Properties

Label 5400.2.a.ch
Level $5400$
Weight $2$
Character orbit 5400.a
Self dual yes
Analytic conductor $43.119$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5400,2,Mod(1,5400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5400.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5400 = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1192170915\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 11x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1080)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{7} + (2 \beta_{2} + \beta_1) q^{11} + ( - \beta_{2} + \beta_1) q^{13} + (\beta_{3} + 2) q^{17} - \beta_{3} q^{19} - \beta_{3} q^{23} + ( - \beta_{2} + \beta_1) q^{29} + 3 q^{31} - 2 \beta_{2} q^{37}+ \cdots + (5 \beta_{2} - 2 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{17} + 2 q^{19} + 2 q^{23} + 12 q^{31} - 12 q^{47} + 18 q^{49} - 8 q^{53} + 26 q^{61} + 26 q^{77} + 10 q^{79} - 32 q^{83} + 56 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 11x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 3\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 11\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{2} + 11\beta_1 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.04547
1.31342
−1.31342
3.04547
0 0 0 0 0 −4.77753 0 0 0
1.2 0 0 0 0 0 −0.418627 0 0 0
1.3 0 0 0 0 0 0.418627 0 0 0
1.4 0 0 0 0 0 4.77753 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5400.2.a.ch 4
3.b odd 2 1 5400.2.a.cg 4
5.b even 2 1 5400.2.a.cg 4
5.c odd 4 2 1080.2.f.g 8
15.d odd 2 1 inner 5400.2.a.ch 4
15.e even 4 2 1080.2.f.g 8
20.e even 4 2 2160.2.f.o 8
60.l odd 4 2 2160.2.f.o 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.f.g 8 5.c odd 4 2
1080.2.f.g 8 15.e even 4 2
2160.2.f.o 8 20.e even 4 2
2160.2.f.o 8 60.l odd 4 2
5400.2.a.cg 4 3.b odd 2 1
5400.2.a.cg 4 5.b even 2 1
5400.2.a.ch 4 1.a even 1 1 trivial
5400.2.a.ch 4 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5400))\):

\( T_{7}^{4} - 23T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{4} - 47T_{11}^{2} + 196 \) Copy content Toggle raw display
\( T_{13}^{4} - 44T_{13}^{2} + 256 \) Copy content Toggle raw display
\( T_{17}^{2} - 3T_{17} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 23T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{4} - 47T^{2} + 196 \) Copy content Toggle raw display
$13$ \( T^{4} - 44T^{2} + 256 \) Copy content Toggle raw display
$17$ \( (T^{2} - 3 T - 12)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - T - 14)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - T - 14)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 44T^{2} + 256 \) Copy content Toggle raw display
$31$ \( (T - 3)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 44T^{2} + 256 \) Copy content Toggle raw display
$41$ \( (T^{2} - 76)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 6 T - 48)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 4 T - 53)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 13 T + 28)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 44T^{2} + 256 \) Copy content Toggle raw display
$71$ \( T^{4} - 44T^{2} + 256 \) Copy content Toggle raw display
$73$ \( T^{4} - 47T^{2} + 196 \) Copy content Toggle raw display
$79$ \( (T^{2} - 5 T - 8)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 16 T + 7)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 467 T^{2} + 53824 \) Copy content Toggle raw display
show more
show less