Properties

Label 136.2.c.b.69.4
Level $136$
Weight $2$
Character 136.69
Analytic conductor $1.086$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [136,2,Mod(69,136)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(136, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("136.69"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 136.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,0,1,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08596546749\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4469724736.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 2x^{5} - 4x^{4} + 4x^{3} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.4
Root \(0.733159 - 1.20933i\) of defining polynomial
Character \(\chi\) \(=\) 136.69
Dual form 136.2.c.b.69.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.733159 + 1.20933i) q^{2} -0.826905i q^{3} +(-0.924955 - 1.77326i) q^{4} -1.12786i q^{5} +(1.00000 + 0.606253i) q^{6} +1.74755 q^{7} +(2.82260 + 0.181508i) q^{8} +2.31623 q^{9} +(1.36396 + 0.826905i) q^{10} -5.05364i q^{11} +(-1.46632 + 0.764850i) q^{12} +3.09887i q^{13} +(-1.28123 + 2.11337i) q^{14} -0.932637 q^{15} +(-2.28892 + 3.28038i) q^{16} +1.00000 q^{17} +(-1.69816 + 2.80108i) q^{18} +1.04322i q^{19} +(-2.00000 + 1.04322i) q^{20} -1.44506i q^{21} +(6.11151 + 3.70512i) q^{22} -7.54284 q^{23} +(0.150089 - 2.33402i) q^{24} +3.72792 q^{25} +(-3.74755 - 2.27196i) q^{26} -4.39601i q^{27} +(-1.61641 - 3.09887i) q^{28} +1.12786i q^{29} +(0.683771 - 1.12786i) q^{30} -2.68019 q^{31} +(-2.28892 - 5.17309i) q^{32} -4.17888 q^{33} +(-0.733159 + 1.20933i) q^{34} -1.97100i q^{35} +(-2.14241 - 4.10728i) q^{36} +9.14869i q^{37} +(-1.26160 - 0.764850i) q^{38} +2.56247 q^{39} +(0.204716 - 3.18351i) q^{40} -4.72792 q^{41} +(1.74755 + 1.05946i) q^{42} +1.52970i q^{43} +(-8.96142 + 4.67439i) q^{44} -2.61239i q^{45} +(5.53010 - 9.12177i) q^{46} +7.66056 q^{47} +(2.71256 + 1.89271i) q^{48} -3.94606 q^{49} +(-2.73316 + 4.50828i) q^{50} -0.826905i q^{51} +(5.49510 - 2.86631i) q^{52} +3.90954i q^{53} +(5.31623 + 3.22298i) q^{54} -5.69982 q^{55} +(4.93264 + 0.317194i) q^{56} +0.862647 q^{57} +(-1.36396 - 0.826905i) q^{58} +11.0351i q^{59} +(0.862647 + 1.65381i) q^{60} +1.12786i q^{61} +(1.96501 - 3.24123i) q^{62} +4.04773 q^{63} +(7.93411 + 1.02465i) q^{64} +3.49510 q^{65} +(3.06378 - 5.05364i) q^{66} +2.86631i q^{67} +(-0.924955 - 1.77326i) q^{68} +6.23721i q^{69} +(2.38359 + 1.44506i) q^{70} -3.01963 q^{71} +(6.53778 + 0.420413i) q^{72} +12.2230 q^{73} +(-11.0638 - 6.70745i) q^{74} -3.08263i q^{75} +(1.84991 - 0.964936i) q^{76} -8.83150i q^{77} +(-1.87870 + 3.09887i) q^{78} +3.95227 q^{79} +(3.69982 + 2.58159i) q^{80} +3.31360 q^{81} +(3.46632 - 5.71761i) q^{82} +9.34878i q^{83} +(-2.56247 + 1.33662i) q^{84} -1.12786i q^{85} +(-1.84991 - 1.12151i) q^{86} +0.932637 q^{87} +(0.917274 - 14.2644i) q^{88} -18.2672 q^{89} +(3.15924 + 1.91530i) q^{90} +5.41543i q^{91} +(6.97679 + 13.3754i) q^{92} +2.21626i q^{93} +(-5.61641 + 9.26414i) q^{94} +1.17662 q^{95} +(-4.27765 + 1.89271i) q^{96} -1.13735 q^{97} +(2.89309 - 4.77209i) q^{98} -11.7054i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + q^{4} + 8 q^{6} - 12 q^{7} + 5 q^{8} - 8 q^{9} - 8 q^{10} - 2 q^{12} + 6 q^{14} + 12 q^{15} + 9 q^{16} + 8 q^{17} - 19 q^{18} - 16 q^{20} + 4 q^{22} - 16 q^{23} + 18 q^{24} - 8 q^{25} - 4 q^{26}+ \cdots - 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/136\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(103\) \(105\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.733159 + 1.20933i −0.518422 + 0.855125i
\(3\) 0.826905i 0.477414i −0.971092 0.238707i \(-0.923277\pi\)
0.971092 0.238707i \(-0.0767235\pi\)
\(4\) −0.924955 1.77326i −0.462478 0.886631i
\(5\) 1.12786i 0.504397i −0.967676 0.252198i \(-0.918846\pi\)
0.967676 0.252198i \(-0.0811535\pi\)
\(6\) 1.00000 + 0.606253i 0.408248 + 0.247502i
\(7\) 1.74755 0.660513 0.330256 0.943891i \(-0.392865\pi\)
0.330256 + 0.943891i \(0.392865\pi\)
\(8\) 2.82260 + 0.181508i 0.997939 + 0.0641726i
\(9\) 2.31623 0.772076
\(10\) 1.36396 + 0.826905i 0.431322 + 0.261490i
\(11\) 5.05364i 1.52373i −0.647736 0.761865i \(-0.724284\pi\)
0.647736 0.761865i \(-0.275716\pi\)
\(12\) −1.46632 + 0.764850i −0.423290 + 0.220793i
\(13\) 3.09887i 0.859471i 0.902955 + 0.429736i \(0.141393\pi\)
−0.902955 + 0.429736i \(0.858607\pi\)
\(14\) −1.28123 + 2.11337i −0.342424 + 0.564821i
\(15\) −0.932637 −0.240806
\(16\) −2.28892 + 3.28038i −0.572229 + 0.820094i
\(17\) 1.00000 0.242536
\(18\) −1.69816 + 2.80108i −0.400261 + 0.660222i
\(19\) 1.04322i 0.239332i 0.992814 + 0.119666i \(0.0381824\pi\)
−0.992814 + 0.119666i \(0.961818\pi\)
\(20\) −2.00000 + 1.04322i −0.447214 + 0.233272i
\(21\) 1.44506i 0.315338i
\(22\) 6.11151 + 3.70512i 1.30298 + 0.789934i
\(23\) −7.54284 −1.57279 −0.786395 0.617724i \(-0.788055\pi\)
−0.786395 + 0.617724i \(0.788055\pi\)
\(24\) 0.150089 2.33402i 0.0306369 0.476430i
\(25\) 3.72792 0.745584
\(26\) −3.74755 2.27196i −0.734956 0.445569i
\(27\) 4.39601i 0.846013i
\(28\) −1.61641 3.09887i −0.305472 0.585631i
\(29\) 1.12786i 0.209439i 0.994502 + 0.104720i \(0.0333945\pi\)
−0.994502 + 0.104720i \(0.966605\pi\)
\(30\) 0.683771 1.12786i 0.124839 0.205919i
\(31\) −2.68019 −0.481376 −0.240688 0.970603i \(-0.577373\pi\)
−0.240688 + 0.970603i \(0.577373\pi\)
\(32\) −2.28892 5.17309i −0.404627 0.914482i
\(33\) −4.17888 −0.727449
\(34\) −0.733159 + 1.20933i −0.125736 + 0.207398i
\(35\) 1.97100i 0.333160i
\(36\) −2.14241 4.10728i −0.357068 0.684547i
\(37\) 9.14869i 1.50404i 0.659143 + 0.752018i \(0.270919\pi\)
−0.659143 + 0.752018i \(0.729081\pi\)
\(38\) −1.26160 0.764850i −0.204659 0.124075i
\(39\) 2.56247 0.410323
\(40\) 0.204716 3.18351i 0.0323685 0.503357i
\(41\) −4.72792 −0.738377 −0.369189 0.929355i \(-0.620364\pi\)
−0.369189 + 0.929355i \(0.620364\pi\)
\(42\) 1.74755 + 1.05946i 0.269653 + 0.163478i
\(43\) 1.52970i 0.233277i 0.993174 + 0.116638i \(0.0372119\pi\)
−0.993174 + 0.116638i \(0.962788\pi\)
\(44\) −8.96142 + 4.67439i −1.35099 + 0.704691i
\(45\) 2.61239i 0.389433i
\(46\) 5.53010 9.12177i 0.815369 1.34493i
\(47\) 7.66056 1.11741 0.558704 0.829367i \(-0.311299\pi\)
0.558704 + 0.829367i \(0.311299\pi\)
\(48\) 2.71256 + 1.89271i 0.391524 + 0.273190i
\(49\) −3.94606 −0.563723
\(50\) −2.73316 + 4.50828i −0.386527 + 0.637568i
\(51\) 0.826905i 0.115790i
\(52\) 5.49510 2.86631i 0.762034 0.397486i
\(53\) 3.90954i 0.537016i 0.963277 + 0.268508i \(0.0865307\pi\)
−0.963277 + 0.268508i \(0.913469\pi\)
\(54\) 5.31623 + 3.22298i 0.723447 + 0.438592i
\(55\) −5.69982 −0.768564
\(56\) 4.93264 + 0.317194i 0.659151 + 0.0423868i
\(57\) 0.862647 0.114260
\(58\) −1.36396 0.826905i −0.179097 0.108578i
\(59\) 11.0351i 1.43664i 0.695712 + 0.718321i \(0.255089\pi\)
−0.695712 + 0.718321i \(0.744911\pi\)
\(60\) 0.862647 + 1.65381i 0.111367 + 0.213506i
\(61\) 1.12786i 0.144408i 0.997390 + 0.0722042i \(0.0230033\pi\)
−0.997390 + 0.0722042i \(0.976997\pi\)
\(62\) 1.96501 3.24123i 0.249556 0.411637i
\(63\) 4.04773 0.509966
\(64\) 7.93411 + 1.02465i 0.991764 + 0.128081i
\(65\) 3.49510 0.433514
\(66\) 3.06378 5.05364i 0.377125 0.622060i
\(67\) 2.86631i 0.350176i 0.984553 + 0.175088i \(0.0560210\pi\)
−0.984553 + 0.175088i \(0.943979\pi\)
\(68\) −0.924955 1.77326i −0.112167 0.215040i
\(69\) 6.23721i 0.750871i
\(70\) 2.38359 + 1.44506i 0.284894 + 0.172718i
\(71\) −3.01963 −0.358364 −0.179182 0.983816i \(-0.557345\pi\)
−0.179182 + 0.983816i \(0.557345\pi\)
\(72\) 6.53778 + 0.420413i 0.770485 + 0.0495462i
\(73\) 12.2230 1.43060 0.715298 0.698819i \(-0.246291\pi\)
0.715298 + 0.698819i \(0.246291\pi\)
\(74\) −11.0638 6.70745i −1.28614 0.779725i
\(75\) 3.08263i 0.355952i
\(76\) 1.84991 0.964936i 0.212199 0.110686i
\(77\) 8.83150i 1.00644i
\(78\) −1.87870 + 3.09887i −0.212721 + 0.350878i
\(79\) 3.95227 0.444665 0.222332 0.974971i \(-0.428633\pi\)
0.222332 + 0.974971i \(0.428633\pi\)
\(80\) 3.69982 + 2.58159i 0.413653 + 0.288630i
\(81\) 3.31360 0.368178
\(82\) 3.46632 5.71761i 0.382791 0.631405i
\(83\) 9.34878i 1.02616i 0.858340 + 0.513081i \(0.171496\pi\)
−0.858340 + 0.513081i \(0.828504\pi\)
\(84\) −2.56247 + 1.33662i −0.279588 + 0.145837i
\(85\) 1.12786i 0.122334i
\(86\) −1.84991 1.12151i −0.199481 0.120936i
\(87\) 0.932637 0.0999891
\(88\) 0.917274 14.2644i 0.0977817 1.52059i
\(89\) −18.2672 −1.93632 −0.968158 0.250339i \(-0.919458\pi\)
−0.968158 + 0.250339i \(0.919458\pi\)
\(90\) 3.15924 + 1.91530i 0.333014 + 0.201890i
\(91\) 5.41543i 0.567692i
\(92\) 6.97679 + 13.3754i 0.727380 + 1.39448i
\(93\) 2.21626i 0.229816i
\(94\) −5.61641 + 9.26414i −0.579288 + 0.955523i
\(95\) 1.17662 0.120718
\(96\) −4.27765 + 1.89271i −0.436586 + 0.193174i
\(97\) −1.13735 −0.115481 −0.0577403 0.998332i \(-0.518390\pi\)
−0.0577403 + 0.998332i \(0.518390\pi\)
\(98\) 2.89309 4.77209i 0.292246 0.482054i
\(99\) 11.7054i 1.17644i
\(100\) −3.44816 6.61058i −0.344816 0.661058i
\(101\) 15.1985i 1.51231i −0.654393 0.756154i \(-0.727076\pi\)
0.654393 0.756154i \(-0.272924\pi\)
\(102\) 1.00000 + 0.606253i 0.0990148 + 0.0600280i
\(103\) −14.6325 −1.44178 −0.720889 0.693050i \(-0.756266\pi\)
−0.720889 + 0.693050i \(0.756266\pi\)
\(104\) −0.562468 + 8.74686i −0.0551545 + 0.857700i
\(105\) −1.62983 −0.159055
\(106\) −4.72792 2.86631i −0.459216 0.278401i
\(107\) 3.08263i 0.298010i −0.988836 0.149005i \(-0.952393\pi\)
0.988836 0.149005i \(-0.0476070\pi\)
\(108\) −7.79528 + 4.06612i −0.750102 + 0.391262i
\(109\) 17.6022i 1.68598i −0.537929 0.842990i \(-0.680793\pi\)
0.537929 0.842990i \(-0.319207\pi\)
\(110\) 4.17888 6.89296i 0.398440 0.657218i
\(111\) 7.56509 0.718047
\(112\) −4.00000 + 5.73263i −0.377964 + 0.541683i
\(113\) 5.49510 0.516936 0.258468 0.966020i \(-0.416782\pi\)
0.258468 + 0.966020i \(0.416782\pi\)
\(114\) −0.632458 + 1.04322i −0.0592351 + 0.0977069i
\(115\) 8.50730i 0.793310i
\(116\) 2.00000 1.04322i 0.185695 0.0968610i
\(117\) 7.17769i 0.663577i
\(118\) −13.3450 8.09045i −1.22851 0.744786i
\(119\) 1.74755 0.160198
\(120\) −2.63246 0.169281i −0.240309 0.0154531i
\(121\) −14.5393 −1.32175
\(122\) −1.36396 0.826905i −0.123487 0.0748644i
\(123\) 3.90954i 0.352511i
\(124\) 2.47906 + 4.75268i 0.222626 + 0.426803i
\(125\) 9.84392i 0.880467i
\(126\) −2.96763 + 4.89504i −0.264378 + 0.436085i
\(127\) 14.7279 1.30689 0.653446 0.756973i \(-0.273323\pi\)
0.653446 + 0.756973i \(0.273323\pi\)
\(128\) −7.05610 + 8.84372i −0.623677 + 0.781682i
\(129\) 1.26492 0.111370
\(130\) −2.56247 + 4.22673i −0.224743 + 0.370709i
\(131\) 10.5015i 0.917524i 0.888559 + 0.458762i \(0.151707\pi\)
−0.888559 + 0.458762i \(0.848293\pi\)
\(132\) 3.86527 + 7.41024i 0.336429 + 0.644979i
\(133\) 1.82309i 0.158082i
\(134\) −3.46632 2.10146i −0.299444 0.181539i
\(135\) −4.95811 −0.426726
\(136\) 2.82260 + 0.181508i 0.242036 + 0.0155642i
\(137\) 5.31623 0.454196 0.227098 0.973872i \(-0.427076\pi\)
0.227098 + 0.973872i \(0.427076\pi\)
\(138\) −7.54284 4.57286i −0.642089 0.389268i
\(139\) 2.36527i 0.200619i −0.994956 0.100310i \(-0.968017\pi\)
0.994956 0.100310i \(-0.0319834\pi\)
\(140\) −3.49510 + 1.82309i −0.295390 + 0.154079i
\(141\) 6.33455i 0.533465i
\(142\) 2.21387 3.65173i 0.185784 0.306446i
\(143\) 15.6606 1.30960
\(144\) −5.30165 + 7.59810i −0.441804 + 0.633175i
\(145\) 1.27208 0.105640
\(146\) −8.96142 + 14.7817i −0.741653 + 1.22334i
\(147\) 3.26302i 0.269129i
\(148\) 16.2230 8.46213i 1.33352 0.695583i
\(149\) 21.4357i 1.75608i −0.478585 0.878041i \(-0.658850\pi\)
0.478585 0.878041i \(-0.341150\pi\)
\(150\) 3.72792 + 2.26006i 0.304383 + 0.184533i
\(151\) −18.1276 −1.47520 −0.737600 0.675238i \(-0.764041\pi\)
−0.737600 + 0.675238i \(0.764041\pi\)
\(152\) −0.189353 + 2.94460i −0.0153586 + 0.238839i
\(153\) 2.31623 0.187256
\(154\) 10.6802 + 6.47489i 0.860634 + 0.521762i
\(155\) 3.02289i 0.242804i
\(156\) −2.37017 4.54393i −0.189765 0.363805i
\(157\) 14.6187i 1.16670i 0.812220 + 0.583351i \(0.198259\pi\)
−0.812220 + 0.583351i \(0.801741\pi\)
\(158\) −2.89764 + 4.77959i −0.230524 + 0.380244i
\(159\) 3.23282 0.256379
\(160\) −5.83455 + 2.58159i −0.461261 + 0.204092i
\(161\) −13.1815 −1.03885
\(162\) −2.42940 + 4.00724i −0.190872 + 0.314838i
\(163\) 19.4090i 1.52023i −0.649788 0.760116i \(-0.725142\pi\)
0.649788 0.760116i \(-0.274858\pi\)
\(164\) 4.37311 + 8.38384i 0.341483 + 0.654668i
\(165\) 4.71321i 0.366923i
\(166\) −11.3058 6.85414i −0.877497 0.531985i
\(167\) 11.8751 0.918924 0.459462 0.888197i \(-0.348042\pi\)
0.459462 + 0.888197i \(0.348042\pi\)
\(168\) 0.262289 4.07882i 0.0202361 0.314688i
\(169\) 3.39702 0.261309
\(170\) 1.36396 + 0.826905i 0.104611 + 0.0634207i
\(171\) 2.41635i 0.184783i
\(172\) 2.71256 1.41490i 0.206831 0.107885i
\(173\) 18.0197i 1.37001i 0.728539 + 0.685005i \(0.240200\pi\)
−0.728539 + 0.685005i \(0.759800\pi\)
\(174\) −0.683771 + 1.12786i −0.0518366 + 0.0855032i
\(175\) 6.51474 0.492468
\(176\) 16.5778 + 11.5673i 1.24960 + 0.871922i
\(177\) 9.12494 0.685872
\(178\) 13.3927 22.0910i 1.00383 1.65579i
\(179\) 15.8637i 1.18571i −0.805310 0.592855i \(-0.798001\pi\)
0.805310 0.592855i \(-0.201999\pi\)
\(180\) −4.63246 + 2.41635i −0.345283 + 0.180104i
\(181\) 11.0659i 0.822519i 0.911518 + 0.411259i \(0.134911\pi\)
−0.911518 + 0.411259i \(0.865089\pi\)
\(182\) −6.54904 3.97038i −0.485447 0.294304i
\(183\) 0.932637 0.0689425
\(184\) −21.2904 1.36908i −1.56955 0.100930i
\(185\) 10.3185 0.758630
\(186\) −2.68019 1.62487i −0.196521 0.119141i
\(187\) 5.05364i 0.369559i
\(188\) −7.08567 13.5842i −0.516776 0.990728i
\(189\) 7.68226i 0.558803i
\(190\) −0.862647 + 1.42292i −0.0625830 + 0.103229i
\(191\) 14.2930 1.03421 0.517103 0.855923i \(-0.327010\pi\)
0.517103 + 0.855923i \(0.327010\pi\)
\(192\) 0.847284 6.56075i 0.0611475 0.473481i
\(193\) −21.3480 −1.53666 −0.768330 0.640054i \(-0.778912\pi\)
−0.768330 + 0.640054i \(0.778912\pi\)
\(194\) 0.833861 1.37543i 0.0598677 0.0987504i
\(195\) 2.89012i 0.206966i
\(196\) 3.64993 + 6.99740i 0.260709 + 0.499814i
\(197\) 22.8269i 1.62635i −0.582018 0.813176i \(-0.697737\pi\)
0.582018 0.813176i \(-0.302263\pi\)
\(198\) 14.1557 + 8.58191i 1.00600 + 0.609890i
\(199\) −8.81492 −0.624873 −0.312436 0.949939i \(-0.601145\pi\)
−0.312436 + 0.949939i \(0.601145\pi\)
\(200\) 10.5224 + 0.676646i 0.744047 + 0.0478461i
\(201\) 2.37017 0.167179
\(202\) 18.3800 + 11.1429i 1.29321 + 0.784014i
\(203\) 1.97100i 0.138337i
\(204\) −1.46632 + 0.764850i −0.102663 + 0.0535502i
\(205\) 5.33246i 0.372435i
\(206\) 10.7279 17.6955i 0.747450 1.23290i
\(207\) −17.4709 −1.21431
\(208\) −10.1655 7.09305i −0.704847 0.491814i
\(209\) 5.27208 0.364677
\(210\) 1.19493 1.97100i 0.0824577 0.136012i
\(211\) 8.67845i 0.597449i 0.954339 + 0.298725i \(0.0965612\pi\)
−0.954339 + 0.298725i \(0.903439\pi\)
\(212\) 6.93264 3.61615i 0.476135 0.248358i
\(213\) 2.49695i 0.171088i
\(214\) 3.72792 + 2.26006i 0.254835 + 0.154495i
\(215\) 1.72529 0.117664
\(216\) 0.797910 12.4082i 0.0542909 0.844269i
\(217\) −4.68377 −0.317955
\(218\) 21.2868 + 12.9052i 1.44172 + 0.874049i
\(219\) 10.1073i 0.682986i
\(220\) 5.27208 + 10.1073i 0.355444 + 0.681432i
\(221\) 3.09887i 0.208452i
\(222\) −5.54642 + 9.14869i −0.372251 + 0.614020i
\(223\) −4.33228 −0.290111 −0.145055 0.989424i \(-0.546336\pi\)
−0.145055 + 0.989424i \(0.546336\pi\)
\(224\) −4.00000 9.04025i −0.267261 0.604027i
\(225\) 8.63472 0.575648
\(226\) −4.02879 + 6.64539i −0.267991 + 0.442045i
\(227\) 25.6392i 1.70173i 0.525381 + 0.850867i \(0.323923\pi\)
−0.525381 + 0.850867i \(0.676077\pi\)
\(228\) −0.797910 1.52970i −0.0528429 0.101307i
\(229\) 2.46448i 0.162857i 0.996679 + 0.0814287i \(0.0259483\pi\)
−0.996679 + 0.0814287i \(0.974052\pi\)
\(230\) −10.2881 6.23721i −0.678379 0.411269i
\(231\) −7.30281 −0.480489
\(232\) −0.204716 + 3.18351i −0.0134403 + 0.209008i
\(233\) −2.67172 −0.175030 −0.0875151 0.996163i \(-0.527893\pi\)
−0.0875151 + 0.996163i \(0.527893\pi\)
\(234\) −8.68019 5.26239i −0.567442 0.344013i
\(235\) 8.64007i 0.563616i
\(236\) 19.5680 10.2069i 1.27377 0.664415i
\(237\) 3.26815i 0.212289i
\(238\) −1.28123 + 2.11337i −0.0830501 + 0.136989i
\(239\) −2.89337 −0.187157 −0.0935784 0.995612i \(-0.529831\pi\)
−0.0935784 + 0.995612i \(0.529831\pi\)
\(240\) 2.13473 3.05940i 0.137796 0.197483i
\(241\) 13.8260 0.890612 0.445306 0.895379i \(-0.353095\pi\)
0.445306 + 0.895379i \(0.353095\pi\)
\(242\) 10.6596 17.5827i 0.685224 1.13026i
\(243\) 15.9281i 1.02179i
\(244\) 2.00000 1.04322i 0.128037 0.0667856i
\(245\) 4.45062i 0.284340i
\(246\) −4.72792 2.86631i −0.301441 0.182750i
\(247\) −3.23282 −0.205699
\(248\) −7.56509 0.486475i −0.480384 0.0308912i
\(249\) 7.73055 0.489903
\(250\) 11.9045 + 7.21716i 0.752909 + 0.456453i
\(251\) 26.7270i 1.68700i 0.537132 + 0.843498i \(0.319508\pi\)
−0.537132 + 0.843498i \(0.680492\pi\)
\(252\) −3.74397 7.17769i −0.235848 0.452152i
\(253\) 38.1188i 2.39651i
\(254\) −10.7979 + 17.8109i −0.677521 + 1.11756i
\(255\) −0.932637 −0.0584040
\(256\) −5.52173 15.0170i −0.345108 0.938563i
\(257\) −0.460746 −0.0287405 −0.0143703 0.999897i \(-0.504574\pi\)
−0.0143703 + 0.999897i \(0.504574\pi\)
\(258\) −0.927384 + 1.52970i −0.0577364 + 0.0952349i
\(259\) 15.9878i 0.993435i
\(260\) −3.23282 6.19774i −0.200491 0.384367i
\(261\) 2.61239i 0.161703i
\(262\) −12.6998 7.69930i −0.784598 0.475664i
\(263\) −16.2623 −1.00278 −0.501388 0.865223i \(-0.667177\pi\)
−0.501388 + 0.865223i \(0.667177\pi\)
\(264\) −11.7953 0.758498i −0.725950 0.0466823i
\(265\) 4.40943 0.270869
\(266\) −2.20472 1.33662i −0.135180 0.0819531i
\(267\) 15.1052i 0.924424i
\(268\) 5.08273 2.65121i 0.310477 0.161949i
\(269\) 20.0596i 1.22306i 0.791222 + 0.611529i \(0.209445\pi\)
−0.791222 + 0.611529i \(0.790555\pi\)
\(270\) 3.63508 5.99599i 0.221224 0.364904i
\(271\) 0.670347 0.0407207 0.0203604 0.999793i \(-0.493519\pi\)
0.0203604 + 0.999793i \(0.493519\pi\)
\(272\) −2.28892 + 3.28038i −0.138786 + 0.198902i
\(273\) 4.47805 0.271024
\(274\) −3.89764 + 6.42907i −0.235465 + 0.388394i
\(275\) 18.8396i 1.13607i
\(276\) 11.0602 5.76914i 0.665746 0.347261i
\(277\) 3.58534i 0.215422i 0.994182 + 0.107711i \(0.0343522\pi\)
−0.994182 + 0.107711i \(0.965648\pi\)
\(278\) 2.86039 + 1.73412i 0.171555 + 0.104005i
\(279\) −6.20793 −0.371659
\(280\) 0.357752 5.56335i 0.0213798 0.332474i
\(281\) 0.397016 0.0236840 0.0118420 0.999930i \(-0.496230\pi\)
0.0118420 + 0.999930i \(0.496230\pi\)
\(282\) 7.66056 + 4.64423i 0.456180 + 0.276560i
\(283\) 9.96859i 0.592571i −0.955099 0.296286i \(-0.904252\pi\)
0.955099 0.296286i \(-0.0957481\pi\)
\(284\) 2.79302 + 5.35460i 0.165736 + 0.317737i
\(285\) 0.972950i 0.0576326i
\(286\) −11.4817 + 18.9388i −0.678926 + 1.11987i
\(287\) −8.26229 −0.487708
\(288\) −5.30165 11.9821i −0.312403 0.706050i
\(289\) 1.00000 0.0588235
\(290\) −0.932637 + 1.53836i −0.0547663 + 0.0903358i
\(291\) 0.940482i 0.0551320i
\(292\) −11.3058 21.6746i −0.661619 1.26841i
\(293\) 5.39407i 0.315125i −0.987509 0.157562i \(-0.949636\pi\)
0.987509 0.157562i \(-0.0503635\pi\)
\(294\) −3.94606 2.39231i −0.230139 0.139522i
\(295\) 12.4461 0.724637
\(296\) −1.66056 + 25.8231i −0.0965179 + 1.50094i
\(297\) −22.2159 −1.28910
\(298\) 25.9228 + 15.7158i 1.50167 + 0.910392i
\(299\) 23.3743i 1.35177i
\(300\) −5.46632 + 2.85130i −0.315598 + 0.164620i
\(301\) 2.67323i 0.154082i
\(302\) 13.2904 21.9222i 0.764776 1.26148i
\(303\) −12.5677 −0.721997
\(304\) −3.42217 2.38785i −0.196275 0.136953i
\(305\) 1.27208 0.0728391
\(306\) −1.69816 + 2.80108i −0.0970776 + 0.160127i
\(307\) 28.9614i 1.65291i −0.562999 0.826457i \(-0.690353\pi\)
0.562999 0.826457i \(-0.309647\pi\)
\(308\) −15.6606 + 8.16874i −0.892343 + 0.465457i
\(309\) 12.0996i 0.688325i
\(310\) −3.65567 2.21626i −0.207628 0.125875i
\(311\) −13.5049 −0.765795 −0.382898 0.923791i \(-0.625074\pi\)
−0.382898 + 0.923791i \(0.625074\pi\)
\(312\) 7.23282 + 0.465108i 0.409478 + 0.0263315i
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −17.6789 10.7179i −0.997676 0.604844i
\(315\) 4.56529i 0.257225i
\(316\) −3.65567 7.00841i −0.205648 0.394254i
\(317\) 14.7272i 0.827161i −0.910468 0.413580i \(-0.864278\pi\)
0.910468 0.413580i \(-0.135722\pi\)
\(318\) −2.37017 + 3.90954i −0.132912 + 0.219236i
\(319\) 5.69982 0.319129
\(320\) 1.15566 8.94860i 0.0646035 0.500242i
\(321\) −2.54904 −0.142274
\(322\) 9.66414 15.9408i 0.538561 0.888345i
\(323\) 1.04322i 0.0580466i
\(324\) −3.06493 5.87589i −0.170274 0.326438i
\(325\) 11.5523i 0.640808i
\(326\) 23.4719 + 14.2299i 1.29999 + 0.788121i
\(327\) −14.5553 −0.804910
\(328\) −13.3450 0.858154i −0.736855 0.0473836i
\(329\) 13.3872 0.738062
\(330\) −5.69982 3.45553i −0.313765 0.190221i
\(331\) 2.58159i 0.141897i 0.997480 + 0.0709484i \(0.0226026\pi\)
−0.997480 + 0.0709484i \(0.977397\pi\)
\(332\) 16.5778 8.64720i 0.909827 0.474577i
\(333\) 21.1905i 1.16123i
\(334\) −8.70635 + 14.3609i −0.476390 + 0.785795i
\(335\) 3.23282 0.176628
\(336\) 4.74034 + 3.30762i 0.258607 + 0.180445i
\(337\) 7.00263 0.381457 0.190729 0.981643i \(-0.438915\pi\)
0.190729 + 0.981643i \(0.438915\pi\)
\(338\) −2.49055 + 4.10811i −0.135468 + 0.223452i
\(339\) 4.54393i 0.246792i
\(340\) −2.00000 + 1.04322i −0.108465 + 0.0565768i
\(341\) 13.5447i 0.733487i
\(342\) −2.92216 1.77157i −0.158012 0.0957954i
\(343\) −19.1288 −1.03286
\(344\) −0.277652 + 4.31773i −0.0149700 + 0.232796i
\(345\) 7.03473 0.378737
\(346\) −21.7917 13.2113i −1.17153 0.710243i
\(347\) 1.76335i 0.0946614i 0.998879 + 0.0473307i \(0.0150715\pi\)
−0.998879 + 0.0473307i \(0.984929\pi\)
\(348\) −0.862647 1.65381i −0.0462427 0.0886535i
\(349\) 36.8581i 1.97297i −0.163851 0.986485i \(-0.552392\pi\)
0.163851 0.986485i \(-0.447608\pi\)
\(350\) −4.77634 + 7.87846i −0.255306 + 0.421122i
\(351\) 13.6227 0.727124
\(352\) −26.1429 + 11.5673i −1.39342 + 0.616542i
\(353\) −32.9830 −1.75551 −0.877755 0.479109i \(-0.840960\pi\)
−0.877755 + 0.479109i \(0.840960\pi\)
\(354\) −6.69003 + 11.0351i −0.355571 + 0.586507i
\(355\) 3.40574i 0.180758i
\(356\) 16.8963 + 32.3925i 0.895503 + 1.71680i
\(357\) 1.44506i 0.0764806i
\(358\) 19.1844 + 11.6306i 1.01393 + 0.614698i
\(359\) 10.1093 0.533546 0.266773 0.963759i \(-0.414043\pi\)
0.266773 + 0.963759i \(0.414043\pi\)
\(360\) 0.474169 7.37373i 0.0249909 0.388630i
\(361\) 17.9117 0.942720
\(362\) −13.3823 8.11304i −0.703356 0.426412i
\(363\) 12.0226i 0.631022i
\(364\) 9.60298 5.00903i 0.503333 0.262545i
\(365\) 13.7859i 0.721588i
\(366\) −0.683771 + 1.12786i −0.0357413 + 0.0589544i
\(367\) 36.8261 1.92230 0.961152 0.276018i \(-0.0890150\pi\)
0.961152 + 0.276018i \(0.0890150\pi\)
\(368\) 17.2649 24.7433i 0.899996 1.28984i
\(369\) −10.9509 −0.570083
\(370\) −7.56509 + 12.4785i −0.393291 + 0.648724i
\(371\) 6.83212i 0.354706i
\(372\) 3.93001 2.04994i 0.203762 0.106285i
\(373\) 15.2775i 0.791037i −0.918458 0.395518i \(-0.870565\pi\)
0.918458 0.395518i \(-0.129435\pi\)
\(374\) 6.11151 + 3.70512i 0.316019 + 0.191587i
\(375\) −8.13998 −0.420347
\(376\) 21.6227 + 1.39045i 1.11510 + 0.0717070i
\(377\) −3.49510 −0.180007
\(378\) 9.29039 + 5.63232i 0.477846 + 0.289695i
\(379\) 14.9805i 0.769498i −0.923021 0.384749i \(-0.874288\pi\)
0.923021 0.384749i \(-0.125712\pi\)
\(380\) −1.08832 2.08645i −0.0558295 0.107033i
\(381\) 12.1786i 0.623928i
\(382\) −10.4791 + 17.2850i −0.536155 + 0.884376i
\(383\) −5.19355 −0.265378 −0.132689 0.991158i \(-0.542361\pi\)
−0.132689 + 0.991158i \(0.542361\pi\)
\(384\) 7.31292 + 5.83472i 0.373186 + 0.297752i
\(385\) −9.96074 −0.507646
\(386\) 15.6515 25.8167i 0.796638 1.31404i
\(387\) 3.54313i 0.180108i
\(388\) 1.05200 + 2.01682i 0.0534072 + 0.102389i
\(389\) 9.29660i 0.471357i 0.971831 + 0.235678i \(0.0757312\pi\)
−0.971831 + 0.235678i \(0.924269\pi\)
\(390\) 3.49510 + 2.11892i 0.176982 + 0.107296i
\(391\) −7.54284 −0.381458
\(392\) −11.1381 0.716240i −0.562561 0.0361756i
\(393\) 8.68377 0.438038
\(394\) 27.6053 + 16.7358i 1.39073 + 0.843137i
\(395\) 4.45763i 0.224287i
\(396\) −20.7567 + 10.8270i −1.04306 + 0.544075i
\(397\) 12.1177i 0.608172i −0.952645 0.304086i \(-0.901649\pi\)
0.952645 0.304086i \(-0.0983511\pi\)
\(398\) 6.46274 10.6601i 0.323948 0.534344i
\(399\) 1.50752 0.0754705
\(400\) −8.53290 + 12.2290i −0.426645 + 0.611449i
\(401\) 30.3506 1.51564 0.757818 0.652466i \(-0.226265\pi\)
0.757818 + 0.652466i \(0.226265\pi\)
\(402\) −1.73771 + 2.86631i −0.0866691 + 0.142959i
\(403\) 8.30555i 0.413729i
\(404\) −26.9509 + 14.0579i −1.34086 + 0.699409i
\(405\) 3.73730i 0.185708i
\(406\) −2.38359 1.44506i −0.118296 0.0717171i
\(407\) 46.2342 2.29174
\(408\) 0.150089 2.33402i 0.00743054 0.115551i
\(409\) 23.3015 1.15219 0.576093 0.817384i \(-0.304576\pi\)
0.576093 + 0.817384i \(0.304576\pi\)
\(410\) −6.44870 3.90954i −0.318478 0.193078i
\(411\) 4.39601i 0.216839i
\(412\) 13.5344 + 25.9472i 0.666790 + 1.27833i
\(413\) 19.2843i 0.948920i
\(414\) 12.8090 21.1281i 0.629527 1.03839i
\(415\) 10.5442 0.517592
\(416\) 16.0307 7.09305i 0.785971 0.347765i
\(417\) −1.95585 −0.0957784
\(418\) −3.86527 + 6.37568i −0.189057 + 0.311845i
\(419\) 8.50917i 0.415700i −0.978161 0.207850i \(-0.933353\pi\)
0.978161 0.207850i \(-0.0666466\pi\)
\(420\) 1.50752 + 2.89012i 0.0735595 + 0.141023i
\(421\) 31.3191i 1.52640i −0.646162 0.763200i \(-0.723627\pi\)
0.646162 0.763200i \(-0.276373\pi\)
\(422\) −10.4951 6.36269i −0.510894 0.309731i
\(423\) 17.7436 0.862724
\(424\) −0.709611 + 11.0351i −0.0344618 + 0.535910i
\(425\) 3.72792 0.180831
\(426\) −3.01963 1.83066i −0.146302 0.0886958i
\(427\) 1.97100i 0.0953835i
\(428\) −5.46632 + 2.85130i −0.264224 + 0.137823i
\(429\) 12.9498i 0.625222i
\(430\) −1.26492 + 2.08645i −0.0609996 + 0.100618i
\(431\) 19.2734 0.928366 0.464183 0.885739i \(-0.346348\pi\)
0.464183 + 0.885739i \(0.346348\pi\)
\(432\) 14.4206 + 10.0621i 0.693810 + 0.484113i
\(433\) 21.9363 1.05419 0.527095 0.849806i \(-0.323281\pi\)
0.527095 + 0.849806i \(0.323281\pi\)
\(434\) 3.43395 5.66422i 0.164835 0.271891i
\(435\) 1.05189i 0.0504342i
\(436\) −31.2132 + 16.2812i −1.49484 + 0.779728i
\(437\) 7.86887i 0.376419i
\(438\) 12.2230 + 7.41024i 0.584039 + 0.354075i
\(439\) −5.43358 −0.259331 −0.129665 0.991558i \(-0.541390\pi\)
−0.129665 + 0.991558i \(0.541390\pi\)
\(440\) −16.0883 1.03456i −0.766980 0.0493208i
\(441\) −9.13998 −0.435237
\(442\) −3.74755 2.27196i −0.178253 0.108066i
\(443\) 5.06043i 0.240428i −0.992748 0.120214i \(-0.961642\pi\)
0.992748 0.120214i \(-0.0383581\pi\)
\(444\) −6.99737 13.4149i −0.332081 0.636643i
\(445\) 20.6029i 0.976671i
\(446\) 3.17625 5.23915i 0.150400 0.248081i
\(447\) −17.7253 −0.838378
\(448\) 13.8653 + 1.79062i 0.655073 + 0.0845990i
\(449\) −15.8653 −0.748729 −0.374364 0.927282i \(-0.622139\pi\)
−0.374364 + 0.927282i \(0.622139\pi\)
\(450\) −6.33062 + 10.4422i −0.298428 + 0.492251i
\(451\) 23.8932i 1.12509i
\(452\) −5.08273 9.74426i −0.239071 0.458331i
\(453\) 14.9898i 0.704281i
\(454\) −31.0063 18.7976i −1.45520 0.882216i
\(455\) 6.10788 0.286342
\(456\) 2.43491 + 0.156577i 0.114025 + 0.00733239i
\(457\) −10.1272 −0.473730 −0.236865 0.971543i \(-0.576120\pi\)
−0.236865 + 0.971543i \(0.576120\pi\)
\(458\) −2.98037 1.80686i −0.139263 0.0844288i
\(459\) 4.39601i 0.205188i
\(460\) 15.0857 7.86887i 0.703373 0.366888i
\(461\) 22.6244i 1.05372i −0.849951 0.526862i \(-0.823368\pi\)
0.849951 0.526862i \(-0.176632\pi\)
\(462\) 5.35412 8.83150i 0.249096 0.410878i
\(463\) −7.18114 −0.333736 −0.166868 0.985979i \(-0.553365\pi\)
−0.166868 + 0.985979i \(0.553365\pi\)
\(464\) −3.69982 2.58159i −0.171760 0.119847i
\(465\) 2.49964 0.115918
\(466\) 1.95880 3.23099i 0.0907395 0.149673i
\(467\) 38.2074i 1.76803i 0.467459 + 0.884015i \(0.345170\pi\)
−0.467459 + 0.884015i \(0.654830\pi\)
\(468\) 12.7279 6.63904i 0.588348 0.306890i
\(469\) 5.00903i 0.231296i
\(470\) 10.4487 + 6.33455i 0.481962 + 0.292191i
\(471\) 12.0883 0.556999
\(472\) −2.00295 + 31.1475i −0.0921931 + 1.43368i
\(473\) 7.73055 0.355451
\(474\) 3.95227 + 2.39607i 0.181534 + 0.110055i
\(475\) 3.88906i 0.178442i
\(476\) −1.61641 3.09887i −0.0740879 0.142036i
\(477\) 9.05539i 0.414618i
\(478\) 2.12130 3.49904i 0.0970261 0.160042i
\(479\) 0.136030 0.00621538 0.00310769 0.999995i \(-0.499011\pi\)
0.00310769 + 0.999995i \(0.499011\pi\)
\(480\) 2.13473 + 4.82461i 0.0974365 + 0.220212i
\(481\) −28.3506 −1.29268
\(482\) −10.1367 + 16.7202i −0.461712 + 0.761584i
\(483\) 10.8998i 0.495960i
\(484\) 13.4482 + 25.7819i 0.611280 + 1.17190i
\(485\) 1.28278i 0.0582481i
\(486\) 19.2623 + 11.6778i 0.873755 + 0.529716i
\(487\) −38.5514 −1.74693 −0.873464 0.486888i \(-0.838132\pi\)
−0.873464 + 0.486888i \(0.838132\pi\)
\(488\) −0.204716 + 3.18351i −0.00926706 + 0.144111i
\(489\) −16.0494 −0.725779
\(490\) −5.38227 3.26302i −0.243146 0.147408i
\(491\) 18.6889i 0.843418i −0.906731 0.421709i \(-0.861430\pi\)
0.906731 0.421709i \(-0.138570\pi\)
\(492\) 6.93264 3.61615i 0.312547 0.163029i
\(493\) 1.12786i 0.0507965i
\(494\) 2.37017 3.90954i 0.106639 0.175898i
\(495\) −13.2021 −0.593390
\(496\) 6.13473 8.79203i 0.275457 0.394774i
\(497\) −5.27697 −0.236704
\(498\) −5.66772 + 9.34878i −0.253977 + 0.418929i
\(499\) 18.3033i 0.819368i −0.912228 0.409684i \(-0.865639\pi\)
0.912228 0.409684i \(-0.134361\pi\)
\(500\) −17.4558 + 9.10518i −0.780649 + 0.407196i
\(501\) 9.81959i 0.438707i
\(502\) −32.3218 19.5952i −1.44259 0.874576i
\(503\) −26.6030 −1.18617 −0.593085 0.805140i \(-0.702090\pi\)
−0.593085 + 0.805140i \(0.702090\pi\)
\(504\) 11.4251 + 0.734694i 0.508915 + 0.0327259i
\(505\) −17.1419 −0.762803
\(506\) −46.0981 27.9471i −2.04931 1.24240i
\(507\) 2.80901i 0.124752i
\(508\) −13.6227 26.1165i −0.604408 1.15873i
\(509\) 7.57086i 0.335572i −0.985823 0.167786i \(-0.946338\pi\)
0.985823 0.167786i \(-0.0536618\pi\)
\(510\) 0.683771 1.12786i 0.0302779 0.0499427i
\(511\) 21.3604 0.944928
\(512\) 22.2088 + 4.33226i 0.981500 + 0.191461i
\(513\) 4.58603 0.202478
\(514\) 0.337800 0.557193i 0.0148997 0.0245767i
\(515\) 16.5034i 0.727228i
\(516\) −1.16999 2.24303i −0.0515059 0.0987437i
\(517\) 38.7137i 1.70263i
\(518\) −19.3345 11.7216i −0.849511 0.515018i
\(519\) 14.9005 0.654061
\(520\) 9.86527 + 0.634388i 0.432621 + 0.0278198i
\(521\) −22.4389 −0.983065 −0.491533 0.870859i \(-0.663563\pi\)
−0.491533 + 0.870859i \(0.663563\pi\)
\(522\) −3.15924 1.91530i −0.138276 0.0838304i
\(523\) 13.5755i 0.593616i 0.954937 + 0.296808i \(0.0959221\pi\)
−0.954937 + 0.296808i \(0.904078\pi\)
\(524\) 18.6220 9.71345i 0.813505 0.424334i
\(525\) 5.38707i 0.235111i
\(526\) 11.9228 19.6665i 0.519861 0.857499i
\(527\) −2.68019 −0.116751
\(528\) 9.56509 13.7083i 0.416267 0.596576i
\(529\) 33.8944 1.47367
\(530\) −3.23282 + 5.33246i −0.140425 + 0.231627i
\(531\) 25.5597i 1.10920i
\(532\) 3.23282 1.68628i 0.140160 0.0731094i
\(533\) 14.6512i 0.634614i
\(534\) −18.2672 11.0745i −0.790498 0.479241i
\(535\) −3.47680 −0.150315
\(536\) −0.520258 + 8.09045i −0.0224717 + 0.349454i
\(537\) −13.1178 −0.566074
\(538\) −24.2587 14.7069i −1.04587 0.634060i
\(539\) 19.9420i 0.858961i
\(540\) 4.58603 + 8.79203i 0.197351 + 0.378349i
\(541\) 14.1426i 0.608037i −0.952666 0.304019i \(-0.901671\pi\)
0.952666 0.304019i \(-0.0983285\pi\)
\(542\) −0.491471 + 0.810671i −0.0211105 + 0.0348213i
\(543\) 9.15041 0.392682
\(544\) −2.28892 5.17309i −0.0981364 0.221794i
\(545\) −19.8529 −0.850403
\(546\) −3.28312 + 5.41543i −0.140505 + 0.231759i
\(547\) 29.0623i 1.24261i −0.783567 0.621307i \(-0.786602\pi\)
0.783567 0.621307i \(-0.213398\pi\)
\(548\) −4.91727 9.42707i −0.210056 0.402704i
\(549\) 2.61239i 0.111494i
\(550\) 22.7832 + 13.8124i 0.971480 + 0.588963i
\(551\) −1.17662 −0.0501255
\(552\) −1.13210 + 17.6051i −0.0481854 + 0.749324i
\(553\) 6.90680 0.293707
\(554\) −4.33586 2.62863i −0.184213 0.111680i
\(555\) 8.53241i 0.362180i
\(556\) −4.19424 + 2.18777i −0.177875 + 0.0927820i
\(557\) 26.1386i 1.10753i 0.832674 + 0.553764i \(0.186809\pi\)
−0.832674 + 0.553764i \(0.813191\pi\)
\(558\) 4.55140 7.50743i 0.192676 0.317815i
\(559\) −4.74034 −0.200495
\(560\) 6.46563 + 4.51146i 0.273223 + 0.190644i
\(561\) −4.17888 −0.176432
\(562\) −0.291076 + 0.480123i −0.0122783 + 0.0202528i
\(563\) 17.8812i 0.753602i 0.926294 + 0.376801i \(0.122976\pi\)
−0.926294 + 0.376801i \(0.877024\pi\)
\(564\) −11.2328 + 5.85918i −0.472987 + 0.246716i
\(565\) 6.19774i 0.260741i
\(566\) 12.0553 + 7.30857i 0.506723 + 0.307202i
\(567\) 5.79069 0.243186
\(568\) −8.52320 0.548086i −0.357626 0.0229972i
\(569\) −21.4434 −0.898955 −0.449478 0.893292i \(-0.648390\pi\)
−0.449478 + 0.893292i \(0.648390\pi\)
\(570\) 1.17662 + 0.713327i 0.0492830 + 0.0298780i
\(571\) 34.9469i 1.46248i 0.682120 + 0.731240i \(0.261058\pi\)
−0.682120 + 0.731240i \(0.738942\pi\)
\(572\) −14.4853 27.7703i −0.605661 1.16113i
\(573\) 11.8190i 0.493744i
\(574\) 6.05757 9.99183i 0.252838 0.417051i
\(575\) −28.1191 −1.17265
\(576\) 18.3772 + 2.37331i 0.765717 + 0.0988881i
\(577\) −8.95848 −0.372946 −0.186473 0.982460i \(-0.559706\pi\)
−0.186473 + 0.982460i \(0.559706\pi\)
\(578\) −0.733159 + 1.20933i −0.0304954 + 0.0503015i
\(579\) 17.6527i 0.733622i
\(580\) −1.17662 2.25573i −0.0488563 0.0936641i
\(581\) 16.3375i 0.677793i
\(582\) −1.13735 0.689523i −0.0471448 0.0285817i
\(583\) 19.7574 0.818268
\(584\) 34.5007 + 2.21857i 1.42765 + 0.0918052i
\(585\) 8.09546 0.334706
\(586\) 6.52320 + 3.95471i 0.269471 + 0.163368i
\(587\) 6.94513i 0.286656i 0.989675 + 0.143328i \(0.0457804\pi\)
−0.989675 + 0.143328i \(0.954220\pi\)
\(588\) 5.78618 3.01814i 0.238618 0.124466i
\(589\) 2.79604i 0.115209i
\(590\) −9.12494 + 15.0514i −0.375668 + 0.619655i
\(591\) −18.8757 −0.776443
\(592\) −30.0111 20.9406i −1.23345 0.860653i
\(593\) 18.5932 0.763531 0.381765 0.924259i \(-0.375316\pi\)
0.381765 + 0.924259i \(0.375316\pi\)
\(594\) 16.2878 26.8663i 0.668295 1.10234i
\(595\) 1.97100i 0.0808033i
\(596\) −38.0111 + 19.8271i −1.55700 + 0.812149i
\(597\) 7.28909i 0.298323i
\(598\) 28.2672 + 17.1370i 1.15593 + 0.700786i
\(599\) 31.7057 1.29546 0.647730 0.761870i \(-0.275718\pi\)
0.647730 + 0.761870i \(0.275718\pi\)
\(600\) 0.559522 8.70104i 0.0228424 0.355218i
\(601\) −29.2257 −1.19214 −0.596070 0.802933i \(-0.703272\pi\)
−0.596070 + 0.802933i \(0.703272\pi\)
\(602\) −3.23282 1.95990i −0.131760 0.0798797i
\(603\) 6.63904i 0.270363i
\(604\) 16.7672 + 32.1449i 0.682247 + 1.30796i
\(605\) 16.3983i 0.666686i
\(606\) 9.21414 15.1985i 0.374299 0.617397i
\(607\) −4.90321 −0.199015 −0.0995077 0.995037i \(-0.531727\pi\)
−0.0995077 + 0.995037i \(0.531727\pi\)
\(608\) 5.39670 2.38785i 0.218865 0.0968402i
\(609\) 1.62983 0.0660441
\(610\) −0.932637 + 1.53836i −0.0377614 + 0.0622865i
\(611\) 23.7391i 0.960379i
\(612\) −2.14241 4.10728i −0.0866017 0.166027i
\(613\) 33.8739i 1.36816i 0.729409 + 0.684078i \(0.239795\pi\)
−0.729409 + 0.684078i \(0.760205\pi\)
\(614\) 35.0239 + 21.2333i 1.41345 + 0.856907i
\(615\) 4.40943 0.177805
\(616\) 1.60298 24.9278i 0.0645861 1.00437i
\(617\) −34.5174 −1.38962 −0.694809 0.719194i \(-0.744511\pi\)
−0.694809 + 0.719194i \(0.744511\pi\)
\(618\) −14.6325 8.87097i −0.588604 0.356843i
\(619\) 21.3435i 0.857868i 0.903336 + 0.428934i \(0.141111\pi\)
−0.903336 + 0.428934i \(0.858889\pi\)
\(620\) 5.36038 2.79604i 0.215278 0.112292i
\(621\) 33.1584i 1.33060i
\(622\) 9.90128 16.3319i 0.397005 0.654851i
\(623\) −31.9228 −1.27896
\(624\) −5.86527 + 8.40586i −0.234799 + 0.336504i
\(625\) 7.53699 0.301480
\(626\) 4.39896 7.25598i 0.175818 0.290007i
\(627\) 4.35951i 0.174102i
\(628\) 25.9228 13.5217i 1.03443 0.539574i
\(629\) 9.14869i 0.364782i
\(630\) 5.52094 + 3.34709i 0.219960 + 0.133351i
\(631\) 44.3689 1.76630 0.883149 0.469093i \(-0.155419\pi\)
0.883149 + 0.469093i \(0.155419\pi\)
\(632\) 11.1557 + 0.717367i 0.443748 + 0.0285353i
\(633\) 7.17625 0.285230
\(634\) 17.8100 + 10.7974i 0.707326 + 0.428818i
\(635\) 16.6111i 0.659192i
\(636\) −2.99021 5.73263i −0.118570 0.227314i
\(637\) 12.2283i 0.484504i
\(638\) −4.17888 + 6.89296i −0.165443 + 0.272895i
\(639\) −6.99416 −0.276685
\(640\) 9.97453 + 7.95833i 0.394278 + 0.314581i
\(641\) −3.68151 −0.145411 −0.0727055 0.997353i \(-0.523163\pi\)
−0.0727055 + 0.997353i \(0.523163\pi\)
\(642\) 1.86886 3.08263i 0.0737578 0.121662i
\(643\) 30.6988i 1.21064i −0.795982 0.605321i \(-0.793045\pi\)
0.795982 0.605321i \(-0.206955\pi\)
\(644\) 12.1923 + 23.3743i 0.480444 + 0.921075i
\(645\) 1.42665i 0.0561744i
\(646\) −1.26160 0.764850i −0.0496371 0.0300926i
\(647\) −20.1066 −0.790472 −0.395236 0.918580i \(-0.629337\pi\)
−0.395236 + 0.918580i \(0.629337\pi\)
\(648\) 9.35297 + 0.601444i 0.367419 + 0.0236270i
\(649\) 55.7672 2.18905
\(650\) −13.9706 8.46970i −0.547971 0.332209i
\(651\) 3.87303i 0.151796i
\(652\) −34.4173 + 17.9525i −1.34788 + 0.703073i
\(653\) 4.85298i 0.189912i 0.995481 + 0.0949560i \(0.0302710\pi\)
−0.995481 + 0.0949560i \(0.969729\pi\)
\(654\) 10.6714 17.6022i 0.417283 0.688299i
\(655\) 11.8443 0.462796
\(656\) 10.8218 15.5094i 0.422521 0.605539i
\(657\) 28.3113 1.10453
\(658\) −9.81497 + 16.1896i −0.382627 + 0.631135i
\(659\) 0.820109i 0.0319469i −0.999872 0.0159735i \(-0.994915\pi\)
0.999872 0.0159735i \(-0.00508473\pi\)
\(660\) 8.35775 4.35951i 0.325325 0.169694i
\(661\) 33.6446i 1.30862i −0.756225 0.654311i \(-0.772959\pi\)
0.756225 0.654311i \(-0.227041\pi\)
\(662\) −3.12199 1.89271i −0.121340 0.0735624i
\(663\) 2.56247 0.0995180
\(664\) −1.69687 + 26.3878i −0.0658515 + 1.02405i
\(665\) 2.05620 0.0797360
\(666\) −25.6262 15.5360i −0.992997 0.602007i
\(667\) 8.50730i 0.329404i
\(668\) −10.9840 21.0577i −0.424982 0.814746i
\(669\) 3.58238i 0.138503i
\(670\) −2.37017 + 3.90954i −0.0915676 + 0.151039i
\(671\) 5.69982 0.220039
\(672\) −7.47542 + 3.30762i −0.288371 + 0.127594i
\(673\) 14.3061 0.551459 0.275729 0.961235i \(-0.411081\pi\)
0.275729 + 0.961235i \(0.411081\pi\)
\(674\) −5.13404 + 8.46848i −0.197756 + 0.326194i
\(675\) 16.3880i 0.630774i
\(676\) −3.14209 6.02380i −0.120850 0.231685i
\(677\) 25.2693i 0.971177i 0.874187 + 0.485589i \(0.161395\pi\)
−0.874187 + 0.485589i \(0.838605\pi\)
\(678\) 5.49510 + 3.33142i 0.211038 + 0.127942i
\(679\) −1.98758 −0.0762765
\(680\) 0.204716 3.18351i 0.00785050 0.122082i
\(681\) 21.2012 0.812431
\(682\) −16.3800 9.93042i −0.627223 0.380256i
\(683\) 16.5149i 0.631923i −0.948772 0.315962i \(-0.897673\pi\)
0.948772 0.315962i \(-0.102327\pi\)
\(684\) 4.28482 2.23501i 0.163834 0.0854579i
\(685\) 5.99599i 0.229095i
\(686\) 14.0245 23.1330i 0.535457 0.883224i
\(687\) 2.03789 0.0777503
\(688\) −5.01799 3.50135i −0.191309 0.133488i
\(689\) −12.1151 −0.461550
\(690\) −5.15757 + 8.50730i −0.196345 + 0.323867i
\(691\) 3.61558i 0.137543i 0.997632 + 0.0687716i \(0.0219080\pi\)
−0.997632 + 0.0687716i \(0.978092\pi\)
\(692\) 31.9536 16.6674i 1.21469 0.633599i
\(693\) 20.4558i 0.777050i
\(694\) −2.13247 1.29281i −0.0809473 0.0490745i
\(695\) −2.66770 −0.101192
\(696\) 2.63246 + 0.169281i 0.0997831 + 0.00641657i
\(697\) −4.72792 −0.179083
\(698\) 44.5736 + 27.0229i 1.68714 + 1.02283i
\(699\) 2.20926i 0.0835618i
\(700\) −6.02584 11.5523i −0.227755 0.436637i
\(701\) 20.4233i 0.771377i −0.922629 0.385689i \(-0.873964\pi\)
0.922629 0.385689i \(-0.126036\pi\)
\(702\) −9.98758 + 16.4743i −0.376957 + 0.621782i
\(703\) −9.54414 −0.359964
\(704\) 5.17819 40.0961i 0.195160 1.51118i
\(705\) −7.14452 −0.269078
\(706\) 24.1818 39.8874i 0.910095 1.50118i
\(707\) 26.5602i 0.998899i
\(708\) −8.44016 16.1809i −0.317201 0.608116i
\(709\) 1.88393i 0.0707523i −0.999374 0.0353762i \(-0.988737\pi\)
0.999374 0.0353762i \(-0.0112629\pi\)
\(710\) −4.11866 2.49695i −0.154570 0.0937088i
\(711\) 9.15436 0.343315
\(712\) −51.5609 3.31563i −1.93233 0.124259i
\(713\) 20.2162 0.757104
\(714\) 1.74755 + 1.05946i 0.0654005 + 0.0396492i
\(715\) 17.6630i 0.660559i
\(716\) −28.1305 + 14.6732i −1.05129 + 0.548364i
\(717\) 2.39254i 0.0893512i
\(718\) −7.41169 + 12.2254i −0.276602 + 0.456249i
\(719\) −29.2872 −1.09223 −0.546114 0.837711i \(-0.683893\pi\)
−0.546114 + 0.837711i \(0.683893\pi\)
\(720\) 8.56963 + 5.97955i 0.319371 + 0.222845i
\(721\) −25.5710 −0.952313
\(722\) −13.1321 + 21.6611i −0.488727 + 0.806144i
\(723\) 11.4328i 0.425190i
\(724\) 19.6227 10.2354i 0.729271 0.380397i
\(725\) 4.20459i 0.156155i
\(726\) −14.5393 8.81446i −0.539602 0.327135i
\(727\) 31.1485 1.15523 0.577617 0.816308i \(-0.303983\pi\)
0.577617 + 0.816308i \(0.303983\pi\)
\(728\) −0.982943 + 15.2856i −0.0364303 + 0.566522i
\(729\) −3.23019 −0.119637
\(730\) 16.6717 + 10.1073i 0.617048 + 0.374087i
\(731\) 1.52970i 0.0565780i
\(732\) −0.862647 1.65381i −0.0318844 0.0611265i
\(733\) 6.44596i 0.238087i 0.992889 + 0.119043i \(0.0379828\pi\)
−0.992889 + 0.119043i \(0.962017\pi\)
\(734\) −26.9994 + 44.5348i −0.996565 + 1.64381i
\(735\) 3.68024 0.135748
\(736\) 17.2649 + 39.0198i 0.636393 + 1.43829i
\(737\) 14.4853 0.533573
\(738\) 8.02879 13.2433i 0.295544 0.487493i
\(739\) 19.5888i 0.720587i −0.932839 0.360293i \(-0.882677\pi\)
0.932839 0.360293i \(-0.117323\pi\)
\(740\) −9.54414 18.2974i −0.350850 0.672625i
\(741\) 2.67323i 0.0982036i
\(742\) −8.26229 5.00903i −0.303318 0.183887i
\(743\) −16.2315 −0.595476 −0.297738 0.954648i \(-0.596232\pi\)
−0.297738 + 0.954648i \(0.596232\pi\)
\(744\) −0.402268 + 6.25561i −0.0147479 + 0.229342i
\(745\) −24.1766 −0.885762
\(746\) 18.4755 + 11.2008i 0.676435 + 0.410091i
\(747\) 21.6539i 0.792275i
\(748\) −8.96142 + 4.67439i −0.327662 + 0.170913i
\(749\) 5.38707i 0.196839i
\(750\) 5.96790 9.84392i 0.217917 0.359449i
\(751\) 2.87965 0.105080 0.0525400 0.998619i \(-0.483268\pi\)
0.0525400 + 0.998619i \(0.483268\pi\)
\(752\) −17.5344 + 25.1295i −0.639413 + 0.916379i
\(753\) 22.1007 0.805395
\(754\) 2.56247 4.22673i 0.0933196 0.153929i
\(755\) 20.4454i 0.744086i
\(756\) −13.6227 + 7.10575i −0.495452 + 0.258434i
\(757\) 19.8538i 0.721600i 0.932643 + 0.360800i \(0.117496\pi\)
−0.932643 + 0.360800i \(0.882504\pi\)
\(758\) 18.1164 + 10.9831i 0.658017 + 0.398925i
\(759\) 31.5206 1.14412
\(760\) 3.32111 + 0.213565i 0.120469 + 0.00774681i
\(761\) 21.1619 0.767119 0.383560 0.923516i \(-0.374698\pi\)
0.383560 + 0.923516i \(0.374698\pi\)
\(762\) 14.7279 + 8.92884i 0.533536 + 0.323458i
\(763\) 30.7607i 1.11361i
\(764\) −13.2204 25.3453i −0.478297 0.916959i
\(765\) 2.61239i 0.0944513i
\(766\) 3.80770 6.28072i 0.137578 0.226931i
\(767\) −34.1962 −1.23475
\(768\) −12.4176 + 4.56594i −0.448083 + 0.164759i
\(769\) −28.0879 −1.01288 −0.506438 0.862276i \(-0.669038\pi\)
−0.506438 + 0.862276i \(0.669038\pi\)
\(770\) 7.30281 12.0458i 0.263175 0.434101i
\(771\) 0.380993i 0.0137211i
\(772\) 19.7459 + 37.8555i 0.710671 + 1.36245i
\(773\) 21.4752i 0.772409i 0.922413 + 0.386204i \(0.126214\pi\)
−0.922413 + 0.386204i \(0.873786\pi\)
\(774\) −4.28482 2.59768i −0.154015 0.0933717i
\(775\) −9.99153 −0.358906
\(776\) −3.21029 0.206438i −0.115243 0.00741070i
\(777\) 13.2204 0.474279
\(778\) −11.2427 6.81589i −0.403069 0.244362i
\(779\) 4.93228i 0.176717i
\(780\) −5.12494 + 2.67323i −0.183502 + 0.0957170i
\(781\) 15.2601i 0.546050i
\(782\) 5.53010 9.12177i 0.197756 0.326194i
\(783\) 4.95811 0.177188
\(784\) 9.03220 12.9446i 0.322579 0.462306i
\(785\) 16.4880 0.588481
\(786\) −6.36659 + 10.5015i −0.227089 + 0.374578i
\(787\) 1.22304i 0.0435966i 0.999762 + 0.0217983i \(0.00693916\pi\)
−0.999762 + 0.0217983i \(0.993061\pi\)
\(788\) −40.4782 + 21.1139i −1.44197 + 0.752152i
\(789\) 13.4474i 0.478739i
\(790\) 5.39074 + 3.26815i 0.191794 + 0.116276i
\(791\) 9.60298 0.341443
\(792\) 2.12462 33.0396i 0.0754949 1.17401i
\(793\) −3.49510 −0.124115
\(794\) 14.6543 + 8.88424i 0.520063 + 0.315290i
\(795\) 3.64618i 0.129317i
\(796\) 8.15340 + 15.6312i 0.288990 + 0.554032i
\(797\) 27.2300i 0.964535i −0.876024 0.482267i \(-0.839813\pi\)
0.876024 0.482267i \(-0.160187\pi\)
\(798\) −1.10525 + 1.82309i −0.0391255 + 0.0645367i
\(799\) 7.66056 0.271011
\(800\) −8.53290 19.2849i −0.301683 0.681823i
\(801\) −42.3110 −1.49498
\(802\) −22.2518 + 36.7039i −0.785739 + 1.29606i
\(803\) 61.7707i 2.17984i
\(804\) −2.19230 4.20293i −0.0773165 0.148226i
\(805\) 14.8670i 0.523991i
\(806\) 10.0441 + 6.08929i 0.353790 + 0.214486i
\(807\) 16.5874 0.583904
\(808\) 2.75865 42.8993i 0.0970488 1.50919i
\(809\) 12.6939 0.446294 0.223147 0.974785i \(-0.428367\pi\)
0.223147 + 0.974785i \(0.428367\pi\)
\(810\) 4.51962 + 2.74003i 0.158803 + 0.0962750i
\(811\) 30.6006i 1.07453i −0.843412 0.537267i \(-0.819457\pi\)
0.843412 0.537267i \(-0.180543\pi\)
\(812\) 3.49510 1.82309i 0.122654 0.0639779i
\(813\) 0.554313i 0.0194406i
\(814\) −33.8970 + 55.9123i −1.18809 + 1.95973i
\(815\) −21.8907 −0.766799
\(816\) 2.71256 + 1.89271i 0.0949585 + 0.0662583i
\(817\) −1.59582 −0.0558307
\(818\) −17.0837 + 28.1792i −0.597319 + 0.985264i
\(819\) 12.5434i 0.438301i
\(820\) 9.45584 4.93228i 0.330212 0.172243i
\(821\) 34.8617i 1.21668i 0.793676 + 0.608340i \(0.208164\pi\)
−0.793676 + 0.608340i \(0.791836\pi\)
\(822\) 5.31623 + 3.22298i 0.185425 + 0.112414i
\(823\) −25.7292 −0.896865 −0.448433 0.893817i \(-0.648018\pi\)
−0.448433 + 0.893817i \(0.648018\pi\)
\(824\) −41.3015 2.65590i −1.43881 0.0925228i
\(825\) −15.5785 −0.542374
\(826\) −23.3211 14.1385i −0.811445 0.491941i
\(827\) 31.5024i 1.09545i 0.836659 + 0.547723i \(0.184505\pi\)
−0.836659 + 0.547723i \(0.815495\pi\)
\(828\) 16.1598 + 30.9805i 0.561593 + 1.07665i
\(829\) 24.2760i 0.843142i −0.906795 0.421571i \(-0.861479\pi\)
0.906795 0.421571i \(-0.138521\pi\)
\(830\) −7.73055 + 12.7514i −0.268331 + 0.442606i
\(831\) 2.96474 0.102846
\(832\) −3.17524 + 24.5868i −0.110082 + 0.852393i
\(833\) −3.94606 −0.136723
\(834\) 1.43395 2.36527i 0.0496536 0.0819025i
\(835\) 13.3935i 0.463502i
\(836\) −4.87644 9.34878i −0.168655 0.323334i
\(837\) 11.7821i 0.407251i
\(838\) 10.2904 + 6.23858i 0.355476 + 0.215508i
\(839\) 34.6299 1.19556 0.597778 0.801662i \(-0.296050\pi\)
0.597778 + 0.801662i \(0.296050\pi\)
\(840\) −4.60036 0.295827i −0.158727 0.0102070i
\(841\) 27.7279 0.956135
\(842\) 37.8751 + 22.9619i 1.30526 + 0.791319i
\(843\) 0.328294i 0.0113071i
\(844\) 15.3892 8.02718i 0.529717 0.276307i
\(845\) 3.83138i 0.131803i
\(846\) −13.0089 + 21.4579i −0.447255 + 0.737736i
\(847\) −25.4081 −0.873033
\(848\) −12.8248 8.94860i −0.440404 0.307296i
\(849\) −8.24308 −0.282902
\(850\) −2.73316 + 4.50828i −0.0937466 + 0.154633i
\(851\) 69.0071i 2.36553i
\(852\) 4.42774 2.30956i 0.151692 0.0791244i
\(853\) 24.3542i 0.833872i −0.908936 0.416936i \(-0.863104\pi\)
0.908936 0.416936i \(-0.136896\pi\)
\(854\) −2.38359 1.44506i −0.0815648 0.0494489i
\(855\) 2.72531 0.0932037
\(856\) 0.559522 8.70104i 0.0191241 0.297395i
\(857\) 1.86002 0.0635371 0.0317686 0.999495i \(-0.489886\pi\)
0.0317686 + 0.999495i \(0.489886\pi\)
\(858\) 15.6606 + 9.49425i 0.534643 + 0.324129i
\(859\) 20.8140i 0.710166i 0.934835 + 0.355083i \(0.115547\pi\)
−0.934835 + 0.355083i \(0.884453\pi\)
\(860\) −1.59582 3.05940i −0.0544170 0.104325i
\(861\) 6.83212i 0.232838i
\(862\) −14.1305 + 23.3079i −0.481285 + 0.793869i
\(863\) −31.1302 −1.05968 −0.529842 0.848096i \(-0.677749\pi\)
−0.529842 + 0.848096i \(0.677749\pi\)
\(864\) −22.7410 + 10.0621i −0.773664 + 0.342320i
\(865\) 20.3237 0.691028
\(866\) −16.0828 + 26.5282i −0.546515 + 0.901464i
\(867\) 0.826905i 0.0280832i
\(868\) 4.33228 + 8.30555i 0.147047 + 0.281909i
\(869\) 19.9733i 0.677549i
\(870\) 1.27208 + 0.771202i 0.0431275 + 0.0261462i
\(871\) −8.88233 −0.300966
\(872\) 3.19493 49.6838i 0.108194 1.68251i
\(873\) −2.63437 −0.0891599
\(874\) 9.51606 + 5.76914i 0.321886 + 0.195144i
\(875\) 17.2028i 0.581559i
\(876\) −17.9228 + 9.34878i −0.605557 + 0.315866i
\(877\) 0.991052i 0.0334654i −0.999860 0.0167327i \(-0.994674\pi\)
0.999860 0.0167327i \(-0.00532644\pi\)
\(878\) 3.98368 6.57099i 0.134443 0.221760i
\(879\) −4.46038 −0.150445
\(880\) 13.0464 18.6976i 0.439794 0.630294i
\(881\) 19.3087 0.650527 0.325263 0.945623i \(-0.394547\pi\)
0.325263 + 0.945623i \(0.394547\pi\)
\(882\) 6.70106 11.0532i 0.225636 0.372182i
\(883\) 23.9889i 0.807290i 0.914916 + 0.403645i \(0.132257\pi\)
−0.914916 + 0.403645i \(0.867743\pi\)
\(884\) 5.49510 2.86631i 0.184820 0.0964046i
\(885\) 10.2917i 0.345952i
\(886\) 6.11973 + 3.71010i 0.205596 + 0.124643i
\(887\) 2.58473 0.0867866 0.0433933 0.999058i \(-0.486183\pi\)
0.0433933 + 0.999058i \(0.486183\pi\)
\(888\) 21.3532 + 1.37312i 0.716567 + 0.0460790i
\(889\) 25.7378 0.863219
\(890\) −24.9157 15.1052i −0.835176 0.506328i
\(891\) 16.7457i 0.561004i
\(892\) 4.00716 + 7.68226i 0.134170 + 0.257221i
\(893\) 7.99168i 0.267431i
\(894\) 12.9955 21.4357i 0.434633 0.716918i
\(895\) −17.8921 −0.598068
\(896\) −12.3309 + 15.4549i −0.411947 + 0.516311i
\(897\) −19.3283 −0.645352
\(898\) 11.6318 19.1863i 0.388157 0.640257i
\(899\) 3.02289i 0.100819i
\(900\) −7.98673 15.3116i −0.266224 0.510387i
\(901\) 3.90954i 0.130246i
\(902\) −28.8947 17.5175i −0.962090 0.583270i
\(903\) 2.21051 0.0735610
\(904\) 15.5105 + 0.997403i 0.515870 + 0.0331731i
\(905\) 12.4808 0.414876
\(906\) −18.1276 10.9899i −0.602248 0.365114i
\(907\) 42.7770i 1.42039i 0.704006 + 0.710194i \(0.251393\pi\)
−0.704006 + 0.710194i \(0.748607\pi\)
\(908\) 45.4650 23.7151i 1.50881 0.787014i
\(909\) 35.2032i 1.16762i
\(910\) −4.47805 + 7.38644i −0.148446 + 0.244858i
\(911\) −42.6128 −1.41183 −0.705913 0.708299i \(-0.749463\pi\)
−0.705913 + 0.708299i \(0.749463\pi\)
\(912\) −1.97453 + 2.82981i −0.0653831 + 0.0937043i
\(913\) 47.2453 1.56359
\(914\) 7.42485 12.2471i 0.245592 0.405099i
\(915\) 1.05189i 0.0347744i
\(916\) 4.37017 2.27953i 0.144394 0.0753179i
\(917\) 18.3520i 0.606036i
\(918\) 5.31623 + 3.22298i 0.175462 + 0.106374i
\(919\) 4.78549 0.157859 0.0789294 0.996880i \(-0.474850\pi\)
0.0789294 + 0.996880i \(0.474850\pi\)
\(920\) −1.54414 + 24.0127i −0.0509088 + 0.791675i
\(921\) −23.9483 −0.789124
\(922\) 27.3604 + 16.5873i 0.901066 + 0.546274i
\(923\) 9.35744i 0.308004i
\(924\) 6.75477 + 12.9498i 0.222216 + 0.426017i
\(925\) 34.1056i 1.12139i
\(926\) 5.26492 8.68436i 0.173016 0.285386i
\(927\) −33.8921 −1.11316
\(928\) 5.83455 2.58159i 0.191528 0.0847448i
\(929\) 27.2819 0.895088 0.447544 0.894262i \(-0.352299\pi\)
0.447544 + 0.894262i \(0.352299\pi\)
\(930\) −1.83264 + 3.02289i −0.0600945 + 0.0991245i
\(931\) 4.11663i 0.134917i
\(932\) 2.47122 + 4.73766i 0.0809476 + 0.155187i
\(933\) 11.1673i 0.365601i
\(934\) −46.2054 28.0121i −1.51189 0.916585i
\(935\) −5.69982 −0.186404
\(936\) −1.30281 + 20.2597i −0.0425835 + 0.662210i
\(937\) 0.0837798 0.00273697 0.00136848 0.999999i \(-0.499564\pi\)
0.00136848 + 0.999999i \(0.499564\pi\)
\(938\) −6.05757 3.67242i −0.197787 0.119909i
\(939\) 4.96143i 0.161910i
\(940\) −15.3211 + 7.99168i −0.499720 + 0.260660i
\(941\) 22.3002i 0.726967i −0.931601 0.363483i \(-0.881587\pi\)
0.931601 0.363483i \(-0.118413\pi\)
\(942\) −8.86265 + 14.6187i −0.288761 + 0.476304i
\(943\) 35.6619 1.16131
\(944\) −36.1991 25.2583i −1.17818 0.822088i
\(945\) −8.66456 −0.281858
\(946\) −5.66772 + 9.34878i −0.184274 + 0.303955i
\(947\) 18.5335i 0.602257i 0.953584 + 0.301128i \(0.0973633\pi\)
−0.953584 + 0.301128i \(0.902637\pi\)
\(948\) −5.79528 + 3.02289i −0.188222 + 0.0981790i
\(949\) 37.8775i 1.22956i
\(950\) −4.70315 2.85130i −0.152590 0.0925084i
\(951\) −12.1780 −0.394898
\(952\) 4.93264 + 0.317194i 0.159868 + 0.0102803i
\(953\) −20.9782 −0.679549 −0.339775 0.940507i \(-0.610351\pi\)
−0.339775 + 0.940507i \(0.610351\pi\)
\(954\) −10.9509 6.63904i −0.354550 0.214947i
\(955\) 16.1206i 0.521650i
\(956\) 2.67624 + 5.13071i 0.0865558 + 0.165939i
\(957\) 4.71321i 0.152356i
\(958\) −0.0997319 + 0.164505i −0.00322219 + 0.00531493i
\(959\) 9.29039 0.300002
\(960\) −7.39964 0.955622i −0.238822 0.0308426i
\(961\) −23.8166 −0.768277
\(962\) 20.7855 34.2852i 0.670151 1.10540i
\(963\) 7.14009i 0.230086i
\(964\) −12.7884 24.5171i −0.411888 0.789644i
\(965\) 24.0776i 0.775086i
\(966\) −13.1815 7.99132i −0.424108 0.257117i
\(967\) 7.73192 0.248642 0.124321 0.992242i \(-0.460325\pi\)
0.124321 + 0.992242i \(0.460325\pi\)
\(968\) −41.0385 2.63899i −1.31903 0.0848202i
\(969\) 0.862647 0.0277122
\(970\) −1.55130 0.940482i −0.0498094 0.0301971i
\(971\) 17.2155i 0.552471i −0.961090 0.276235i \(-0.910913\pi\)
0.961090 0.276235i \(-0.0890869\pi\)
\(972\) −28.2446 + 14.7328i −0.905948 + 0.472553i
\(973\) 4.13343i 0.132512i
\(974\) 28.2643 46.6213i 0.905646 1.49384i
\(975\) 9.55268 0.305931
\(976\) −3.69982 2.58159i −0.118428 0.0826346i
\(977\) 25.7377 0.823422 0.411711 0.911314i \(-0.364931\pi\)
0.411711 + 0.911314i \(0.364931\pi\)
\(978\) 11.7668 19.4090i 0.376260 0.620632i
\(979\) 92.3157i 2.95042i
\(980\) 7.89212 4.11663i 0.252105 0.131501i
\(981\) 40.7706i 1.30171i
\(982\) 22.6010 + 13.7019i 0.721228 + 0.437246i
\(983\) 33.9385 1.08247 0.541235 0.840872i \(-0.317957\pi\)
0.541235 + 0.840872i \(0.317957\pi\)
\(984\) −0.709611 + 11.0351i −0.0226216 + 0.351785i
\(985\) −25.7457 −0.820327
\(986\) −1.36396 0.826905i −0.0434373 0.0263340i
\(987\) 11.0700i 0.352361i
\(988\) 2.99021 + 5.73263i 0.0951312 + 0.182379i
\(989\) 11.5383i 0.366896i
\(990\) 9.67923 15.9657i 0.307626 0.507422i
\(991\) 3.70829 0.117798 0.0588988 0.998264i \(-0.481241\pi\)
0.0588988 + 0.998264i \(0.481241\pi\)
\(992\) 6.13473 + 13.8649i 0.194778 + 0.440210i
\(993\) 2.13473 0.0677435
\(994\) 3.86886 6.38159i 0.122713 0.202412i
\(995\) 9.94203i 0.315184i
\(996\) −7.15041 13.7083i −0.226569 0.434364i
\(997\) 26.8766i 0.851191i −0.904913 0.425596i \(-0.860065\pi\)
0.904913 0.425596i \(-0.139935\pi\)
\(998\) 22.1347 + 13.4192i 0.700662 + 0.424778i
\(999\) 40.2178 1.27243
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 136.2.c.b.69.4 yes 8
3.2 odd 2 1224.2.f.c.613.5 8
4.3 odd 2 544.2.c.b.273.6 8
8.3 odd 2 544.2.c.b.273.3 8
8.5 even 2 inner 136.2.c.b.69.3 8
12.11 even 2 4896.2.f.d.2449.5 8
16.3 odd 4 4352.2.a.bb.1.3 8
16.5 even 4 4352.2.a.bf.1.3 8
16.11 odd 4 4352.2.a.bb.1.6 8
16.13 even 4 4352.2.a.bf.1.6 8
24.5 odd 2 1224.2.f.c.613.6 8
24.11 even 2 4896.2.f.d.2449.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.c.b.69.3 8 8.5 even 2 inner
136.2.c.b.69.4 yes 8 1.1 even 1 trivial
544.2.c.b.273.3 8 8.3 odd 2
544.2.c.b.273.6 8 4.3 odd 2
1224.2.f.c.613.5 8 3.2 odd 2
1224.2.f.c.613.6 8 24.5 odd 2
4352.2.a.bb.1.3 8 16.3 odd 4
4352.2.a.bb.1.6 8 16.11 odd 4
4352.2.a.bf.1.3 8 16.5 even 4
4352.2.a.bf.1.6 8 16.13 even 4
4896.2.f.d.2449.4 8 24.11 even 2
4896.2.f.d.2449.5 8 12.11 even 2