i 0.795982 + 0.605321i \(0.206955\pi\)
−0.795982 + 0.605321i \(0.793045\pi\)
\(644\) 0 0
\(645\) − 1.42665i − 0.0561744i
\(646\) 0 0
\(647\) 20.1066 0.790472 0.395236 0.918580i \(-0.370663\pi\)
0.395236 + 0.918580i \(0.370663\pi\)
\(648\) 0 0
\(649\) 55.7672 2.18905
\(650\) 0 0
\(651\) − 3.87303i − 0.151796i
\(652\) 0 0
\(653\) 4.85298i 0.189912i 0.995481 + 0.0949560i \(0.0302710\pi\)
−0.995481 + 0.0949560i \(0.969729\pi\)
\(654\) 0 0
\(655\) −11.8443 −0.462796
\(656\) 0 0
\(657\) 28.3113 1.10453
\(658\) 0 0
\(659\) 0.820109i 0.0319469i 0.999872 + 0.0159735i \(0.00508473\pi\)
−0.999872 + 0.0159735i \(0.994915\pi\)
\(660\) 0 0
\(661\) − 33.6446i − 1.30862i −0.756225 0.654311i \(-0.772959\pi\)
0.756225 0.654311i \(-0.227041\pi\)
\(662\) 0 0
\(663\) −2.56247 −0.0995180
\(664\) 0 0
\(665\) 2.05620 0.0797360
\(666\) 0 0
\(667\) 8.50730i 0.329404i
\(668\) 0 0
\(669\) 3.58238i 0.138503i
\(670\) 0 0
\(671\) −5.69982 −0.220039
\(672\) 0 0
\(673\) 14.3061 0.551459 0.275729 0.961235i \(-0.411081\pi\)
0.275729 + 0.961235i \(0.411081\pi\)
\(674\) 0 0
\(675\) 16.3880i 0.630774i
\(676\) 0 0
\(677\) 25.2693i 0.971177i 0.874187 + 0.485589i \(0.161395\pi\)
−0.874187 + 0.485589i \(0.838605\pi\)
\(678\) 0 0
\(679\) 1.98758 0.0762765
\(680\) 0 0
\(681\) 21.2012 0.812431
\(682\) 0 0
\(683\) 16.5149i 0.631923i 0.948772 + 0.315962i \(0.102327\pi\)
−0.948772 + 0.315962i \(0.897673\pi\)
\(684\) 0 0
\(685\) − 5.99599i − 0.229095i
\(686\) 0 0
\(687\) −2.03789 −0.0777503
\(688\) 0 0
\(689\) −12.1151 −0.461550
\(690\) 0 0
\(691\) − 3.61558i − 0.137543i −0.997632 0.0687716i \(-0.978092\pi\)
0.997632 0.0687716i \(-0.0219080\pi\)
\(692\) 0 0
\(693\) − 20.4558i − 0.777050i
\(694\) 0 0
\(695\) 2.66770 0.101192
\(696\) 0 0
\(697\) −4.72792 −0.179083
\(698\) 0 0
\(699\) − 2.20926i − 0.0835618i
\(700\) 0 0
\(701\) − 20.4233i − 0.771377i −0.922629 0.385689i \(-0.873964\pi\)
0.922629 0.385689i \(-0.126036\pi\)
\(702\) 0 0
\(703\) 9.54414 0.359964
\(704\) 0 0
\(705\) −7.14452 −0.269078
\(706\) 0 0
\(707\) 26.5602i 0.998899i
\(708\) 0 0
\(709\) − 1.88393i − 0.0707523i −0.999374 0.0353762i \(-0.988737\pi\)
0.999374 0.0353762i \(-0.0112629\pi\)
\(710\) 0 0
\(711\) −9.15436 −0.343315
\(712\) 0 0
\(713\) 20.2162 0.757104
\(714\) 0 0
\(715\) 17.6630i 0.660559i
\(716\) 0 0
\(717\) 2.39254i 0.0893512i
\(718\) 0 0
\(719\) 29.2872 1.09223 0.546114 0.837711i \(-0.316107\pi\)
0.546114 + 0.837711i \(0.316107\pi\)
\(720\) 0 0
\(721\) −25.5710 −0.952313
\(722\) 0 0
\(723\) 11.4328i 0.425190i
\(724\) 0 0
\(725\) 4.20459i 0.156155i
\(726\) 0 0
\(727\) −31.1485 −1.15523 −0.577617 0.816308i \(-0.696017\pi\)
−0.577617 + 0.816308i \(0.696017\pi\)
\(728\) 0 0
\(729\) −3.23019 −0.119637
\(730\) 0 0
\(731\) − 1.52970i − 0.0565780i
\(732\) 0 0
\(733\) 6.44596i 0.238087i 0.992889 + 0.119043i \(0.0379828\pi\)
−0.992889 + 0.119043i \(0.962017\pi\)
\(734\) 0 0
\(735\) −3.68024 −0.135748
\(736\) 0 0
\(737\) 14.4853 0.533573
\(738\) 0 0
\(739\) 19.5888i 0.720587i 0.932839 + 0.360293i \(0.117323\pi\)
−0.932839 + 0.360293i \(0.882677\pi\)
\(740\) 0 0
\(741\) 2.67323i 0.0982036i
\(742\) 0 0
\(743\) 16.2315 0.595476 0.297738 0.954648i \(-0.403768\pi\)
0.297738 + 0.954648i \(0.403768\pi\)
\(744\) 0 0
\(745\) −24.1766 −0.885762
\(746\) 0 0
\(747\) − 21.6539i − 0.792275i
\(748\) 0 0
\(749\) − 5.38707i − 0.196839i
\(750\) 0 0
\(751\) −2.87965 −0.105080 −0.0525400 0.998619i \(-0.516732\pi\)
−0.0525400 + 0.998619i \(0.516732\pi\)
\(752\) 0 0
\(753\) 22.1007 0.805395
\(754\) 0 0
\(755\) − 20.4454i − 0.744086i
\(756\) 0 0
\(757\) 19.8538i 0.721600i 0.932643 + 0.360800i \(0.117496\pi\)
−0.932643 + 0.360800i \(0.882504\pi\)
\(758\) 0 0
\(759\) −31.5206 −1.14412
\(760\) 0 0
\(761\) 21.1619 0.767119 0.383560 0.923516i \(-0.374698\pi\)
0.383560 + 0.923516i \(0.374698\pi\)
\(762\) 0 0
\(763\) 30.7607i 1.11361i
\(764\) 0 0
\(765\) − 2.61239i − 0.0944513i
\(766\) 0 0
\(767\) 34.1962 1.23475
\(768\) 0 0
\(769\) −28.0879 −1.01288 −0.506438 0.862276i \(-0.669038\pi\)
−0.506438 + 0.862276i \(0.669038\pi\)
\(770\) 0 0
\(771\) − 0.380993i − 0.0137211i
\(772\) 0 0
\(773\) 21.4752i 0.772409i 0.922413 + 0.386204i \(0.126214\pi\)
−0.922413 + 0.386204i \(0.873786\pi\)
\(774\) 0 0
\(775\) 9.99153 0.358906
\(776\) 0 0
\(777\) 13.2204 0.474279
\(778\) 0 0
\(779\) 4.93228i 0.176717i
\(780\) 0 0
\(781\) 15.2601i 0.546050i
\(782\) 0 0
\(783\) −4.95811 −0.177188
\(784\) 0 0
\(785\) 16.4880 0.588481
\(786\) 0 0
\(787\) − 1.22304i − 0.0435966i −0.999762 0.0217983i \(-0.993061\pi\)
0.999762 0.0217983i \(-0.00693916\pi\)
\(788\) 0 0
\(789\) 13.4474i 0.478739i
\(790\) 0 0
\(791\) −9.60298 −0.341443
\(792\) 0 0
\(793\) −3.49510 −0.124115
\(794\) 0 0
\(795\) 3.64618i 0.129317i
\(796\) 0 0
\(797\) − 27.2300i − 0.964535i −0.876024 0.482267i \(-0.839813\pi\)
0.876024 0.482267i \(-0.160187\pi\)
\(798\) 0 0
\(799\) −7.66056 −0.271011
\(800\) 0 0
\(801\) −42.3110 −1.49498
\(802\) 0 0
\(803\) 61.7707i 2.17984i
\(804\) 0 0
\(805\) 14.8670i 0.523991i
\(806\) 0 0
\(807\) −16.5874 −0.583904
\(808\) 0 0
\(809\) 12.6939 0.446294 0.223147 0.974785i \(-0.428367\pi\)
0.223147 + 0.974785i \(0.428367\pi\)
\(810\) 0 0
\(811\) 30.6006i 1.07453i 0.843412 + 0.537267i \(0.180543\pi\)
−0.843412 + 0.537267i \(0.819457\pi\)
\(812\) 0 0
\(813\) − 0.554313i − 0.0194406i
\(814\) 0 0
\(815\) 21.8907 0.766799
\(816\) 0 0
\(817\) −1.59582 −0.0558307
\(818\) 0 0
\(819\) − 12.5434i − 0.438301i
\(820\) 0 0
\(821\) 34.8617i 1.21668i 0.793676 + 0.608340i \(0.208164\pi\)
−0.793676 + 0.608340i \(0.791836\pi\)
\(822\) 0 0
\(823\) 25.7292 0.896865 0.448433 0.893817i \(-0.351982\pi\)
0.448433 + 0.893817i \(0.351982\pi\)
\(824\) 0 0
\(825\) −15.5785 −0.542374
\(826\) 0 0
\(827\) − 31.5024i − 1.09545i −0.836659 0.547723i \(-0.815495\pi\)
0.836659 0.547723i \(-0.184505\pi\)
\(828\) 0 0
\(829\) − 24.2760i − 0.843142i −0.906795 0.421571i \(-0.861479\pi\)
0.906795 0.421571i \(-0.138521\pi\)
\(830\) 0 0
\(831\) −2.96474 −0.102846
\(832\) 0 0
\(833\) −3.94606 −0.136723
\(834\) 0 0
\(835\) 13.3935i 0.463502i
\(836\) 0 0
\(837\) 11.7821i 0.407251i
\(838\) 0 0
\(839\) −34.6299 −1.19556 −0.597778 0.801662i \(-0.703950\pi\)
−0.597778 + 0.801662i \(0.703950\pi\)
\(840\) 0 0
\(841\) 27.7279 0.956135
\(842\) 0 0
\(843\) 0.328294i 0.0113071i
\(844\) 0 0
\(845\) − 3.83138i − 0.131803i
\(846\) 0 0
\(847\) 25.4081 0.873033
\(848\) 0 0
\(849\) −8.24308 −0.282902
\(850\) 0 0
\(851\) 69.0071i 2.36553i
\(852\) 0 0
\(853\) − 24.3542i − 0.833872i −0.908936 0.416936i \(-0.863104\pi\)
0.908936 0.416936i \(-0.136896\pi\)
\(854\) 0 0
\(855\) −2.72531 −0.0932037
\(856\) 0 0
\(857\) 1.86002 0.0635371 0.0317686 0.999495i \(-0.489886\pi\)
0.0317686 + 0.999495i \(0.489886\pi\)
\(858\) 0 0
\(859\) − 20.8140i − 0.710166i −0.934835 0.355083i \(-0.884453\pi\)
0.934835 0.355083i \(-0.115547\pi\)
\(860\) 0 0
\(861\) 6.83212i 0.232838i
\(862\) 0 0
\(863\) 31.1302 1.05968 0.529842 0.848096i \(-0.322251\pi\)
0.529842 + 0.848096i \(0.322251\pi\)
\(864\) 0 0
\(865\) 20.3237 0.691028
\(866\) 0 0
\(867\) 0.826905i 0.0280832i
\(868\) 0 0
\(869\) − 19.9733i − 0.677549i
\(870\) 0 0
\(871\) 8.88233 0.300966
\(872\) 0 0
\(873\) −2.63437 −0.0891599
\(874\) 0 0
\(875\) 17.2028i 0.581559i
\(876\) 0 0
\(877\) − 0.991052i − 0.0334654i −0.999860 0.0167327i \(-0.994674\pi\)
0.999860 0.0167327i \(-0.00532644\pi\)
\(878\) 0 0
\(879\) 4.46038 0.150445
\(880\) 0 0
\(881\) 19.3087 0.650527 0.325263 0.945623i \(-0.394547\pi\)
0.325263 + 0.945623i \(0.394547\pi\)
\(882\) 0 0
\(883\) − 23.9889i − 0.807290i −0.914916 0.403645i \(-0.867743\pi\)
0.914916 0.403645i \(-0.132257\pi\)
\(884\) 0 0
\(885\) − 10.2917i − 0.345952i
\(886\) 0 0
\(887\) −2.58473 −0.0867866 −0.0433933 0.999058i \(-0.513817\pi\)
−0.0433933 + 0.999058i \(0.513817\pi\)
\(888\) 0 0
\(889\) 25.7378 0.863219
\(890\) 0 0
\(891\) 16.7457i 0.561004i
\(892\) 0 0
\(893\) 7.99168i 0.267431i
\(894\) 0 0
\(895\) 17.8921 0.598068
\(896\) 0 0
\(897\) −19.3283 −0.645352
\(898\) 0 0
\(899\) 3.02289i 0.100819i
\(900\) 0 0
\(901\) 3.90954i 0.130246i
\(902\) 0 0
\(903\) −2.21051 −0.0735610
\(904\) 0 0
\(905\) 12.4808 0.414876
\(906\) 0 0
\(907\) − 42.7770i − 1.42039i −0.704006 0.710194i \(-0.748607\pi\)
0.704006 0.710194i \(-0.251393\pi\)
\(908\) 0 0
\(909\) − 35.2032i − 1.16762i
\(910\) 0 0
\(911\) 42.6128 1.41183 0.705913 0.708299i \(-0.250537\pi\)
0.705913 + 0.708299i \(0.250537\pi\)
\(912\) 0 0
\(913\) 47.2453 1.56359
\(914\) 0 0
\(915\) 1.05189i 0.0347744i
\(916\) 0 0
\(917\) 18.3520i 0.606036i
\(918\) 0 0
\(919\) −4.78549 −0.157859 −0.0789294 0.996880i \(-0.525150\pi\)
−0.0789294 + 0.996880i \(0.525150\pi\)
\(920\) 0 0
\(921\) −23.9483 −0.789124
\(922\) 0 0
\(923\) 9.35744i 0.308004i
\(924\) 0 0
\(925\) 34.1056i 1.12139i
\(926\) 0 0
\(927\) 33.8921 1.11316
\(928\) 0 0
\(929\) 27.2819 0.895088 0.447544 0.894262i \(-0.352299\pi\)
0.447544 + 0.894262i \(0.352299\pi\)
\(930\) 0 0
\(931\) 4.11663i 0.134917i
\(932\) 0 0
\(933\) 11.1673i 0.365601i
\(934\) 0 0
\(935\) 5.69982 0.186404
\(936\) 0 0
\(937\) 0.0837798 0.00273697 0.00136848 0.999999i \(-0.499564\pi\)
0.00136848 + 0.999999i \(0.499564\pi\)
\(938\) 0 0
\(939\) − 4.96143i − 0.161910i
\(940\) 0 0
\(941\) − 22.3002i − 0.726967i −0.931601 0.363483i \(-0.881587\pi\)
0.931601 0.363483i \(-0.118413\pi\)
\(942\) 0 0
\(943\) −35.6619 −1.16131
\(944\) 0 0
\(945\) −8.66456 −0.281858
\(946\) 0 0
\(947\) − 18.5335i − 0.602257i −0.953584 0.301128i \(-0.902637\pi\)
0.953584 0.301128i \(-0.0973633\pi\)
\(948\) 0 0
\(949\) 37.8775i 1.22956i
\(950\) 0 0
\(951\) 12.1780 0.394898
\(952\) 0 0
\(953\) −20.9782 −0.679549 −0.339775 0.940507i \(-0.610351\pi\)
−0.339775 + 0.940507i \(0.610351\pi\)
\(954\) 0 0
\(955\) 16.1206i 0.521650i
\(956\) 0 0
\(957\) − 4.71321i − 0.152356i
\(958\) 0 0
\(959\) −9.29039 −0.300002
\(960\) 0 0
\(961\) −23.8166 −0.768277
\(962\) 0 0
\(963\) 7.14009i 0.230086i
\(964\) 0 0
\(965\) 24.0776i 0.775086i
\(966\) 0 0
\(967\) −7.73192 −0.248642 −0.124321 0.992242i \(-0.539675\pi\)
−0.124321 + 0.992242i \(0.539675\pi\)
\(968\) 0 0
\(969\) 0.862647 0.0277122
\(970\) 0 0
\(971\) 17.2155i 0.552471i 0.961090 + 0.276235i \(0.0890869\pi\)
−0.961090 + 0.276235i \(0.910913\pi\)
\(972\) 0 0
\(973\) − 4.13343i − 0.132512i
\(974\) 0 0
\(975\) −9.55268 −0.305931
\(976\) 0 0
\(977\) 25.7377 0.823422 0.411711 0.911314i \(-0.364931\pi\)
0.411711 + 0.911314i \(0.364931\pi\)
\(978\) 0 0
\(979\) − 92.3157i − 2.95042i
\(980\) 0 0
\(981\) − 40.7706i − 1.30171i
\(982\) 0 0
\(983\) −33.9385 −1.08247 −0.541235 0.840872i \(-0.682043\pi\)
−0.541235 + 0.840872i \(0.682043\pi\)
\(984\) 0 0
\(985\) −25.7457 −0.820327
\(986\) 0 0
\(987\) 11.0700i 0.352361i
\(988\) 0 0
\(989\) − 11.5383i − 0.366896i
\(990\) 0 0
\(991\) −3.70829 −0.117798 −0.0588988 0.998264i \(-0.518759\pi\)
−0.0588988 + 0.998264i \(0.518759\pi\)
\(992\) 0 0
\(993\) 2.13473 0.0677435
\(994\) 0 0
\(995\) − 9.94203i − 0.315184i
\(996\) 0 0
\(997\) − 26.8766i − 0.851191i −0.904913 0.425596i \(-0.860065\pi\)
0.904913 0.425596i \(-0.139935\pi\)
\(998\) 0 0
\(999\) −40.2178 −1.27243
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.c.b.273.6 8
3.2 odd 2 4896.2.f.d.2449.5 8
4.3 odd 2 136.2.c.b.69.4 yes 8
8.3 odd 2 136.2.c.b.69.3 8
8.5 even 2 inner 544.2.c.b.273.3 8
12.11 even 2 1224.2.f.c.613.5 8
16.3 odd 4 4352.2.a.bf.1.6 8
16.5 even 4 4352.2.a.bb.1.6 8
16.11 odd 4 4352.2.a.bf.1.3 8
16.13 even 4 4352.2.a.bb.1.3 8
24.5 odd 2 4896.2.f.d.2449.4 8
24.11 even 2 1224.2.f.c.613.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.c.b.69.3 8 8.3 odd 2
136.2.c.b.69.4 yes 8 4.3 odd 2
544.2.c.b.273.3 8 8.5 even 2 inner
544.2.c.b.273.6 8 1.1 even 1 trivial
1224.2.f.c.613.5 8 12.11 even 2
1224.2.f.c.613.6 8 24.11 even 2
4352.2.a.bb.1.3 8 16.13 even 4
4352.2.a.bb.1.6 8 16.5 even 4
4352.2.a.bf.1.3 8 16.11 odd 4
4352.2.a.bf.1.6 8 16.3 odd 4
4896.2.f.d.2449.4 8 24.5 odd 2
4896.2.f.d.2449.5 8 3.2 odd 2