Properties

Label 1224.2.f.c.613.6
Level $1224$
Weight $2$
Character 1224.613
Analytic conductor $9.774$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1224,2,Mod(613,1224)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1224, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1224.613"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,0,1,0,0,-12,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4469724736.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 2x^{5} - 4x^{4} + 4x^{3} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 613.6
Root \(0.733159 + 1.20933i\) of defining polynomial
Character \(\chi\) \(=\) 1224.613
Dual form 1224.2.f.c.613.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.733159 + 1.20933i) q^{2} +(-0.924955 + 1.77326i) q^{4} -1.12786i q^{5} +1.74755 q^{7} +(-2.82260 + 0.181508i) q^{8} +(1.36396 - 0.826905i) q^{10} -5.05364i q^{11} -3.09887i q^{13} +(1.28123 + 2.11337i) q^{14} +(-2.28892 - 3.28038i) q^{16} -1.00000 q^{17} -1.04322i q^{19} +(2.00000 + 1.04322i) q^{20} +(6.11151 - 3.70512i) q^{22} +7.54284 q^{23} +3.72792 q^{25} +(3.74755 - 2.27196i) q^{26} +(-1.61641 + 3.09887i) q^{28} +1.12786i q^{29} -2.68019 q^{31} +(2.28892 - 5.17309i) q^{32} +(-0.733159 - 1.20933i) q^{34} -1.97100i q^{35} -9.14869i q^{37} +(1.26160 - 0.764850i) q^{38} +(0.204716 + 3.18351i) q^{40} +4.72792 q^{41} -1.52970i q^{43} +(8.96142 + 4.67439i) q^{44} +(5.53010 + 9.12177i) q^{46} -7.66056 q^{47} -3.94606 q^{49} +(2.73316 + 4.50828i) q^{50} +(5.49510 + 2.86631i) q^{52} +3.90954i q^{53} -5.69982 q^{55} +(-4.93264 + 0.317194i) q^{56} +(-1.36396 + 0.826905i) q^{58} +11.0351i q^{59} -1.12786i q^{61} +(-1.96501 - 3.24123i) q^{62} +(7.93411 - 1.02465i) q^{64} -3.49510 q^{65} -2.86631i q^{67} +(0.924955 - 1.77326i) q^{68} +(2.38359 - 1.44506i) q^{70} +3.01963 q^{71} +12.2230 q^{73} +(11.0638 - 6.70745i) q^{74} +(1.84991 + 0.964936i) q^{76} -8.83150i q^{77} +3.95227 q^{79} +(-3.69982 + 2.58159i) q^{80} +(3.46632 + 5.71761i) q^{82} +9.34878i q^{83} +1.12786i q^{85} +(1.84991 - 1.12151i) q^{86} +(0.917274 + 14.2644i) q^{88} +18.2672 q^{89} -5.41543i q^{91} +(-6.97679 + 13.3754i) q^{92} +(-5.61641 - 9.26414i) q^{94} -1.17662 q^{95} -1.13735 q^{97} +(-2.89309 - 4.77209i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + q^{4} - 12 q^{7} - 5 q^{8} - 8 q^{10} - 6 q^{14} + 9 q^{16} - 8 q^{17} + 16 q^{20} + 4 q^{22} + 16 q^{23} - 8 q^{25} + 4 q^{26} - 20 q^{28} + 24 q^{31} - 9 q^{32} - q^{34} - 18 q^{38} + 20 q^{40}+ \cdots + 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.733159 + 1.20933i 0.518422 + 0.855125i
\(3\) 0 0
\(4\) −0.924955 + 1.77326i −0.462478 + 0.886631i
\(5\) 1.12786i 0.504397i −0.967676 0.252198i \(-0.918846\pi\)
0.967676 0.252198i \(-0.0811535\pi\)
\(6\) 0 0
\(7\) 1.74755 0.660513 0.330256 0.943891i \(-0.392865\pi\)
0.330256 + 0.943891i \(0.392865\pi\)
\(8\) −2.82260 + 0.181508i −0.997939 + 0.0641726i
\(9\) 0 0
\(10\) 1.36396 0.826905i 0.431322 0.261490i
\(11\) 5.05364i 1.52373i −0.647736 0.761865i \(-0.724284\pi\)
0.647736 0.761865i \(-0.275716\pi\)
\(12\) 0 0
\(13\) 3.09887i 0.859471i −0.902955 0.429736i \(-0.858607\pi\)
0.902955 0.429736i \(-0.141393\pi\)
\(14\) 1.28123 + 2.11337i 0.342424 + 0.564821i
\(15\) 0 0
\(16\) −2.28892 3.28038i −0.572229 0.820094i
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 1.04322i 0.239332i −0.992814 0.119666i \(-0.961818\pi\)
0.992814 0.119666i \(-0.0381824\pi\)
\(20\) 2.00000 + 1.04322i 0.447214 + 0.233272i
\(21\) 0 0
\(22\) 6.11151 3.70512i 1.30298 0.789934i
\(23\) 7.54284 1.57279 0.786395 0.617724i \(-0.211945\pi\)
0.786395 + 0.617724i \(0.211945\pi\)
\(24\) 0 0
\(25\) 3.72792 0.745584
\(26\) 3.74755 2.27196i 0.734956 0.445569i
\(27\) 0 0
\(28\) −1.61641 + 3.09887i −0.305472 + 0.585631i
\(29\) 1.12786i 0.209439i 0.994502 + 0.104720i \(0.0333945\pi\)
−0.994502 + 0.104720i \(0.966605\pi\)
\(30\) 0 0
\(31\) −2.68019 −0.481376 −0.240688 0.970603i \(-0.577373\pi\)
−0.240688 + 0.970603i \(0.577373\pi\)
\(32\) 2.28892 5.17309i 0.404627 0.914482i
\(33\) 0 0
\(34\) −0.733159 1.20933i −0.125736 0.207398i
\(35\) 1.97100i 0.333160i
\(36\) 0 0
\(37\) 9.14869i 1.50404i −0.659143 0.752018i \(-0.729081\pi\)
0.659143 0.752018i \(-0.270919\pi\)
\(38\) 1.26160 0.764850i 0.204659 0.124075i
\(39\) 0 0
\(40\) 0.204716 + 3.18351i 0.0323685 + 0.503357i
\(41\) 4.72792 0.738377 0.369189 0.929355i \(-0.379636\pi\)
0.369189 + 0.929355i \(0.379636\pi\)
\(42\) 0 0
\(43\) 1.52970i 0.233277i −0.993174 0.116638i \(-0.962788\pi\)
0.993174 0.116638i \(-0.0372119\pi\)
\(44\) 8.96142 + 4.67439i 1.35099 + 0.704691i
\(45\) 0 0
\(46\) 5.53010 + 9.12177i 0.815369 + 1.34493i
\(47\) −7.66056 −1.11741 −0.558704 0.829367i \(-0.688701\pi\)
−0.558704 + 0.829367i \(0.688701\pi\)
\(48\) 0 0
\(49\) −3.94606 −0.563723
\(50\) 2.73316 + 4.50828i 0.386527 + 0.637568i
\(51\) 0 0
\(52\) 5.49510 + 2.86631i 0.762034 + 0.397486i
\(53\) 3.90954i 0.537016i 0.963277 + 0.268508i \(0.0865307\pi\)
−0.963277 + 0.268508i \(0.913469\pi\)
\(54\) 0 0
\(55\) −5.69982 −0.768564
\(56\) −4.93264 + 0.317194i −0.659151 + 0.0423868i
\(57\) 0 0
\(58\) −1.36396 + 0.826905i −0.179097 + 0.108578i
\(59\) 11.0351i 1.43664i 0.695712 + 0.718321i \(0.255089\pi\)
−0.695712 + 0.718321i \(0.744911\pi\)
\(60\) 0 0
\(61\) 1.12786i 0.144408i −0.997390 0.0722042i \(-0.976997\pi\)
0.997390 0.0722042i \(-0.0230033\pi\)
\(62\) −1.96501 3.24123i −0.249556 0.411637i
\(63\) 0 0
\(64\) 7.93411 1.02465i 0.991764 0.128081i
\(65\) −3.49510 −0.433514
\(66\) 0 0
\(67\) 2.86631i 0.350176i −0.984553 0.175088i \(-0.943979\pi\)
0.984553 0.175088i \(-0.0560210\pi\)
\(68\) 0.924955 1.77326i 0.112167 0.215040i
\(69\) 0 0
\(70\) 2.38359 1.44506i 0.284894 0.172718i
\(71\) 3.01963 0.358364 0.179182 0.983816i \(-0.442655\pi\)
0.179182 + 0.983816i \(0.442655\pi\)
\(72\) 0 0
\(73\) 12.2230 1.43060 0.715298 0.698819i \(-0.246291\pi\)
0.715298 + 0.698819i \(0.246291\pi\)
\(74\) 11.0638 6.70745i 1.28614 0.779725i
\(75\) 0 0
\(76\) 1.84991 + 0.964936i 0.212199 + 0.110686i
\(77\) 8.83150i 1.00644i
\(78\) 0 0
\(79\) 3.95227 0.444665 0.222332 0.974971i \(-0.428633\pi\)
0.222332 + 0.974971i \(0.428633\pi\)
\(80\) −3.69982 + 2.58159i −0.413653 + 0.288630i
\(81\) 0 0
\(82\) 3.46632 + 5.71761i 0.382791 + 0.631405i
\(83\) 9.34878i 1.02616i 0.858340 + 0.513081i \(0.171496\pi\)
−0.858340 + 0.513081i \(0.828504\pi\)
\(84\) 0 0
\(85\) 1.12786i 0.122334i
\(86\) 1.84991 1.12151i 0.199481 0.120936i
\(87\) 0 0
\(88\) 0.917274 + 14.2644i 0.0977817 + 1.52059i
\(89\) 18.2672 1.93632 0.968158 0.250339i \(-0.0805420\pi\)
0.968158 + 0.250339i \(0.0805420\pi\)
\(90\) 0 0
\(91\) 5.41543i 0.567692i
\(92\) −6.97679 + 13.3754i −0.727380 + 1.39448i
\(93\) 0 0
\(94\) −5.61641 9.26414i −0.579288 0.955523i
\(95\) −1.17662 −0.120718
\(96\) 0 0
\(97\) −1.13735 −0.115481 −0.0577403 0.998332i \(-0.518390\pi\)
−0.0577403 + 0.998332i \(0.518390\pi\)
\(98\) −2.89309 4.77209i −0.292246 0.482054i
\(99\) 0 0
\(100\) −3.44816 + 6.61058i −0.344816 + 0.661058i
\(101\) 15.1985i 1.51231i −0.654393 0.756154i \(-0.727076\pi\)
0.654393 0.756154i \(-0.272924\pi\)
\(102\) 0 0
\(103\) −14.6325 −1.44178 −0.720889 0.693050i \(-0.756266\pi\)
−0.720889 + 0.693050i \(0.756266\pi\)
\(104\) 0.562468 + 8.74686i 0.0551545 + 0.857700i
\(105\) 0 0
\(106\) −4.72792 + 2.86631i −0.459216 + 0.278401i
\(107\) 3.08263i 0.298010i −0.988836 0.149005i \(-0.952393\pi\)
0.988836 0.149005i \(-0.0476070\pi\)
\(108\) 0 0
\(109\) 17.6022i 1.68598i 0.537929 + 0.842990i \(0.319207\pi\)
−0.537929 + 0.842990i \(0.680793\pi\)
\(110\) −4.17888 6.89296i −0.398440 0.657218i
\(111\) 0 0
\(112\) −4.00000 5.73263i −0.377964 0.541683i
\(113\) −5.49510 −0.516936 −0.258468 0.966020i \(-0.583218\pi\)
−0.258468 + 0.966020i \(0.583218\pi\)
\(114\) 0 0
\(115\) 8.50730i 0.793310i
\(116\) −2.00000 1.04322i −0.185695 0.0968610i
\(117\) 0 0
\(118\) −13.3450 + 8.09045i −1.22851 + 0.744786i
\(119\) −1.74755 −0.160198
\(120\) 0 0
\(121\) −14.5393 −1.32175
\(122\) 1.36396 0.826905i 0.123487 0.0748644i
\(123\) 0 0
\(124\) 2.47906 4.75268i 0.222626 0.426803i
\(125\) 9.84392i 0.880467i
\(126\) 0 0
\(127\) 14.7279 1.30689 0.653446 0.756973i \(-0.273323\pi\)
0.653446 + 0.756973i \(0.273323\pi\)
\(128\) 7.05610 + 8.84372i 0.623677 + 0.781682i
\(129\) 0 0
\(130\) −2.56247 4.22673i −0.224743 0.370709i
\(131\) 10.5015i 0.917524i 0.888559 + 0.458762i \(0.151707\pi\)
−0.888559 + 0.458762i \(0.848293\pi\)
\(132\) 0 0
\(133\) 1.82309i 0.158082i
\(134\) 3.46632 2.10146i 0.299444 0.181539i
\(135\) 0 0
\(136\) 2.82260 0.181508i 0.242036 0.0155642i
\(137\) −5.31623 −0.454196 −0.227098 0.973872i \(-0.572924\pi\)
−0.227098 + 0.973872i \(0.572924\pi\)
\(138\) 0 0
\(139\) 2.36527i 0.200619i 0.994956 + 0.100310i \(0.0319834\pi\)
−0.994956 + 0.100310i \(0.968017\pi\)
\(140\) 3.49510 + 1.82309i 0.295390 + 0.154079i
\(141\) 0 0
\(142\) 2.21387 + 3.65173i 0.185784 + 0.306446i
\(143\) −15.6606 −1.30960
\(144\) 0 0
\(145\) 1.27208 0.105640
\(146\) 8.96142 + 14.7817i 0.741653 + 1.22334i
\(147\) 0 0
\(148\) 16.2230 + 8.46213i 1.33352 + 0.695583i
\(149\) 21.4357i 1.75608i −0.478585 0.878041i \(-0.658850\pi\)
0.478585 0.878041i \(-0.341150\pi\)
\(150\) 0 0
\(151\) −18.1276 −1.47520 −0.737600 0.675238i \(-0.764041\pi\)
−0.737600 + 0.675238i \(0.764041\pi\)
\(152\) 0.189353 + 2.94460i 0.0153586 + 0.238839i
\(153\) 0 0
\(154\) 10.6802 6.47489i 0.860634 0.521762i
\(155\) 3.02289i 0.242804i
\(156\) 0 0
\(157\) 14.6187i 1.16670i −0.812220 0.583351i \(-0.801741\pi\)
0.812220 0.583351i \(-0.198259\pi\)
\(158\) 2.89764 + 4.77959i 0.230524 + 0.380244i
\(159\) 0 0
\(160\) −5.83455 2.58159i −0.461261 0.204092i
\(161\) 13.1815 1.03885
\(162\) 0 0
\(163\) 19.4090i 1.52023i 0.649788 + 0.760116i \(0.274858\pi\)
−0.649788 + 0.760116i \(0.725142\pi\)
\(164\) −4.37311 + 8.38384i −0.341483 + 0.654668i
\(165\) 0 0
\(166\) −11.3058 + 6.85414i −0.877497 + 0.531985i
\(167\) −11.8751 −0.918924 −0.459462 0.888197i \(-0.651958\pi\)
−0.459462 + 0.888197i \(0.651958\pi\)
\(168\) 0 0
\(169\) 3.39702 0.261309
\(170\) −1.36396 + 0.826905i −0.104611 + 0.0634207i
\(171\) 0 0
\(172\) 2.71256 + 1.41490i 0.206831 + 0.107885i
\(173\) 18.0197i 1.37001i 0.728539 + 0.685005i \(0.240200\pi\)
−0.728539 + 0.685005i \(0.759800\pi\)
\(174\) 0 0
\(175\) 6.51474 0.492468
\(176\) −16.5778 + 11.5673i −1.24960 + 0.871922i
\(177\) 0 0
\(178\) 13.3927 + 22.0910i 1.00383 + 1.65579i
\(179\) 15.8637i 1.18571i −0.805310 0.592855i \(-0.798001\pi\)
0.805310 0.592855i \(-0.201999\pi\)
\(180\) 0 0
\(181\) 11.0659i 0.822519i −0.911518 0.411259i \(-0.865089\pi\)
0.911518 0.411259i \(-0.134911\pi\)
\(182\) 6.54904 3.97038i 0.485447 0.294304i
\(183\) 0 0
\(184\) −21.2904 + 1.36908i −1.56955 + 0.100930i
\(185\) −10.3185 −0.758630
\(186\) 0 0
\(187\) 5.05364i 0.369559i
\(188\) 7.08567 13.5842i 0.516776 0.990728i
\(189\) 0 0
\(190\) −0.862647 1.42292i −0.0625830 0.103229i
\(191\) −14.2930 −1.03421 −0.517103 0.855923i \(-0.672990\pi\)
−0.517103 + 0.855923i \(0.672990\pi\)
\(192\) 0 0
\(193\) −21.3480 −1.53666 −0.768330 0.640054i \(-0.778912\pi\)
−0.768330 + 0.640054i \(0.778912\pi\)
\(194\) −0.833861 1.37543i −0.0598677 0.0987504i
\(195\) 0 0
\(196\) 3.64993 6.99740i 0.260709 0.499814i
\(197\) 22.8269i 1.62635i −0.582018 0.813176i \(-0.697737\pi\)
0.582018 0.813176i \(-0.302263\pi\)
\(198\) 0 0
\(199\) −8.81492 −0.624873 −0.312436 0.949939i \(-0.601145\pi\)
−0.312436 + 0.949939i \(0.601145\pi\)
\(200\) −10.5224 + 0.676646i −0.744047 + 0.0478461i
\(201\) 0 0
\(202\) 18.3800 11.1429i 1.29321 0.784014i
\(203\) 1.97100i 0.138337i
\(204\) 0 0
\(205\) 5.33246i 0.372435i
\(206\) −10.7279 17.6955i −0.747450 1.23290i
\(207\) 0 0
\(208\) −10.1655 + 7.09305i −0.704847 + 0.491814i
\(209\) −5.27208 −0.364677
\(210\) 0 0
\(211\) 8.67845i 0.597449i −0.954339 0.298725i \(-0.903439\pi\)
0.954339 0.298725i \(-0.0965612\pi\)
\(212\) −6.93264 3.61615i −0.476135 0.248358i
\(213\) 0 0
\(214\) 3.72792 2.26006i 0.254835 0.154495i
\(215\) −1.72529 −0.117664
\(216\) 0 0
\(217\) −4.68377 −0.317955
\(218\) −21.2868 + 12.9052i −1.44172 + 0.874049i
\(219\) 0 0
\(220\) 5.27208 10.1073i 0.355444 0.681432i
\(221\) 3.09887i 0.208452i
\(222\) 0 0
\(223\) −4.33228 −0.290111 −0.145055 0.989424i \(-0.546336\pi\)
−0.145055 + 0.989424i \(0.546336\pi\)
\(224\) 4.00000 9.04025i 0.267261 0.604027i
\(225\) 0 0
\(226\) −4.02879 6.64539i −0.267991 0.442045i
\(227\) 25.6392i 1.70173i 0.525381 + 0.850867i \(0.323923\pi\)
−0.525381 + 0.850867i \(0.676077\pi\)
\(228\) 0 0
\(229\) 2.46448i 0.162857i −0.996679 0.0814287i \(-0.974052\pi\)
0.996679 0.0814287i \(-0.0259483\pi\)
\(230\) 10.2881 6.23721i 0.678379 0.411269i
\(231\) 0 0
\(232\) −0.204716 3.18351i −0.0134403 0.209008i
\(233\) 2.67172 0.175030 0.0875151 0.996163i \(-0.472107\pi\)
0.0875151 + 0.996163i \(0.472107\pi\)
\(234\) 0 0
\(235\) 8.64007i 0.563616i
\(236\) −19.5680 10.2069i −1.27377 0.664415i
\(237\) 0 0
\(238\) −1.28123 2.11337i −0.0830501 0.136989i
\(239\) 2.89337 0.187157 0.0935784 0.995612i \(-0.470169\pi\)
0.0935784 + 0.995612i \(0.470169\pi\)
\(240\) 0 0
\(241\) 13.8260 0.890612 0.445306 0.895379i \(-0.353095\pi\)
0.445306 + 0.895379i \(0.353095\pi\)
\(242\) −10.6596 17.5827i −0.685224 1.13026i
\(243\) 0 0
\(244\) 2.00000 + 1.04322i 0.128037 + 0.0667856i
\(245\) 4.45062i 0.284340i
\(246\) 0 0
\(247\) −3.23282 −0.205699
\(248\) 7.56509 0.486475i 0.480384 0.0308912i
\(249\) 0 0
\(250\) 11.9045 7.21716i 0.752909 0.456453i
\(251\) 26.7270i 1.68700i 0.537132 + 0.843498i \(0.319508\pi\)
−0.537132 + 0.843498i \(0.680492\pi\)
\(252\) 0 0
\(253\) 38.1188i 2.39651i
\(254\) 10.7979 + 17.8109i 0.677521 + 1.11756i
\(255\) 0 0
\(256\) −5.52173 + 15.0170i −0.345108 + 0.938563i
\(257\) 0.460746 0.0287405 0.0143703 0.999897i \(-0.495426\pi\)
0.0143703 + 0.999897i \(0.495426\pi\)
\(258\) 0 0
\(259\) 15.9878i 0.993435i
\(260\) 3.23282 6.19774i 0.200491 0.384367i
\(261\) 0 0
\(262\) −12.6998 + 7.69930i −0.784598 + 0.475664i
\(263\) 16.2623 1.00278 0.501388 0.865223i \(-0.332823\pi\)
0.501388 + 0.865223i \(0.332823\pi\)
\(264\) 0 0
\(265\) 4.40943 0.270869
\(266\) 2.20472 1.33662i 0.135180 0.0819531i
\(267\) 0 0
\(268\) 5.08273 + 2.65121i 0.310477 + 0.161949i
\(269\) 20.0596i 1.22306i 0.791222 + 0.611529i \(0.209445\pi\)
−0.791222 + 0.611529i \(0.790555\pi\)
\(270\) 0 0
\(271\) 0.670347 0.0407207 0.0203604 0.999793i \(-0.493519\pi\)
0.0203604 + 0.999793i \(0.493519\pi\)
\(272\) 2.28892 + 3.28038i 0.138786 + 0.198902i
\(273\) 0 0
\(274\) −3.89764 6.42907i −0.235465 0.388394i
\(275\) 18.8396i 1.13607i
\(276\) 0 0
\(277\) 3.58534i 0.215422i −0.994182 0.107711i \(-0.965648\pi\)
0.994182 0.107711i \(-0.0343522\pi\)
\(278\) −2.86039 + 1.73412i −0.171555 + 0.104005i
\(279\) 0 0
\(280\) 0.357752 + 5.56335i 0.0213798 + 0.332474i
\(281\) −0.397016 −0.0236840 −0.0118420 0.999930i \(-0.503770\pi\)
−0.0118420 + 0.999930i \(0.503770\pi\)
\(282\) 0 0
\(283\) 9.96859i 0.592571i 0.955099 + 0.296286i \(0.0957481\pi\)
−0.955099 + 0.296286i \(0.904252\pi\)
\(284\) −2.79302 + 5.35460i −0.165736 + 0.317737i
\(285\) 0 0
\(286\) −11.4817 18.9388i −0.678926 1.11987i
\(287\) 8.26229 0.487708
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0.932637 + 1.53836i 0.0547663 + 0.0903358i
\(291\) 0 0
\(292\) −11.3058 + 21.6746i −0.661619 + 1.26841i
\(293\) 5.39407i 0.315125i −0.987509 0.157562i \(-0.949636\pi\)
0.987509 0.157562i \(-0.0503635\pi\)
\(294\) 0 0
\(295\) 12.4461 0.724637
\(296\) 1.66056 + 25.8231i 0.0965179 + 1.50094i
\(297\) 0 0
\(298\) 25.9228 15.7158i 1.50167 0.910392i
\(299\) 23.3743i 1.35177i
\(300\) 0 0
\(301\) 2.67323i 0.154082i
\(302\) −13.2904 21.9222i −0.764776 1.26148i
\(303\) 0 0
\(304\) −3.42217 + 2.38785i −0.196275 + 0.136953i
\(305\) −1.27208 −0.0728391
\(306\) 0 0
\(307\) 28.9614i 1.65291i 0.562999 + 0.826457i \(0.309647\pi\)
−0.562999 + 0.826457i \(0.690353\pi\)
\(308\) 15.6606 + 8.16874i 0.892343 + 0.465457i
\(309\) 0 0
\(310\) −3.65567 + 2.21626i −0.207628 + 0.125875i
\(311\) 13.5049 0.765795 0.382898 0.923791i \(-0.374926\pi\)
0.382898 + 0.923791i \(0.374926\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 17.6789 10.7179i 0.997676 0.604844i
\(315\) 0 0
\(316\) −3.65567 + 7.00841i −0.205648 + 0.394254i
\(317\) 14.7272i 0.827161i −0.910468 0.413580i \(-0.864278\pi\)
0.910468 0.413580i \(-0.135722\pi\)
\(318\) 0 0
\(319\) 5.69982 0.319129
\(320\) −1.15566 8.94860i −0.0646035 0.500242i
\(321\) 0 0
\(322\) 9.66414 + 15.9408i 0.538561 + 0.888345i
\(323\) 1.04322i 0.0580466i
\(324\) 0 0
\(325\) 11.5523i 0.640808i
\(326\) −23.4719 + 14.2299i −1.29999 + 0.788121i
\(327\) 0 0
\(328\) −13.3450 + 0.858154i −0.736855 + 0.0473836i
\(329\) −13.3872 −0.738062
\(330\) 0 0
\(331\) 2.58159i 0.141897i −0.997480 0.0709484i \(-0.977397\pi\)
0.997480 0.0709484i \(-0.0226026\pi\)
\(332\) −16.5778 8.64720i −0.909827 0.474577i
\(333\) 0 0
\(334\) −8.70635 14.3609i −0.476390 0.785795i
\(335\) −3.23282 −0.176628
\(336\) 0 0
\(337\) 7.00263 0.381457 0.190729 0.981643i \(-0.438915\pi\)
0.190729 + 0.981643i \(0.438915\pi\)
\(338\) 2.49055 + 4.10811i 0.135468 + 0.223452i
\(339\) 0 0
\(340\) −2.00000 1.04322i −0.108465 0.0565768i
\(341\) 13.5447i 0.733487i
\(342\) 0 0
\(343\) −19.1288 −1.03286
\(344\) 0.277652 + 4.31773i 0.0149700 + 0.232796i
\(345\) 0 0
\(346\) −21.7917 + 13.2113i −1.17153 + 0.710243i
\(347\) 1.76335i 0.0946614i 0.998879 + 0.0473307i \(0.0150715\pi\)
−0.998879 + 0.0473307i \(0.984929\pi\)
\(348\) 0 0
\(349\) 36.8581i 1.97297i 0.163851 + 0.986485i \(0.447608\pi\)
−0.163851 + 0.986485i \(0.552392\pi\)
\(350\) 4.77634 + 7.87846i 0.255306 + 0.421122i
\(351\) 0 0
\(352\) −26.1429 11.5673i −1.39342 0.616542i
\(353\) 32.9830 1.75551 0.877755 0.479109i \(-0.159040\pi\)
0.877755 + 0.479109i \(0.159040\pi\)
\(354\) 0 0
\(355\) 3.40574i 0.180758i
\(356\) −16.8963 + 32.3925i −0.895503 + 1.71680i
\(357\) 0 0
\(358\) 19.1844 11.6306i 1.01393 0.614698i
\(359\) −10.1093 −0.533546 −0.266773 0.963759i \(-0.585957\pi\)
−0.266773 + 0.963759i \(0.585957\pi\)
\(360\) 0 0
\(361\) 17.9117 0.942720
\(362\) 13.3823 8.11304i 0.703356 0.426412i
\(363\) 0 0
\(364\) 9.60298 + 5.00903i 0.503333 + 0.262545i
\(365\) 13.7859i 0.721588i
\(366\) 0 0
\(367\) 36.8261 1.92230 0.961152 0.276018i \(-0.0890150\pi\)
0.961152 + 0.276018i \(0.0890150\pi\)
\(368\) −17.2649 24.7433i −0.899996 1.28984i
\(369\) 0 0
\(370\) −7.56509 12.4785i −0.393291 0.648724i
\(371\) 6.83212i 0.354706i
\(372\) 0 0
\(373\) 15.2775i 0.791037i 0.918458 + 0.395518i \(0.129435\pi\)
−0.918458 + 0.395518i \(0.870565\pi\)
\(374\) −6.11151 + 3.70512i −0.316019 + 0.191587i
\(375\) 0 0
\(376\) 21.6227 1.39045i 1.11510 0.0717070i
\(377\) 3.49510 0.180007
\(378\) 0 0
\(379\) 14.9805i 0.769498i 0.923021 + 0.384749i \(0.125712\pi\)
−0.923021 + 0.384749i \(0.874288\pi\)
\(380\) 1.08832 2.08645i 0.0558295 0.107033i
\(381\) 0 0
\(382\) −10.4791 17.2850i −0.536155 0.884376i
\(383\) 5.19355 0.265378 0.132689 0.991158i \(-0.457639\pi\)
0.132689 + 0.991158i \(0.457639\pi\)
\(384\) 0 0
\(385\) −9.96074 −0.507646
\(386\) −15.6515 25.8167i −0.796638 1.31404i
\(387\) 0 0
\(388\) 1.05200 2.01682i 0.0534072 0.102389i
\(389\) 9.29660i 0.471357i 0.971831 + 0.235678i \(0.0757312\pi\)
−0.971831 + 0.235678i \(0.924269\pi\)
\(390\) 0 0
\(391\) −7.54284 −0.381458
\(392\) 11.1381 0.716240i 0.562561 0.0361756i
\(393\) 0 0
\(394\) 27.6053 16.7358i 1.39073 0.843137i
\(395\) 4.45763i 0.224287i
\(396\) 0 0
\(397\) 12.1177i 0.608172i 0.952645 + 0.304086i \(0.0983511\pi\)
−0.952645 + 0.304086i \(0.901649\pi\)
\(398\) −6.46274 10.6601i −0.323948 0.534344i
\(399\) 0 0
\(400\) −8.53290 12.2290i −0.426645 0.611449i
\(401\) −30.3506 −1.51564 −0.757818 0.652466i \(-0.773735\pi\)
−0.757818 + 0.652466i \(0.773735\pi\)
\(402\) 0 0
\(403\) 8.30555i 0.413729i
\(404\) 26.9509 + 14.0579i 1.34086 + 0.699409i
\(405\) 0 0
\(406\) −2.38359 + 1.44506i −0.118296 + 0.0717171i
\(407\) −46.2342 −2.29174
\(408\) 0 0
\(409\) 23.3015 1.15219 0.576093 0.817384i \(-0.304576\pi\)
0.576093 + 0.817384i \(0.304576\pi\)
\(410\) 6.44870 3.90954i 0.318478 0.193078i
\(411\) 0 0
\(412\) 13.5344 25.9472i 0.666790 1.27833i
\(413\) 19.2843i 0.948920i
\(414\) 0 0
\(415\) 10.5442 0.517592
\(416\) −16.0307 7.09305i −0.785971 0.347765i
\(417\) 0 0
\(418\) −3.86527 6.37568i −0.189057 0.311845i
\(419\) 8.50917i 0.415700i −0.978161 0.207850i \(-0.933353\pi\)
0.978161 0.207850i \(-0.0666466\pi\)
\(420\) 0 0
\(421\) 31.3191i 1.52640i 0.646162 + 0.763200i \(0.276373\pi\)
−0.646162 + 0.763200i \(0.723627\pi\)
\(422\) 10.4951 6.36269i 0.510894 0.309731i
\(423\) 0 0
\(424\) −0.709611 11.0351i −0.0344618 0.535910i
\(425\) −3.72792 −0.180831
\(426\) 0 0
\(427\) 1.97100i 0.0953835i
\(428\) 5.46632 + 2.85130i 0.264224 + 0.137823i
\(429\) 0 0
\(430\) −1.26492 2.08645i −0.0609996 0.100618i
\(431\) −19.2734 −0.928366 −0.464183 0.885739i \(-0.653652\pi\)
−0.464183 + 0.885739i \(0.653652\pi\)
\(432\) 0 0
\(433\) 21.9363 1.05419 0.527095 0.849806i \(-0.323281\pi\)
0.527095 + 0.849806i \(0.323281\pi\)
\(434\) −3.43395 5.66422i −0.164835 0.271891i
\(435\) 0 0
\(436\) −31.2132 16.2812i −1.49484 0.779728i
\(437\) 7.86887i 0.376419i
\(438\) 0 0
\(439\) −5.43358 −0.259331 −0.129665 0.991558i \(-0.541390\pi\)
−0.129665 + 0.991558i \(0.541390\pi\)
\(440\) 16.0883 1.03456i 0.766980 0.0493208i
\(441\) 0 0
\(442\) −3.74755 + 2.27196i −0.178253 + 0.108066i
\(443\) 5.06043i 0.240428i −0.992748 0.120214i \(-0.961642\pi\)
0.992748 0.120214i \(-0.0383581\pi\)
\(444\) 0 0
\(445\) 20.6029i 0.976671i
\(446\) −3.17625 5.23915i −0.150400 0.248081i
\(447\) 0 0
\(448\) 13.8653 1.79062i 0.655073 0.0845990i
\(449\) 15.8653 0.748729 0.374364 0.927282i \(-0.377861\pi\)
0.374364 + 0.927282i \(0.377861\pi\)
\(450\) 0 0
\(451\) 23.8932i 1.12509i
\(452\) 5.08273 9.74426i 0.239071 0.458331i
\(453\) 0 0
\(454\) −31.0063 + 18.7976i −1.45520 + 0.882216i
\(455\) −6.10788 −0.286342
\(456\) 0 0
\(457\) −10.1272 −0.473730 −0.236865 0.971543i \(-0.576120\pi\)
−0.236865 + 0.971543i \(0.576120\pi\)
\(458\) 2.98037 1.80686i 0.139263 0.0844288i
\(459\) 0 0
\(460\) 15.0857 + 7.86887i 0.703373 + 0.366888i
\(461\) 22.6244i 1.05372i −0.849951 0.526862i \(-0.823368\pi\)
0.849951 0.526862i \(-0.176632\pi\)
\(462\) 0 0
\(463\) −7.18114 −0.333736 −0.166868 0.985979i \(-0.553365\pi\)
−0.166868 + 0.985979i \(0.553365\pi\)
\(464\) 3.69982 2.58159i 0.171760 0.119847i
\(465\) 0 0
\(466\) 1.95880 + 3.23099i 0.0907395 + 0.149673i
\(467\) 38.2074i 1.76803i 0.467459 + 0.884015i \(0.345170\pi\)
−0.467459 + 0.884015i \(0.654830\pi\)
\(468\) 0 0
\(469\) 5.00903i 0.231296i
\(470\) −10.4487 + 6.33455i −0.481962 + 0.292191i
\(471\) 0 0
\(472\) −2.00295 31.1475i −0.0921931 1.43368i
\(473\) −7.73055 −0.355451
\(474\) 0 0
\(475\) 3.88906i 0.178442i
\(476\) 1.61641 3.09887i 0.0740879 0.142036i
\(477\) 0 0
\(478\) 2.12130 + 3.49904i 0.0970261 + 0.160042i
\(479\) −0.136030 −0.00621538 −0.00310769 0.999995i \(-0.500989\pi\)
−0.00310769 + 0.999995i \(0.500989\pi\)
\(480\) 0 0
\(481\) −28.3506 −1.29268
\(482\) 10.1367 + 16.7202i 0.461712 + 0.761584i
\(483\) 0 0
\(484\) 13.4482 25.7819i 0.611280 1.17190i
\(485\) 1.28278i 0.0582481i
\(486\) 0 0
\(487\) −38.5514 −1.74693 −0.873464 0.486888i \(-0.838132\pi\)
−0.873464 + 0.486888i \(0.838132\pi\)
\(488\) 0.204716 + 3.18351i 0.00926706 + 0.144111i
\(489\) 0 0
\(490\) −5.38227 + 3.26302i −0.243146 + 0.147408i
\(491\) 18.6889i 0.843418i −0.906731 0.421709i \(-0.861430\pi\)
0.906731 0.421709i \(-0.138570\pi\)
\(492\) 0 0
\(493\) 1.12786i 0.0507965i
\(494\) −2.37017 3.90954i −0.106639 0.175898i
\(495\) 0 0
\(496\) 6.13473 + 8.79203i 0.275457 + 0.394774i
\(497\) 5.27697 0.236704
\(498\) 0 0
\(499\) 18.3033i 0.819368i 0.912228 + 0.409684i \(0.134361\pi\)
−0.912228 + 0.409684i \(0.865639\pi\)
\(500\) 17.4558 + 9.10518i 0.780649 + 0.407196i
\(501\) 0 0
\(502\) −32.3218 + 19.5952i −1.44259 + 0.874576i
\(503\) 26.6030 1.18617 0.593085 0.805140i \(-0.297910\pi\)
0.593085 + 0.805140i \(0.297910\pi\)
\(504\) 0 0
\(505\) −17.1419 −0.762803
\(506\) 46.0981 27.9471i 2.04931 1.24240i
\(507\) 0 0
\(508\) −13.6227 + 26.1165i −0.604408 + 1.15873i
\(509\) 7.57086i 0.335572i −0.985823 0.167786i \(-0.946338\pi\)
0.985823 0.167786i \(-0.0536618\pi\)
\(510\) 0 0
\(511\) 21.3604 0.944928
\(512\) −22.2088 + 4.33226i −0.981500 + 0.191461i
\(513\) 0 0
\(514\) 0.337800 + 0.557193i 0.0148997 + 0.0245767i
\(515\) 16.5034i 0.727228i
\(516\) 0 0
\(517\) 38.7137i 1.70263i
\(518\) 19.3345 11.7216i 0.849511 0.515018i
\(519\) 0 0
\(520\) 9.86527 0.634388i 0.432621 0.0278198i
\(521\) 22.4389 0.983065 0.491533 0.870859i \(-0.336437\pi\)
0.491533 + 0.870859i \(0.336437\pi\)
\(522\) 0 0
\(523\) 13.5755i 0.593616i −0.954937 0.296808i \(-0.904078\pi\)
0.954937 0.296808i \(-0.0959221\pi\)
\(524\) −18.6220 9.71345i −0.813505 0.424334i
\(525\) 0 0
\(526\) 11.9228 + 19.6665i 0.519861 + 0.857499i
\(527\) 2.68019 0.116751
\(528\) 0 0
\(529\) 33.8944 1.47367
\(530\) 3.23282 + 5.33246i 0.140425 + 0.231627i
\(531\) 0 0
\(532\) 3.23282 + 1.68628i 0.140160 + 0.0731094i
\(533\) 14.6512i 0.634614i
\(534\) 0 0
\(535\) −3.47680 −0.150315
\(536\) 0.520258 + 8.09045i 0.0224717 + 0.349454i
\(537\) 0 0
\(538\) −24.2587 + 14.7069i −1.04587 + 0.634060i
\(539\) 19.9420i 0.858961i
\(540\) 0 0
\(541\) 14.1426i 0.608037i 0.952666 + 0.304019i \(0.0983285\pi\)
−0.952666 + 0.304019i \(0.901671\pi\)
\(542\) 0.491471 + 0.810671i 0.0211105 + 0.0348213i
\(543\) 0 0
\(544\) −2.28892 + 5.17309i −0.0981364 + 0.221794i
\(545\) 19.8529 0.850403
\(546\) 0 0
\(547\) 29.0623i 1.24261i 0.783567 + 0.621307i \(0.213398\pi\)
−0.783567 + 0.621307i \(0.786602\pi\)
\(548\) 4.91727 9.42707i 0.210056 0.402704i
\(549\) 0 0
\(550\) 22.7832 13.8124i 0.971480 0.588963i
\(551\) 1.17662 0.0501255
\(552\) 0 0
\(553\) 6.90680 0.293707
\(554\) 4.33586 2.62863i 0.184213 0.111680i
\(555\) 0 0
\(556\) −4.19424 2.18777i −0.177875 0.0927820i
\(557\) 26.1386i 1.10753i 0.832674 + 0.553764i \(0.186809\pi\)
−0.832674 + 0.553764i \(0.813191\pi\)
\(558\) 0 0
\(559\) −4.74034 −0.200495
\(560\) −6.46563 + 4.51146i −0.273223 + 0.190644i
\(561\) 0 0
\(562\) −0.291076 0.480123i −0.0122783 0.0202528i
\(563\) 17.8812i 0.753602i 0.926294 + 0.376801i \(0.122976\pi\)
−0.926294 + 0.376801i \(0.877024\pi\)
\(564\) 0 0
\(565\) 6.19774i 0.260741i
\(566\) −12.0553 + 7.30857i −0.506723 + 0.307202i
\(567\) 0 0
\(568\) −8.52320 + 0.548086i −0.357626 + 0.0229972i
\(569\) 21.4434 0.898955 0.449478 0.893292i \(-0.351610\pi\)
0.449478 + 0.893292i \(0.351610\pi\)
\(570\) 0 0
\(571\) 34.9469i 1.46248i −0.682120 0.731240i \(-0.738942\pi\)
0.682120 0.731240i \(-0.261058\pi\)
\(572\) 14.4853 27.7703i 0.605661 1.16113i
\(573\) 0 0
\(574\) 6.05757 + 9.99183i 0.252838 + 0.417051i
\(575\) 28.1191 1.17265
\(576\) 0 0
\(577\) −8.95848 −0.372946 −0.186473 0.982460i \(-0.559706\pi\)
−0.186473 + 0.982460i \(0.559706\pi\)
\(578\) 0.733159 + 1.20933i 0.0304954 + 0.0503015i
\(579\) 0 0
\(580\) −1.17662 + 2.25573i −0.0488563 + 0.0936641i
\(581\) 16.3375i 0.677793i
\(582\) 0 0
\(583\) 19.7574 0.818268
\(584\) −34.5007 + 2.21857i −1.42765 + 0.0918052i
\(585\) 0 0
\(586\) 6.52320 3.95471i 0.269471 0.163368i
\(587\) 6.94513i 0.286656i 0.989675 + 0.143328i \(0.0457804\pi\)
−0.989675 + 0.143328i \(0.954220\pi\)
\(588\) 0 0
\(589\) 2.79604i 0.115209i
\(590\) 9.12494 + 15.0514i 0.375668 + 0.619655i
\(591\) 0 0
\(592\) −30.0111 + 20.9406i −1.23345 + 0.860653i
\(593\) −18.5932 −0.763531 −0.381765 0.924259i \(-0.624684\pi\)
−0.381765 + 0.924259i \(0.624684\pi\)
\(594\) 0 0
\(595\) 1.97100i 0.0808033i
\(596\) 38.0111 + 19.8271i 1.55700 + 0.812149i
\(597\) 0 0
\(598\) 28.2672 17.1370i 1.15593 0.700786i
\(599\) −31.7057 −1.29546 −0.647730 0.761870i \(-0.724282\pi\)
−0.647730 + 0.761870i \(0.724282\pi\)
\(600\) 0 0
\(601\) −29.2257 −1.19214 −0.596070 0.802933i \(-0.703272\pi\)
−0.596070 + 0.802933i \(0.703272\pi\)
\(602\) 3.23282 1.95990i 0.131760 0.0798797i
\(603\) 0 0
\(604\) 16.7672 32.1449i 0.682247 1.30796i
\(605\) 16.3983i 0.666686i
\(606\) 0 0
\(607\) −4.90321 −0.199015 −0.0995077 0.995037i \(-0.531727\pi\)
−0.0995077 + 0.995037i \(0.531727\pi\)
\(608\) −5.39670 2.38785i −0.218865 0.0968402i
\(609\) 0 0
\(610\) −0.932637 1.53836i −0.0377614 0.0622865i
\(611\) 23.7391i 0.960379i
\(612\) 0 0
\(613\) 33.8739i 1.36816i −0.729409 0.684078i \(-0.760205\pi\)
0.729409 0.684078i \(-0.239795\pi\)
\(614\) −35.0239 + 21.2333i −1.41345 + 0.856907i
\(615\) 0 0
\(616\) 1.60298 + 24.9278i 0.0645861 + 1.00437i
\(617\) 34.5174 1.38962 0.694809 0.719194i \(-0.255489\pi\)
0.694809 + 0.719194i \(0.255489\pi\)
\(618\) 0 0
\(619\) 21.3435i 0.857868i −0.903336 0.428934i \(-0.858889\pi\)
0.903336 0.428934i \(-0.141111\pi\)
\(620\) −5.36038 2.79604i −0.215278 0.112292i
\(621\) 0 0
\(622\) 9.90128 + 16.3319i 0.397005 + 0.654851i
\(623\) 31.9228 1.27896
\(624\) 0 0
\(625\) 7.53699 0.301480
\(626\) −4.39896 7.25598i −0.175818 0.290007i
\(627\) 0 0
\(628\) 25.9228 + 13.5217i 1.03443 + 0.539574i
\(629\) 9.14869i 0.364782i
\(630\) 0 0
\(631\) 44.3689 1.76630 0.883149 0.469093i \(-0.155419\pi\)
0.883149 + 0.469093i \(0.155419\pi\)
\(632\) −11.1557 + 0.717367i −0.443748 + 0.0285353i
\(633\) 0 0
\(634\) 17.8100 10.7974i 0.707326 0.428818i
\(635\) 16.6111i 0.659192i
\(636\) 0 0
\(637\) 12.2283i 0.484504i
\(638\) 4.17888 + 6.89296i 0.165443 + 0.272895i
\(639\) 0 0
\(640\) 9.97453 7.95833i 0.394278 0.314581i
\(641\) 3.68151 0.145411 0.0727055 0.997353i \(-0.476837\pi\)
0.0727055 + 0.997353i \(0.476837\pi\)
\(642\) 0 0
\(643\) 30.6988i 1.21064i 0.795982 + 0.605321i \(0.206955\pi\)
−0.795982 + 0.605321i \(0.793045\pi\)
\(644\) −12.1923 + 23.3743i −0.480444 + 0.921075i
\(645\) 0 0
\(646\) −1.26160 + 0.764850i −0.0496371 + 0.0300926i
\(647\) 20.1066 0.790472 0.395236 0.918580i \(-0.370663\pi\)
0.395236 + 0.918580i \(0.370663\pi\)
\(648\) 0 0
\(649\) 55.7672 2.18905
\(650\) 13.9706 8.46970i 0.547971 0.332209i
\(651\) 0 0
\(652\) −34.4173 17.9525i −1.34788 0.703073i
\(653\) 4.85298i 0.189912i 0.995481 + 0.0949560i \(0.0302710\pi\)
−0.995481 + 0.0949560i \(0.969729\pi\)
\(654\) 0 0
\(655\) 11.8443 0.462796
\(656\) −10.8218 15.5094i −0.422521 0.605539i
\(657\) 0 0
\(658\) −9.81497 16.1896i −0.382627 0.631135i
\(659\) 0.820109i 0.0319469i −0.999872 0.0159735i \(-0.994915\pi\)
0.999872 0.0159735i \(-0.00508473\pi\)
\(660\) 0 0
\(661\) 33.6446i 1.30862i 0.756225 + 0.654311i \(0.227041\pi\)
−0.756225 + 0.654311i \(0.772959\pi\)
\(662\) 3.12199 1.89271i 0.121340 0.0735624i
\(663\) 0 0
\(664\) −1.69687 26.3878i −0.0658515 1.02405i
\(665\) −2.05620 −0.0797360
\(666\) 0 0
\(667\) 8.50730i 0.329404i
\(668\) 10.9840 21.0577i 0.424982 0.814746i
\(669\) 0 0
\(670\) −2.37017 3.90954i −0.0915676 0.151039i
\(671\) −5.69982 −0.220039
\(672\) 0 0
\(673\) 14.3061 0.551459 0.275729 0.961235i \(-0.411081\pi\)
0.275729 + 0.961235i \(0.411081\pi\)
\(674\) 5.13404 + 8.46848i 0.197756 + 0.326194i
\(675\) 0 0
\(676\) −3.14209 + 6.02380i −0.120850 + 0.231685i
\(677\) 25.2693i 0.971177i 0.874187 + 0.485589i \(0.161395\pi\)
−0.874187 + 0.485589i \(0.838605\pi\)
\(678\) 0 0
\(679\) −1.98758 −0.0762765
\(680\) −0.204716 3.18351i −0.00785050 0.122082i
\(681\) 0 0
\(682\) −16.3800 + 9.93042i −0.627223 + 0.380256i
\(683\) 16.5149i 0.631923i −0.948772 0.315962i \(-0.897673\pi\)
0.948772 0.315962i \(-0.102327\pi\)
\(684\) 0 0
\(685\) 5.99599i 0.229095i
\(686\) −14.0245 23.1330i −0.535457 0.883224i
\(687\) 0 0
\(688\) −5.01799 + 3.50135i −0.191309 + 0.133488i
\(689\) 12.1151 0.461550
\(690\) 0 0
\(691\) 3.61558i 0.137543i −0.997632 0.0687716i \(-0.978092\pi\)
0.997632 0.0687716i \(-0.0219080\pi\)
\(692\) −31.9536 16.6674i −1.21469 0.633599i
\(693\) 0 0
\(694\) −2.13247 + 1.29281i −0.0809473 + 0.0490745i
\(695\) 2.66770 0.101192
\(696\) 0 0
\(697\) −4.72792 −0.179083
\(698\) −44.5736 + 27.0229i −1.68714 + 1.02283i
\(699\) 0 0
\(700\) −6.02584 + 11.5523i −0.227755 + 0.436637i
\(701\) 20.4233i 0.771377i −0.922629 0.385689i \(-0.873964\pi\)
0.922629 0.385689i \(-0.126036\pi\)
\(702\) 0 0
\(703\) −9.54414 −0.359964
\(704\) −5.17819 40.0961i −0.195160 1.51118i
\(705\) 0 0
\(706\) 24.1818 + 39.8874i 0.910095 + 1.50118i
\(707\) 26.5602i 0.998899i
\(708\) 0 0
\(709\) 1.88393i 0.0707523i 0.999374 + 0.0353762i \(0.0112629\pi\)
−0.999374 + 0.0353762i \(0.988737\pi\)
\(710\) 4.11866 2.49695i 0.154570 0.0937088i
\(711\) 0 0
\(712\) −51.5609 + 3.31563i −1.93233 + 0.124259i
\(713\) −20.2162 −0.757104
\(714\) 0 0
\(715\) 17.6630i 0.660559i
\(716\) 28.1305 + 14.6732i 1.05129 + 0.548364i
\(717\) 0 0
\(718\) −7.41169 12.2254i −0.276602 0.456249i
\(719\) 29.2872 1.09223 0.546114 0.837711i \(-0.316107\pi\)
0.546114 + 0.837711i \(0.316107\pi\)
\(720\) 0 0
\(721\) −25.5710 −0.952313
\(722\) 13.1321 + 21.6611i 0.488727 + 0.806144i
\(723\) 0 0
\(724\) 19.6227 + 10.2354i 0.729271 + 0.380397i
\(725\) 4.20459i 0.156155i
\(726\) 0 0
\(727\) 31.1485 1.15523 0.577617 0.816308i \(-0.303983\pi\)
0.577617 + 0.816308i \(0.303983\pi\)
\(728\) 0.982943 + 15.2856i 0.0364303 + 0.566522i
\(729\) 0 0
\(730\) 16.6717 10.1073i 0.617048 0.374087i
\(731\) 1.52970i 0.0565780i
\(732\) 0 0
\(733\) 6.44596i 0.238087i −0.992889 0.119043i \(-0.962017\pi\)
0.992889 0.119043i \(-0.0379828\pi\)
\(734\) 26.9994 + 44.5348i 0.996565 + 1.64381i
\(735\) 0 0
\(736\) 17.2649 39.0198i 0.636393 1.43829i
\(737\) −14.4853 −0.533573
\(738\) 0 0
\(739\) 19.5888i 0.720587i 0.932839 + 0.360293i \(0.117323\pi\)
−0.932839 + 0.360293i \(0.882677\pi\)
\(740\) 9.54414 18.2974i 0.350850 0.672625i
\(741\) 0 0
\(742\) −8.26229 + 5.00903i −0.303318 + 0.183887i
\(743\) 16.2315 0.595476 0.297738 0.954648i \(-0.403768\pi\)
0.297738 + 0.954648i \(0.403768\pi\)
\(744\) 0 0
\(745\) −24.1766 −0.885762
\(746\) −18.4755 + 11.2008i −0.676435 + 0.410091i
\(747\) 0 0
\(748\) −8.96142 4.67439i −0.327662 0.170913i
\(749\) 5.38707i 0.196839i
\(750\) 0 0
\(751\) 2.87965 0.105080 0.0525400 0.998619i \(-0.483268\pi\)
0.0525400 + 0.998619i \(0.483268\pi\)
\(752\) 17.5344 + 25.1295i 0.639413 + 0.916379i
\(753\) 0 0
\(754\) 2.56247 + 4.22673i 0.0933196 + 0.153929i
\(755\) 20.4454i 0.744086i
\(756\) 0 0
\(757\) 19.8538i 0.721600i −0.932643 0.360800i \(-0.882504\pi\)
0.932643 0.360800i \(-0.117496\pi\)
\(758\) −18.1164 + 10.9831i −0.658017 + 0.398925i
\(759\) 0 0
\(760\) 3.32111 0.213565i 0.120469 0.00774681i
\(761\) −21.1619 −0.767119 −0.383560 0.923516i \(-0.625302\pi\)
−0.383560 + 0.923516i \(0.625302\pi\)
\(762\) 0 0
\(763\) 30.7607i 1.11361i
\(764\) 13.2204 25.3453i 0.478297 0.916959i
\(765\) 0 0
\(766\) 3.80770 + 6.28072i 0.137578 + 0.226931i
\(767\) 34.1962 1.23475
\(768\) 0 0
\(769\) −28.0879 −1.01288 −0.506438 0.862276i \(-0.669038\pi\)
−0.506438 + 0.862276i \(0.669038\pi\)
\(770\) −7.30281 12.0458i −0.263175 0.434101i
\(771\) 0 0
\(772\) 19.7459 37.8555i 0.710671 1.36245i
\(773\) 21.4752i 0.772409i 0.922413 + 0.386204i \(0.126214\pi\)
−0.922413 + 0.386204i \(0.873786\pi\)
\(774\) 0 0
\(775\) −9.99153 −0.358906
\(776\) 3.21029 0.206438i 0.115243 0.00741070i
\(777\) 0 0
\(778\) −11.2427 + 6.81589i −0.403069 + 0.244362i
\(779\) 4.93228i 0.176717i
\(780\) 0 0
\(781\) 15.2601i 0.546050i
\(782\) −5.53010 9.12177i −0.197756 0.326194i
\(783\) 0 0
\(784\) 9.03220 + 12.9446i 0.322579 + 0.462306i
\(785\) −16.4880 −0.588481
\(786\) 0 0
\(787\) 1.22304i 0.0435966i −0.999762 0.0217983i \(-0.993061\pi\)
0.999762 0.0217983i \(-0.00693916\pi\)
\(788\) 40.4782 + 21.1139i 1.44197 + 0.752152i
\(789\) 0 0
\(790\) 5.39074 3.26815i 0.191794 0.116276i
\(791\) −9.60298 −0.341443
\(792\) 0 0
\(793\) −3.49510 −0.124115
\(794\) −14.6543 + 8.88424i −0.520063 + 0.315290i
\(795\) 0 0
\(796\) 8.15340 15.6312i 0.288990 0.554032i
\(797\) 27.2300i 0.964535i −0.876024 0.482267i \(-0.839813\pi\)
0.876024 0.482267i \(-0.160187\pi\)
\(798\) 0 0
\(799\) 7.66056 0.271011
\(800\) 8.53290 19.2849i 0.301683 0.681823i
\(801\) 0 0
\(802\) −22.2518 36.7039i −0.785739 1.29606i
\(803\) 61.7707i 2.17984i
\(804\) 0 0
\(805\) 14.8670i 0.523991i
\(806\) −10.0441 + 6.08929i −0.353790 + 0.214486i
\(807\) 0 0
\(808\) 2.75865 + 42.8993i 0.0970488 + 1.50919i
\(809\) −12.6939 −0.446294 −0.223147 0.974785i \(-0.571633\pi\)
−0.223147 + 0.974785i \(0.571633\pi\)
\(810\) 0 0
\(811\) 30.6006i 1.07453i 0.843412 + 0.537267i \(0.180543\pi\)
−0.843412 + 0.537267i \(0.819457\pi\)
\(812\) −3.49510 1.82309i −0.122654 0.0639779i
\(813\) 0 0
\(814\) −33.8970 55.9123i −1.18809 1.95973i
\(815\) 21.8907 0.766799
\(816\) 0 0
\(817\) −1.59582 −0.0558307
\(818\) 17.0837 + 28.1792i 0.597319 + 0.985264i
\(819\) 0 0
\(820\) 9.45584 + 4.93228i 0.330212 + 0.172243i
\(821\) 34.8617i 1.21668i 0.793676 + 0.608340i \(0.208164\pi\)
−0.793676 + 0.608340i \(0.791836\pi\)
\(822\) 0 0
\(823\) −25.7292 −0.896865 −0.448433 0.893817i \(-0.648018\pi\)
−0.448433 + 0.893817i \(0.648018\pi\)
\(824\) 41.3015 2.65590i 1.43881 0.0925228i
\(825\) 0 0
\(826\) −23.3211 + 14.1385i −0.811445 + 0.491941i
\(827\) 31.5024i 1.09545i 0.836659 + 0.547723i \(0.184505\pi\)
−0.836659 + 0.547723i \(0.815495\pi\)
\(828\) 0 0
\(829\) 24.2760i 0.843142i 0.906795 + 0.421571i \(0.138521\pi\)
−0.906795 + 0.421571i \(0.861479\pi\)
\(830\) 7.73055 + 12.7514i 0.268331 + 0.442606i
\(831\) 0 0
\(832\) −3.17524 24.5868i −0.110082 0.852393i
\(833\) 3.94606 0.136723
\(834\) 0 0
\(835\) 13.3935i 0.463502i
\(836\) 4.87644 9.34878i 0.168655 0.323334i
\(837\) 0 0
\(838\) 10.2904 6.23858i 0.355476 0.215508i
\(839\) −34.6299 −1.19556 −0.597778 0.801662i \(-0.703950\pi\)
−0.597778 + 0.801662i \(0.703950\pi\)
\(840\) 0 0
\(841\) 27.7279 0.956135
\(842\) −37.8751 + 22.9619i −1.30526 + 0.791319i
\(843\) 0 0
\(844\) 15.3892 + 8.02718i 0.529717 + 0.276307i
\(845\) 3.83138i 0.131803i
\(846\) 0 0
\(847\) −25.4081 −0.873033
\(848\) 12.8248 8.94860i 0.440404 0.307296i
\(849\) 0 0
\(850\) −2.73316 4.50828i −0.0937466 0.154633i
\(851\) 69.0071i 2.36553i
\(852\) 0 0
\(853\) 24.3542i 0.833872i 0.908936 + 0.416936i \(0.136896\pi\)
−0.908936 + 0.416936i \(0.863104\pi\)
\(854\) 2.38359 1.44506i 0.0815648 0.0494489i
\(855\) 0 0
\(856\) 0.559522 + 8.70104i 0.0191241 + 0.297395i
\(857\) −1.86002 −0.0635371 −0.0317686 0.999495i \(-0.510114\pi\)
−0.0317686 + 0.999495i \(0.510114\pi\)
\(858\) 0 0
\(859\) 20.8140i 0.710166i −0.934835 0.355083i \(-0.884453\pi\)
0.934835 0.355083i \(-0.115547\pi\)
\(860\) 1.59582 3.05940i 0.0544170 0.104325i
\(861\) 0 0
\(862\) −14.1305 23.3079i −0.481285 0.793869i
\(863\) 31.1302 1.05968 0.529842 0.848096i \(-0.322251\pi\)
0.529842 + 0.848096i \(0.322251\pi\)
\(864\) 0 0
\(865\) 20.3237 0.691028
\(866\) 16.0828 + 26.5282i 0.546515 + 0.901464i
\(867\) 0 0
\(868\) 4.33228 8.30555i 0.147047 0.281909i
\(869\) 19.9733i 0.677549i
\(870\) 0 0
\(871\) −8.88233 −0.300966
\(872\) −3.19493 49.6838i −0.108194 1.68251i
\(873\) 0 0
\(874\) 9.51606 5.76914i 0.321886 0.195144i
\(875\) 17.2028i 0.581559i
\(876\) 0 0
\(877\) 0.991052i 0.0334654i 0.999860 + 0.0167327i \(0.00532644\pi\)
−0.999860 + 0.0167327i \(0.994674\pi\)
\(878\) −3.98368 6.57099i −0.134443 0.221760i
\(879\) 0 0
\(880\) 13.0464 + 18.6976i 0.439794 + 0.630294i
\(881\) −19.3087 −0.650527 −0.325263 0.945623i \(-0.605453\pi\)
−0.325263 + 0.945623i \(0.605453\pi\)
\(882\) 0 0
\(883\) 23.9889i 0.807290i −0.914916 0.403645i \(-0.867743\pi\)
0.914916 0.403645i \(-0.132257\pi\)
\(884\) −5.49510 2.86631i −0.184820 0.0964046i
\(885\) 0 0
\(886\) 6.11973 3.71010i 0.205596 0.124643i
\(887\) −2.58473 −0.0867866 −0.0433933 0.999058i \(-0.513817\pi\)
−0.0433933 + 0.999058i \(0.513817\pi\)
\(888\) 0 0
\(889\) 25.7378 0.863219
\(890\) 24.9157 15.1052i 0.835176 0.506328i
\(891\) 0 0
\(892\) 4.00716 7.68226i 0.134170 0.257221i
\(893\) 7.99168i 0.267431i
\(894\) 0 0
\(895\) −17.8921 −0.598068
\(896\) 12.3309 + 15.4549i 0.411947 + 0.516311i
\(897\) 0 0
\(898\) 11.6318 + 19.1863i 0.388157 + 0.640257i
\(899\) 3.02289i 0.100819i
\(900\) 0 0
\(901\) 3.90954i 0.130246i
\(902\) 28.8947 17.5175i 0.962090 0.583270i
\(903\) 0 0
\(904\) 15.5105 0.997403i 0.515870 0.0331731i
\(905\) −12.4808 −0.414876
\(906\) 0 0
\(907\) 42.7770i 1.42039i −0.704006 0.710194i \(-0.748607\pi\)
0.704006 0.710194i \(-0.251393\pi\)
\(908\) −45.4650 23.7151i −1.50881 0.787014i
\(909\) 0 0
\(910\) −4.47805 7.38644i −0.148446 0.244858i
\(911\) 42.6128 1.41183 0.705913 0.708299i \(-0.250537\pi\)
0.705913 + 0.708299i \(0.250537\pi\)
\(912\) 0 0
\(913\) 47.2453 1.56359
\(914\) −7.42485 12.2471i −0.245592 0.405099i
\(915\) 0 0
\(916\) 4.37017 + 2.27953i 0.144394 + 0.0753179i
\(917\) 18.3520i 0.606036i
\(918\) 0 0
\(919\) 4.78549 0.157859 0.0789294 0.996880i \(-0.474850\pi\)
0.0789294 + 0.996880i \(0.474850\pi\)
\(920\) 1.54414 + 24.0127i 0.0509088 + 0.791675i
\(921\) 0 0
\(922\) 27.3604 16.5873i 0.901066 0.546274i
\(923\) 9.35744i 0.308004i
\(924\) 0 0
\(925\) 34.1056i 1.12139i
\(926\) −5.26492 8.68436i −0.173016 0.285386i
\(927\) 0 0
\(928\) 5.83455 + 2.58159i 0.191528 + 0.0847448i
\(929\) −27.2819 −0.895088 −0.447544 0.894262i \(-0.647701\pi\)
−0.447544 + 0.894262i \(0.647701\pi\)
\(930\) 0 0
\(931\) 4.11663i 0.134917i
\(932\) −2.47122 + 4.73766i −0.0809476 + 0.155187i
\(933\) 0 0
\(934\) −46.2054 + 28.0121i −1.51189 + 0.916585i
\(935\) 5.69982 0.186404
\(936\) 0 0
\(937\) 0.0837798 0.00273697 0.00136848 0.999999i \(-0.499564\pi\)
0.00136848 + 0.999999i \(0.499564\pi\)
\(938\) 6.05757 3.67242i 0.197787 0.119909i
\(939\) 0 0
\(940\) −15.3211 7.99168i −0.499720 0.260660i
\(941\) 22.3002i 0.726967i −0.931601 0.363483i \(-0.881587\pi\)
0.931601 0.363483i \(-0.118413\pi\)
\(942\) 0 0
\(943\) 35.6619 1.16131
\(944\) 36.1991 25.2583i 1.17818 0.822088i
\(945\) 0 0
\(946\) −5.66772 9.34878i −0.184274 0.303955i
\(947\) 18.5335i 0.602257i 0.953584 + 0.301128i \(0.0973633\pi\)
−0.953584 + 0.301128i \(0.902637\pi\)
\(948\) 0 0
\(949\) 37.8775i 1.22956i
\(950\) 4.70315 2.85130i 0.152590 0.0925084i
\(951\) 0 0
\(952\) 4.93264 0.317194i 0.159868 0.0102803i
\(953\) 20.9782 0.679549 0.339775 0.940507i \(-0.389649\pi\)
0.339775 + 0.940507i \(0.389649\pi\)
\(954\) 0 0
\(955\) 16.1206i 0.521650i
\(956\) −2.67624 + 5.13071i −0.0865558 + 0.165939i
\(957\) 0 0
\(958\) −0.0997319 0.164505i −0.00322219 0.00531493i
\(959\) −9.29039 −0.300002
\(960\) 0 0
\(961\) −23.8166 −0.768277
\(962\) −20.7855 34.2852i −0.670151 1.10540i
\(963\) 0 0
\(964\) −12.7884 + 24.5171i −0.411888 + 0.789644i
\(965\) 24.0776i 0.775086i
\(966\) 0 0
\(967\) 7.73192 0.248642 0.124321 0.992242i \(-0.460325\pi\)
0.124321 + 0.992242i \(0.460325\pi\)
\(968\) 41.0385 2.63899i 1.31903 0.0848202i
\(969\) 0 0
\(970\) −1.55130 + 0.940482i −0.0498094 + 0.0301971i
\(971\) 17.2155i 0.552471i −0.961090 0.276235i \(-0.910913\pi\)
0.961090 0.276235i \(-0.0890869\pi\)
\(972\) 0 0
\(973\) 4.13343i 0.132512i
\(974\) −28.2643 46.6213i −0.905646 1.49384i
\(975\) 0 0
\(976\) −3.69982 + 2.58159i −0.118428 + 0.0826346i
\(977\) −25.7377 −0.823422 −0.411711 0.911314i \(-0.635069\pi\)
−0.411711 + 0.911314i \(0.635069\pi\)
\(978\) 0 0
\(979\) 92.3157i 2.95042i
\(980\) −7.89212 4.11663i −0.252105 0.131501i
\(981\) 0 0
\(982\) 22.6010 13.7019i 0.721228 0.437246i
\(983\) −33.9385 −1.08247 −0.541235 0.840872i \(-0.682043\pi\)
−0.541235 + 0.840872i \(0.682043\pi\)
\(984\) 0 0
\(985\) −25.7457 −0.820327
\(986\) 1.36396 0.826905i 0.0434373 0.0263340i
\(987\) 0 0
\(988\) 2.99021 5.73263i 0.0951312 0.182379i
\(989\) 11.5383i 0.366896i
\(990\) 0 0
\(991\) 3.70829 0.117798 0.0588988 0.998264i \(-0.481241\pi\)
0.0588988 + 0.998264i \(0.481241\pi\)
\(992\) −6.13473 + 13.8649i −0.194778 + 0.440210i
\(993\) 0 0
\(994\) 3.86886 + 6.38159i 0.122713 + 0.202412i
\(995\) 9.94203i 0.315184i
\(996\) 0 0
\(997\) 26.8766i 0.851191i 0.904913 + 0.425596i \(0.139935\pi\)
−0.904913 + 0.425596i \(0.860065\pi\)
\(998\) −22.1347 + 13.4192i −0.700662 + 0.424778i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.2.f.c.613.6 8
3.2 odd 2 136.2.c.b.69.3 8
4.3 odd 2 4896.2.f.d.2449.4 8
8.3 odd 2 4896.2.f.d.2449.5 8
8.5 even 2 inner 1224.2.f.c.613.5 8
12.11 even 2 544.2.c.b.273.3 8
24.5 odd 2 136.2.c.b.69.4 yes 8
24.11 even 2 544.2.c.b.273.6 8
48.5 odd 4 4352.2.a.bf.1.6 8
48.11 even 4 4352.2.a.bb.1.3 8
48.29 odd 4 4352.2.a.bf.1.3 8
48.35 even 4 4352.2.a.bb.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.c.b.69.3 8 3.2 odd 2
136.2.c.b.69.4 yes 8 24.5 odd 2
544.2.c.b.273.3 8 12.11 even 2
544.2.c.b.273.6 8 24.11 even 2
1224.2.f.c.613.5 8 8.5 even 2 inner
1224.2.f.c.613.6 8 1.1 even 1 trivial
4352.2.a.bb.1.3 8 48.11 even 4
4352.2.a.bb.1.6 8 48.35 even 4
4352.2.a.bf.1.3 8 48.29 odd 4
4352.2.a.bf.1.6 8 48.5 odd 4
4896.2.f.d.2449.4 8 4.3 odd 2
4896.2.f.d.2449.5 8 8.3 odd 2