Defining parameters
Level: | \( N \) | \(=\) | \( 5400 = 2^{3} \cdot 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5400.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 60 \) | ||
Sturm bound: | \(2160\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5400))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1152 | 76 | 1076 |
Cusp forms | 1009 | 76 | 933 |
Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(138\) | \(10\) | \(128\) | \(121\) | \(10\) | \(111\) | \(17\) | \(0\) | \(17\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(147\) | \(10\) | \(137\) | \(129\) | \(10\) | \(119\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(147\) | \(8\) | \(139\) | \(129\) | \(8\) | \(121\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(144\) | \(10\) | \(134\) | \(126\) | \(10\) | \(116\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(150\) | \(11\) | \(139\) | \(132\) | \(11\) | \(121\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(141\) | \(8\) | \(133\) | \(123\) | \(8\) | \(115\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(141\) | \(7\) | \(134\) | \(123\) | \(7\) | \(116\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(144\) | \(12\) | \(132\) | \(126\) | \(12\) | \(114\) | \(18\) | \(0\) | \(18\) | |||
Plus space | \(+\) | \(564\) | \(35\) | \(529\) | \(493\) | \(35\) | \(458\) | \(71\) | \(0\) | \(71\) | |||||
Minus space | \(-\) | \(588\) | \(41\) | \(547\) | \(516\) | \(41\) | \(475\) | \(72\) | \(0\) | \(72\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5400))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5400))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5400)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(270))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(540))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(600))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(675))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(900))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1080))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1350))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1800))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2700))\)\(^{\oplus 2}\)