Properties

Label 8-5400e4-1.1-c1e4-0-4
Degree $8$
Conductor $8.503\times 10^{14}$
Sign $1$
Analytic cond. $3.45687\times 10^{6}$
Root an. cond. $6.56652$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·17-s + 2·19-s + 2·23-s + 12·31-s − 12·47-s − 5·49-s − 8·53-s + 26·61-s + 10·79-s − 32·83-s − 26·107-s + 6·109-s + 56·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 8·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 1.45·17-s + 0.458·19-s + 0.417·23-s + 2.15·31-s − 1.75·47-s − 5/7·49-s − 1.09·53-s + 3.32·61-s + 1.12·79-s − 3.51·83-s − 2.51·107-s + 0.574·109-s + 5.26·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.615·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(3.45687\times 10^{6}\)
Root analytic conductor: \(6.56652\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{12} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.190594769\)
\(L(\frac12)\) \(\approx\) \(7.190594769\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^3$ \( 1 + 5 T^{2} - 24 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^3$ \( 1 - 3 T^{2} - 112 T^{4} - 3 p^{2} T^{6} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 + 8 T^{2} + 126 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 - 3 T + 22 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - T + 24 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 - T + 32 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 + 72 T^{2} + 2750 T^{4} + 72 p^{2} T^{6} + p^{4} T^{8} \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
37$D_4\times C_2$ \( 1 + 104 T^{2} + 5214 T^{4} + 104 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 + 6 T + 46 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 + 4 T + p T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 13 T + 150 T^{2} - 13 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 + 224 T^{2} + 21294 T^{4} + 224 p^{2} T^{6} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 240 T^{2} + 24254 T^{4} + 240 p^{2} T^{6} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 + 245 T^{2} + 25308 T^{4} + 245 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 5 T + 150 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 16 T + 173 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 79 T^{2} + 19680 T^{4} - 79 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.96395781570347091367448424927, −5.41766406762756637080804199645, −5.32789305805261204759040745575, −5.23300747699282763918453313739, −5.07045460396505011138517434898, −4.83054020413357708589665482605, −4.48483382057202042882696680291, −4.45810804702719802146526326840, −4.35278035397212281253843900831, −3.94639786941955030932510199368, −3.76046235336851797048802232346, −3.52921915070968709895232904842, −3.45789911094042828983009957253, −2.94329473706845381631395099830, −2.89325901103071274344096025205, −2.86927544612343173025340892033, −2.79596926315248789199287762356, −2.09326986342926878530499265156, −1.95177755798862582669325360016, −1.78185503762988069872228197376, −1.58032710934954147072065298929, −1.13360164366480695479661551022, −0.861216989420709836613074520323, −0.65048520006419534188770371262, −0.40064481440566365935032534760, 0.40064481440566365935032534760, 0.65048520006419534188770371262, 0.861216989420709836613074520323, 1.13360164366480695479661551022, 1.58032710934954147072065298929, 1.78185503762988069872228197376, 1.95177755798862582669325360016, 2.09326986342926878530499265156, 2.79596926315248789199287762356, 2.86927544612343173025340892033, 2.89325901103071274344096025205, 2.94329473706845381631395099830, 3.45789911094042828983009957253, 3.52921915070968709895232904842, 3.76046235336851797048802232346, 3.94639786941955030932510199368, 4.35278035397212281253843900831, 4.45810804702719802146526326840, 4.48483382057202042882696680291, 4.83054020413357708589665482605, 5.07045460396505011138517434898, 5.23300747699282763918453313739, 5.32789305805261204759040745575, 5.41766406762756637080804199645, 5.96395781570347091367448424927

Graph of the $Z$-function along the critical line