Properties

Label 54.10.a.g.1.2
Level $54$
Weight $10$
Character 54.1
Self dual yes
Analytic conductor $27.812$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,10,Mod(1,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,32,0,512,912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.8119351528\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3329}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 832 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-28.3487\) of defining polynomial
Character \(\chi\) \(=\) 54.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} +256.000 q^{4} +2013.83 q^{5} -4565.16 q^{7} +4096.00 q^{8} +32221.3 q^{10} +69876.3 q^{11} +45612.6 q^{13} -73042.6 q^{14} +65536.0 q^{16} -142743. q^{17} -759286. q^{19} +515541. q^{20} +1.11802e6 q^{22} +1.87376e6 q^{23} +2.10239e6 q^{25} +729802. q^{26} -1.16868e6 q^{28} +797363. q^{29} +8.93141e6 q^{31} +1.04858e6 q^{32} -2.28389e6 q^{34} -9.19347e6 q^{35} +1.97984e7 q^{37} -1.21486e7 q^{38} +8.24866e6 q^{40} -1.92076e7 q^{41} +1.38242e7 q^{43} +1.78883e7 q^{44} +2.99802e7 q^{46} +2.81809e7 q^{47} -1.95129e7 q^{49} +3.36383e7 q^{50} +1.16768e7 q^{52} -6.10387e7 q^{53} +1.40719e8 q^{55} -1.86989e7 q^{56} +1.27578e7 q^{58} -8.17810e7 q^{59} -1.42814e8 q^{61} +1.42903e8 q^{62} +1.67772e7 q^{64} +9.18562e7 q^{65} +1.68812e8 q^{67} -3.65422e7 q^{68} -1.47095e8 q^{70} +1.12191e8 q^{71} -3.08721e8 q^{73} +3.16774e8 q^{74} -1.94377e8 q^{76} -3.18996e8 q^{77} -3.23516e8 q^{79} +1.31979e8 q^{80} -3.07322e8 q^{82} -5.34107e8 q^{83} -2.87461e8 q^{85} +2.21187e8 q^{86} +2.86213e8 q^{88} -7.97823e8 q^{89} -2.08229e8 q^{91} +4.79683e8 q^{92} +4.50894e8 q^{94} -1.52907e9 q^{95} -6.43889e8 q^{97} -3.12207e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{2} + 512 q^{4} + 912 q^{5} + 6448 q^{7} + 8192 q^{8} + 14592 q^{10} + 15126 q^{11} + 28912 q^{13} + 103168 q^{14} + 131072 q^{16} + 399960 q^{17} + 8104 q^{19} + 233472 q^{20} + 242016 q^{22}+ \cdots + 982771008 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) 0 0
\(4\) 256.000 0.500000
\(5\) 2013.83 1.44098 0.720490 0.693465i \(-0.243917\pi\)
0.720490 + 0.693465i \(0.243917\pi\)
\(6\) 0 0
\(7\) −4565.16 −0.718646 −0.359323 0.933213i \(-0.616992\pi\)
−0.359323 + 0.933213i \(0.616992\pi\)
\(8\) 4096.00 0.353553
\(9\) 0 0
\(10\) 32221.3 1.01893
\(11\) 69876.3 1.43901 0.719503 0.694489i \(-0.244370\pi\)
0.719503 + 0.694489i \(0.244370\pi\)
\(12\) 0 0
\(13\) 45612.6 0.442935 0.221468 0.975168i \(-0.428915\pi\)
0.221468 + 0.975168i \(0.428915\pi\)
\(14\) −73042.6 −0.508159
\(15\) 0 0
\(16\) 65536.0 0.250000
\(17\) −142743. −0.414510 −0.207255 0.978287i \(-0.566453\pi\)
−0.207255 + 0.978287i \(0.566453\pi\)
\(18\) 0 0
\(19\) −759286. −1.33664 −0.668319 0.743874i \(-0.732986\pi\)
−0.668319 + 0.743874i \(0.732986\pi\)
\(20\) 515541. 0.720490
\(21\) 0 0
\(22\) 1.11802e6 1.01753
\(23\) 1.87376e6 1.39617 0.698086 0.716013i \(-0.254035\pi\)
0.698086 + 0.716013i \(0.254035\pi\)
\(24\) 0 0
\(25\) 2.10239e6 1.07643
\(26\) 729802. 0.313202
\(27\) 0 0
\(28\) −1.16868e6 −0.359323
\(29\) 797363. 0.209346 0.104673 0.994507i \(-0.466620\pi\)
0.104673 + 0.994507i \(0.466620\pi\)
\(30\) 0 0
\(31\) 8.93141e6 1.73697 0.868485 0.495715i \(-0.165094\pi\)
0.868485 + 0.495715i \(0.165094\pi\)
\(32\) 1.04858e6 0.176777
\(33\) 0 0
\(34\) −2.28389e6 −0.293103
\(35\) −9.19347e6 −1.03555
\(36\) 0 0
\(37\) 1.97984e7 1.73669 0.868345 0.495960i \(-0.165184\pi\)
0.868345 + 0.495960i \(0.165184\pi\)
\(38\) −1.21486e7 −0.945146
\(39\) 0 0
\(40\) 8.24866e6 0.509464
\(41\) −1.92076e7 −1.06156 −0.530782 0.847508i \(-0.678102\pi\)
−0.530782 + 0.847508i \(0.678102\pi\)
\(42\) 0 0
\(43\) 1.38242e7 0.616639 0.308320 0.951283i \(-0.400233\pi\)
0.308320 + 0.951283i \(0.400233\pi\)
\(44\) 1.78883e7 0.719503
\(45\) 0 0
\(46\) 2.99802e7 0.987243
\(47\) 2.81809e7 0.842393 0.421196 0.906969i \(-0.361610\pi\)
0.421196 + 0.906969i \(0.361610\pi\)
\(48\) 0 0
\(49\) −1.95129e7 −0.483548
\(50\) 3.36383e7 0.761148
\(51\) 0 0
\(52\) 1.16768e7 0.221468
\(53\) −6.10387e7 −1.06259 −0.531293 0.847188i \(-0.678293\pi\)
−0.531293 + 0.847188i \(0.678293\pi\)
\(54\) 0 0
\(55\) 1.40719e8 2.07358
\(56\) −1.86989e7 −0.254080
\(57\) 0 0
\(58\) 1.27578e7 0.148030
\(59\) −8.17810e7 −0.878654 −0.439327 0.898327i \(-0.644783\pi\)
−0.439327 + 0.898327i \(0.644783\pi\)
\(60\) 0 0
\(61\) −1.42814e8 −1.32064 −0.660322 0.750983i \(-0.729580\pi\)
−0.660322 + 0.750983i \(0.729580\pi\)
\(62\) 1.42903e8 1.22822
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) 9.18562e7 0.638261
\(66\) 0 0
\(67\) 1.68812e8 1.02345 0.511726 0.859149i \(-0.329006\pi\)
0.511726 + 0.859149i \(0.329006\pi\)
\(68\) −3.65422e7 −0.207255
\(69\) 0 0
\(70\) −1.47095e8 −0.732248
\(71\) 1.12191e8 0.523958 0.261979 0.965074i \(-0.415625\pi\)
0.261979 + 0.965074i \(0.415625\pi\)
\(72\) 0 0
\(73\) −3.08721e8 −1.27237 −0.636185 0.771536i \(-0.719489\pi\)
−0.636185 + 0.771536i \(0.719489\pi\)
\(74\) 3.16774e8 1.22803
\(75\) 0 0
\(76\) −1.94377e8 −0.668319
\(77\) −3.18996e8 −1.03414
\(78\) 0 0
\(79\) −3.23516e8 −0.934488 −0.467244 0.884128i \(-0.654753\pi\)
−0.467244 + 0.884128i \(0.654753\pi\)
\(80\) 1.31979e8 0.360245
\(81\) 0 0
\(82\) −3.07322e8 −0.750639
\(83\) −5.34107e8 −1.23531 −0.617657 0.786448i \(-0.711918\pi\)
−0.617657 + 0.786448i \(0.711918\pi\)
\(84\) 0 0
\(85\) −2.87461e8 −0.597301
\(86\) 2.21187e8 0.436030
\(87\) 0 0
\(88\) 2.86213e8 0.508766
\(89\) −7.97823e8 −1.34788 −0.673941 0.738785i \(-0.735400\pi\)
−0.673941 + 0.738785i \(0.735400\pi\)
\(90\) 0 0
\(91\) −2.08229e8 −0.318313
\(92\) 4.79683e8 0.698086
\(93\) 0 0
\(94\) 4.50894e8 0.595662
\(95\) −1.52907e9 −1.92607
\(96\) 0 0
\(97\) −6.43889e8 −0.738479 −0.369239 0.929334i \(-0.620382\pi\)
−0.369239 + 0.929334i \(0.620382\pi\)
\(98\) −3.12207e8 −0.341920
\(99\) 0 0
\(100\) 5.38213e8 0.538213
\(101\) 1.38053e9 1.32008 0.660038 0.751233i \(-0.270540\pi\)
0.660038 + 0.751233i \(0.270540\pi\)
\(102\) 0 0
\(103\) −1.66315e9 −1.45601 −0.728003 0.685574i \(-0.759552\pi\)
−0.728003 + 0.685574i \(0.759552\pi\)
\(104\) 1.86829e8 0.156601
\(105\) 0 0
\(106\) −9.76619e8 −0.751361
\(107\) 1.55743e9 1.14864 0.574318 0.818632i \(-0.305267\pi\)
0.574318 + 0.818632i \(0.305267\pi\)
\(108\) 0 0
\(109\) 1.76222e9 1.19575 0.597877 0.801588i \(-0.296011\pi\)
0.597877 + 0.801588i \(0.296011\pi\)
\(110\) 2.25151e9 1.46624
\(111\) 0 0
\(112\) −2.99182e8 −0.179661
\(113\) −1.82996e9 −1.05581 −0.527907 0.849302i \(-0.677023\pi\)
−0.527907 + 0.849302i \(0.677023\pi\)
\(114\) 0 0
\(115\) 3.77344e9 2.01186
\(116\) 2.04125e8 0.104673
\(117\) 0 0
\(118\) −1.30850e9 −0.621303
\(119\) 6.51645e8 0.297886
\(120\) 0 0
\(121\) 2.52475e9 1.07074
\(122\) −2.28502e9 −0.933836
\(123\) 0 0
\(124\) 2.28644e9 0.868485
\(125\) 3.00605e8 0.110129
\(126\) 0 0
\(127\) −1.41081e9 −0.481228 −0.240614 0.970621i \(-0.577349\pi\)
−0.240614 + 0.970621i \(0.577349\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) 0 0
\(130\) 1.46970e9 0.451319
\(131\) −2.87804e9 −0.853840 −0.426920 0.904289i \(-0.640401\pi\)
−0.426920 + 0.904289i \(0.640401\pi\)
\(132\) 0 0
\(133\) 3.46626e9 0.960570
\(134\) 2.70100e9 0.723689
\(135\) 0 0
\(136\) −5.84676e8 −0.146551
\(137\) 4.00471e9 0.971244 0.485622 0.874169i \(-0.338593\pi\)
0.485622 + 0.874169i \(0.338593\pi\)
\(138\) 0 0
\(139\) 1.85726e9 0.421994 0.210997 0.977487i \(-0.432329\pi\)
0.210997 + 0.977487i \(0.432329\pi\)
\(140\) −2.35353e9 −0.517777
\(141\) 0 0
\(142\) 1.79506e9 0.370494
\(143\) 3.18724e9 0.637387
\(144\) 0 0
\(145\) 1.60576e9 0.301664
\(146\) −4.93954e9 −0.899702
\(147\) 0 0
\(148\) 5.06839e9 0.868345
\(149\) −6.94388e9 −1.15415 −0.577077 0.816689i \(-0.695807\pi\)
−0.577077 + 0.816689i \(0.695807\pi\)
\(150\) 0 0
\(151\) −5.03872e9 −0.788722 −0.394361 0.918956i \(-0.629034\pi\)
−0.394361 + 0.918956i \(0.629034\pi\)
\(152\) −3.11003e9 −0.472573
\(153\) 0 0
\(154\) −5.10394e9 −0.731245
\(155\) 1.79864e10 2.50294
\(156\) 0 0
\(157\) −4.86249e9 −0.638720 −0.319360 0.947634i \(-0.603468\pi\)
−0.319360 + 0.947634i \(0.603468\pi\)
\(158\) −5.17625e9 −0.660783
\(159\) 0 0
\(160\) 2.11166e9 0.254732
\(161\) −8.55403e9 −1.00335
\(162\) 0 0
\(163\) −5.20600e9 −0.577644 −0.288822 0.957383i \(-0.593264\pi\)
−0.288822 + 0.957383i \(0.593264\pi\)
\(164\) −4.91715e9 −0.530782
\(165\) 0 0
\(166\) −8.54572e9 −0.873499
\(167\) −1.04752e10 −1.04217 −0.521083 0.853506i \(-0.674472\pi\)
−0.521083 + 0.853506i \(0.674472\pi\)
\(168\) 0 0
\(169\) −8.52399e9 −0.803808
\(170\) −4.59937e9 −0.422355
\(171\) 0 0
\(172\) 3.53899e9 0.308320
\(173\) 5.71766e9 0.485300 0.242650 0.970114i \(-0.421983\pi\)
0.242650 + 0.970114i \(0.421983\pi\)
\(174\) 0 0
\(175\) −9.59777e9 −0.773569
\(176\) 4.57941e9 0.359752
\(177\) 0 0
\(178\) −1.27652e10 −0.953096
\(179\) 1.76705e10 1.28650 0.643249 0.765657i \(-0.277586\pi\)
0.643249 + 0.765657i \(0.277586\pi\)
\(180\) 0 0
\(181\) 2.45903e10 1.70298 0.851492 0.524368i \(-0.175698\pi\)
0.851492 + 0.524368i \(0.175698\pi\)
\(182\) −3.33166e9 −0.225082
\(183\) 0 0
\(184\) 7.67493e9 0.493622
\(185\) 3.98707e10 2.50254
\(186\) 0 0
\(187\) −9.97436e9 −0.596482
\(188\) 7.21431e9 0.421196
\(189\) 0 0
\(190\) −2.44652e10 −1.36194
\(191\) −2.46350e9 −0.133938 −0.0669688 0.997755i \(-0.521333\pi\)
−0.0669688 + 0.997755i \(0.521333\pi\)
\(192\) 0 0
\(193\) −3.39182e10 −1.75964 −0.879821 0.475305i \(-0.842338\pi\)
−0.879821 + 0.475305i \(0.842338\pi\)
\(194\) −1.03022e10 −0.522183
\(195\) 0 0
\(196\) −4.99531e9 −0.241774
\(197\) −4.87423e9 −0.230573 −0.115286 0.993332i \(-0.536779\pi\)
−0.115286 + 0.993332i \(0.536779\pi\)
\(198\) 0 0
\(199\) 3.53697e10 1.59879 0.799397 0.600804i \(-0.205153\pi\)
0.799397 + 0.600804i \(0.205153\pi\)
\(200\) 8.61141e9 0.380574
\(201\) 0 0
\(202\) 2.20884e10 0.933434
\(203\) −3.64009e9 −0.150446
\(204\) 0 0
\(205\) −3.86809e10 −1.52969
\(206\) −2.66104e10 −1.02955
\(207\) 0 0
\(208\) 2.98927e9 0.110734
\(209\) −5.30561e10 −1.92343
\(210\) 0 0
\(211\) 2.03928e9 0.0708282 0.0354141 0.999373i \(-0.488725\pi\)
0.0354141 + 0.999373i \(0.488725\pi\)
\(212\) −1.56259e10 −0.531293
\(213\) 0 0
\(214\) 2.49189e10 0.812208
\(215\) 2.78396e10 0.888565
\(216\) 0 0
\(217\) −4.07733e10 −1.24827
\(218\) 2.81956e10 0.845526
\(219\) 0 0
\(220\) 3.60241e10 1.03679
\(221\) −6.51089e9 −0.183601
\(222\) 0 0
\(223\) 6.34352e10 1.71774 0.858872 0.512190i \(-0.171166\pi\)
0.858872 + 0.512190i \(0.171166\pi\)
\(224\) −4.78692e9 −0.127040
\(225\) 0 0
\(226\) −2.92793e10 −0.746573
\(227\) −3.11707e10 −0.779168 −0.389584 0.920991i \(-0.627381\pi\)
−0.389584 + 0.920991i \(0.627381\pi\)
\(228\) 0 0
\(229\) 6.25058e10 1.50197 0.750983 0.660321i \(-0.229580\pi\)
0.750983 + 0.660321i \(0.229580\pi\)
\(230\) 6.03751e10 1.42260
\(231\) 0 0
\(232\) 3.26600e9 0.0740150
\(233\) −6.62666e10 −1.47297 −0.736483 0.676456i \(-0.763515\pi\)
−0.736483 + 0.676456i \(0.763515\pi\)
\(234\) 0 0
\(235\) 5.67516e10 1.21387
\(236\) −2.09359e10 −0.439327
\(237\) 0 0
\(238\) 1.04263e10 0.210637
\(239\) 4.18958e10 0.830578 0.415289 0.909690i \(-0.363680\pi\)
0.415289 + 0.909690i \(0.363680\pi\)
\(240\) 0 0
\(241\) 4.82826e10 0.921963 0.460982 0.887410i \(-0.347497\pi\)
0.460982 + 0.887410i \(0.347497\pi\)
\(242\) 4.03960e10 0.757127
\(243\) 0 0
\(244\) −3.65603e10 −0.660322
\(245\) −3.92957e10 −0.696784
\(246\) 0 0
\(247\) −3.46330e10 −0.592044
\(248\) 3.65831e10 0.614112
\(249\) 0 0
\(250\) 4.80967e9 0.0778727
\(251\) 3.68932e10 0.586699 0.293349 0.956005i \(-0.405230\pi\)
0.293349 + 0.956005i \(0.405230\pi\)
\(252\) 0 0
\(253\) 1.30932e11 2.00910
\(254\) −2.25729e10 −0.340279
\(255\) 0 0
\(256\) 4.29497e9 0.0625000
\(257\) 2.08061e10 0.297503 0.148751 0.988875i \(-0.452475\pi\)
0.148751 + 0.988875i \(0.452475\pi\)
\(258\) 0 0
\(259\) −9.03829e10 −1.24807
\(260\) 2.35152e10 0.319131
\(261\) 0 0
\(262\) −4.60487e10 −0.603756
\(263\) −7.53338e10 −0.970933 −0.485467 0.874255i \(-0.661350\pi\)
−0.485467 + 0.874255i \(0.661350\pi\)
\(264\) 0 0
\(265\) −1.22922e11 −1.53116
\(266\) 5.54602e10 0.679225
\(267\) 0 0
\(268\) 4.32159e10 0.511726
\(269\) −1.50056e11 −1.74730 −0.873650 0.486554i \(-0.838254\pi\)
−0.873650 + 0.486554i \(0.838254\pi\)
\(270\) 0 0
\(271\) −1.87348e10 −0.211003 −0.105501 0.994419i \(-0.533645\pi\)
−0.105501 + 0.994419i \(0.533645\pi\)
\(272\) −9.35481e9 −0.103627
\(273\) 0 0
\(274\) 6.40753e10 0.686773
\(275\) 1.46908e11 1.54898
\(276\) 0 0
\(277\) 1.32857e11 1.35589 0.677945 0.735113i \(-0.262871\pi\)
0.677945 + 0.735113i \(0.262871\pi\)
\(278\) 2.97162e10 0.298395
\(279\) 0 0
\(280\) −3.76564e10 −0.366124
\(281\) −5.17745e7 −0.000495379 0 −0.000247689 1.00000i \(-0.500079\pi\)
−0.000247689 1.00000i \(0.500079\pi\)
\(282\) 0 0
\(283\) −1.22551e11 −1.13574 −0.567870 0.823118i \(-0.692233\pi\)
−0.567870 + 0.823118i \(0.692233\pi\)
\(284\) 2.87210e10 0.261979
\(285\) 0 0
\(286\) 5.09959e10 0.450700
\(287\) 8.76859e10 0.762889
\(288\) 0 0
\(289\) −9.82123e10 −0.828182
\(290\) 2.56921e10 0.213309
\(291\) 0 0
\(292\) −7.90326e10 −0.636185
\(293\) −3.96138e10 −0.314009 −0.157005 0.987598i \(-0.550184\pi\)
−0.157005 + 0.987598i \(0.550184\pi\)
\(294\) 0 0
\(295\) −1.64693e11 −1.26612
\(296\) 8.10943e10 0.614013
\(297\) 0 0
\(298\) −1.11102e11 −0.816111
\(299\) 8.54672e10 0.618414
\(300\) 0 0
\(301\) −6.31096e10 −0.443145
\(302\) −8.06195e10 −0.557711
\(303\) 0 0
\(304\) −4.97606e10 −0.334160
\(305\) −2.87603e11 −1.90302
\(306\) 0 0
\(307\) −3.98499e10 −0.256038 −0.128019 0.991772i \(-0.540862\pi\)
−0.128019 + 0.991772i \(0.540862\pi\)
\(308\) −8.16631e10 −0.517068
\(309\) 0 0
\(310\) 2.87782e11 1.76985
\(311\) −4.38217e10 −0.265624 −0.132812 0.991141i \(-0.542401\pi\)
−0.132812 + 0.991141i \(0.542401\pi\)
\(312\) 0 0
\(313\) −9.44827e10 −0.556420 −0.278210 0.960520i \(-0.589741\pi\)
−0.278210 + 0.960520i \(0.589741\pi\)
\(314\) −7.77998e10 −0.451643
\(315\) 0 0
\(316\) −8.28201e10 −0.467244
\(317\) −1.93959e11 −1.07881 −0.539404 0.842047i \(-0.681350\pi\)
−0.539404 + 0.842047i \(0.681350\pi\)
\(318\) 0 0
\(319\) 5.57168e10 0.301250
\(320\) 3.37865e10 0.180123
\(321\) 0 0
\(322\) −1.36864e11 −0.709478
\(323\) 1.08383e11 0.554050
\(324\) 0 0
\(325\) 9.58958e10 0.476787
\(326\) −8.32960e10 −0.408456
\(327\) 0 0
\(328\) −7.86744e10 −0.375320
\(329\) −1.28650e11 −0.605382
\(330\) 0 0
\(331\) 5.99617e10 0.274567 0.137283 0.990532i \(-0.456163\pi\)
0.137283 + 0.990532i \(0.456163\pi\)
\(332\) −1.36732e11 −0.617657
\(333\) 0 0
\(334\) −1.67603e11 −0.736923
\(335\) 3.39959e11 1.47477
\(336\) 0 0
\(337\) −1.03965e11 −0.439091 −0.219545 0.975602i \(-0.570457\pi\)
−0.219545 + 0.975602i \(0.570457\pi\)
\(338\) −1.36384e11 −0.568378
\(339\) 0 0
\(340\) −7.35899e10 −0.298650
\(341\) 6.24094e11 2.49951
\(342\) 0 0
\(343\) 2.73300e11 1.06615
\(344\) 5.66238e10 0.218015
\(345\) 0 0
\(346\) 9.14825e10 0.343159
\(347\) 9.56959e10 0.354332 0.177166 0.984181i \(-0.443307\pi\)
0.177166 + 0.984181i \(0.443307\pi\)
\(348\) 0 0
\(349\) 3.20886e10 0.115781 0.0578903 0.998323i \(-0.481563\pi\)
0.0578903 + 0.998323i \(0.481563\pi\)
\(350\) −1.53564e11 −0.546996
\(351\) 0 0
\(352\) 7.32706e10 0.254383
\(353\) 2.21363e11 0.758784 0.379392 0.925236i \(-0.376133\pi\)
0.379392 + 0.925236i \(0.376133\pi\)
\(354\) 0 0
\(355\) 2.25934e11 0.755014
\(356\) −2.04243e11 −0.673941
\(357\) 0 0
\(358\) 2.82727e11 0.909692
\(359\) 2.52052e11 0.800874 0.400437 0.916324i \(-0.368858\pi\)
0.400437 + 0.916324i \(0.368858\pi\)
\(360\) 0 0
\(361\) 2.53827e11 0.786603
\(362\) 3.93445e11 1.20419
\(363\) 0 0
\(364\) −5.33066e10 −0.159157
\(365\) −6.21713e11 −1.83346
\(366\) 0 0
\(367\) 7.22547e10 0.207907 0.103953 0.994582i \(-0.466851\pi\)
0.103953 + 0.994582i \(0.466851\pi\)
\(368\) 1.22799e11 0.349043
\(369\) 0 0
\(370\) 6.37931e11 1.76956
\(371\) 2.78651e11 0.763622
\(372\) 0 0
\(373\) 4.78354e10 0.127956 0.0639778 0.997951i \(-0.479621\pi\)
0.0639778 + 0.997951i \(0.479621\pi\)
\(374\) −1.59590e11 −0.421777
\(375\) 0 0
\(376\) 1.15429e11 0.297831
\(377\) 3.63698e10 0.0927268
\(378\) 0 0
\(379\) 5.03865e11 1.25440 0.627202 0.778857i \(-0.284200\pi\)
0.627202 + 0.778857i \(0.284200\pi\)
\(380\) −3.91443e11 −0.963036
\(381\) 0 0
\(382\) −3.94160e10 −0.0947082
\(383\) 5.78875e11 1.37464 0.687322 0.726353i \(-0.258786\pi\)
0.687322 + 0.726353i \(0.258786\pi\)
\(384\) 0 0
\(385\) −6.42405e11 −1.49017
\(386\) −5.42691e11 −1.24426
\(387\) 0 0
\(388\) −1.64835e11 −0.369239
\(389\) −4.81979e11 −1.06722 −0.533611 0.845730i \(-0.679165\pi\)
−0.533611 + 0.845730i \(0.679165\pi\)
\(390\) 0 0
\(391\) −2.67467e11 −0.578727
\(392\) −7.99249e10 −0.170960
\(393\) 0 0
\(394\) −7.79876e10 −0.163039
\(395\) −6.51507e11 −1.34658
\(396\) 0 0
\(397\) 5.02870e10 0.101601 0.0508006 0.998709i \(-0.483823\pi\)
0.0508006 + 0.998709i \(0.483823\pi\)
\(398\) 5.65915e11 1.13052
\(399\) 0 0
\(400\) 1.37783e11 0.269107
\(401\) −6.10395e11 −1.17886 −0.589429 0.807821i \(-0.700647\pi\)
−0.589429 + 0.807821i \(0.700647\pi\)
\(402\) 0 0
\(403\) 4.07385e11 0.769365
\(404\) 3.53415e11 0.660038
\(405\) 0 0
\(406\) −5.82414e10 −0.106381
\(407\) 1.38344e12 2.49911
\(408\) 0 0
\(409\) 7.45349e11 1.31706 0.658529 0.752556i \(-0.271179\pi\)
0.658529 + 0.752556i \(0.271179\pi\)
\(410\) −6.18895e11 −1.08166
\(411\) 0 0
\(412\) −4.25766e11 −0.728003
\(413\) 3.73343e11 0.631441
\(414\) 0 0
\(415\) −1.07560e12 −1.78006
\(416\) 4.78283e10 0.0783006
\(417\) 0 0
\(418\) −8.48897e11 −1.36007
\(419\) −2.96284e10 −0.0469619 −0.0234809 0.999724i \(-0.507475\pi\)
−0.0234809 + 0.999724i \(0.507475\pi\)
\(420\) 0 0
\(421\) 5.40091e11 0.837910 0.418955 0.908007i \(-0.362396\pi\)
0.418955 + 0.908007i \(0.362396\pi\)
\(422\) 3.26285e10 0.0500831
\(423\) 0 0
\(424\) −2.50014e11 −0.375681
\(425\) −3.00102e11 −0.446189
\(426\) 0 0
\(427\) 6.51967e11 0.949075
\(428\) 3.98703e11 0.574318
\(429\) 0 0
\(430\) 4.45433e11 0.628310
\(431\) −5.69766e11 −0.795333 −0.397666 0.917530i \(-0.630180\pi\)
−0.397666 + 0.917530i \(0.630180\pi\)
\(432\) 0 0
\(433\) −1.15909e12 −1.58460 −0.792301 0.610131i \(-0.791117\pi\)
−0.792301 + 0.610131i \(0.791117\pi\)
\(434\) −6.52373e11 −0.882658
\(435\) 0 0
\(436\) 4.51129e11 0.597877
\(437\) −1.42272e12 −1.86618
\(438\) 0 0
\(439\) 8.78535e10 0.112893 0.0564467 0.998406i \(-0.482023\pi\)
0.0564467 + 0.998406i \(0.482023\pi\)
\(440\) 5.76385e11 0.733122
\(441\) 0 0
\(442\) −1.04174e11 −0.129826
\(443\) 1.97723e10 0.0243916 0.0121958 0.999926i \(-0.496118\pi\)
0.0121958 + 0.999926i \(0.496118\pi\)
\(444\) 0 0
\(445\) −1.60668e12 −1.94227
\(446\) 1.01496e12 1.21463
\(447\) 0 0
\(448\) −7.65907e10 −0.0898307
\(449\) −4.74948e11 −0.551490 −0.275745 0.961231i \(-0.588925\pi\)
−0.275745 + 0.961231i \(0.588925\pi\)
\(450\) 0 0
\(451\) −1.34216e12 −1.52760
\(452\) −4.68469e11 −0.527907
\(453\) 0 0
\(454\) −4.98732e11 −0.550955
\(455\) −4.19338e11 −0.458684
\(456\) 0 0
\(457\) 8.27814e11 0.887789 0.443895 0.896079i \(-0.353596\pi\)
0.443895 + 0.896079i \(0.353596\pi\)
\(458\) 1.00009e12 1.06205
\(459\) 0 0
\(460\) 9.66001e11 1.00593
\(461\) 4.26042e11 0.439337 0.219669 0.975575i \(-0.429502\pi\)
0.219669 + 0.975575i \(0.429502\pi\)
\(462\) 0 0
\(463\) 9.17345e10 0.0927723 0.0463861 0.998924i \(-0.485230\pi\)
0.0463861 + 0.998924i \(0.485230\pi\)
\(464\) 5.22560e10 0.0523365
\(465\) 0 0
\(466\) −1.06027e12 −1.04154
\(467\) 1.26314e12 1.22892 0.614462 0.788947i \(-0.289373\pi\)
0.614462 + 0.788947i \(0.289373\pi\)
\(468\) 0 0
\(469\) −7.70655e11 −0.735499
\(470\) 9.08026e11 0.858337
\(471\) 0 0
\(472\) −3.34975e11 −0.310651
\(473\) 9.65982e11 0.887347
\(474\) 0 0
\(475\) −1.59632e12 −1.43879
\(476\) 1.66821e11 0.148943
\(477\) 0 0
\(478\) 6.70333e11 0.587307
\(479\) −1.23760e12 −1.07416 −0.537082 0.843530i \(-0.680473\pi\)
−0.537082 + 0.843530i \(0.680473\pi\)
\(480\) 0 0
\(481\) 9.03058e11 0.769241
\(482\) 7.72521e11 0.651926
\(483\) 0 0
\(484\) 6.46335e11 0.535370
\(485\) −1.29668e12 −1.06413
\(486\) 0 0
\(487\) 4.32311e11 0.348270 0.174135 0.984722i \(-0.444287\pi\)
0.174135 + 0.984722i \(0.444287\pi\)
\(488\) −5.84965e11 −0.466918
\(489\) 0 0
\(490\) −6.28732e11 −0.492701
\(491\) 1.63142e12 1.26678 0.633388 0.773835i \(-0.281664\pi\)
0.633388 + 0.773835i \(0.281664\pi\)
\(492\) 0 0
\(493\) −1.13818e11 −0.0867761
\(494\) −5.54128e11 −0.418639
\(495\) 0 0
\(496\) 5.85329e11 0.434243
\(497\) −5.12171e11 −0.376540
\(498\) 0 0
\(499\) −7.18532e11 −0.518793 −0.259396 0.965771i \(-0.583524\pi\)
−0.259396 + 0.965771i \(0.583524\pi\)
\(500\) 7.69548e10 0.0550643
\(501\) 0 0
\(502\) 5.90292e11 0.414859
\(503\) −5.17308e11 −0.360324 −0.180162 0.983637i \(-0.557662\pi\)
−0.180162 + 0.983637i \(0.557662\pi\)
\(504\) 0 0
\(505\) 2.78015e12 1.90220
\(506\) 2.09490e12 1.42065
\(507\) 0 0
\(508\) −3.61166e11 −0.240614
\(509\) 7.97889e11 0.526881 0.263441 0.964676i \(-0.415143\pi\)
0.263441 + 0.964676i \(0.415143\pi\)
\(510\) 0 0
\(511\) 1.40936e12 0.914384
\(512\) 6.87195e10 0.0441942
\(513\) 0 0
\(514\) 3.32897e11 0.210366
\(515\) −3.34930e12 −2.09808
\(516\) 0 0
\(517\) 1.96918e12 1.21221
\(518\) −1.44613e12 −0.882515
\(519\) 0 0
\(520\) 3.76243e11 0.225659
\(521\) −8.24635e10 −0.0490334 −0.0245167 0.999699i \(-0.507805\pi\)
−0.0245167 + 0.999699i \(0.507805\pi\)
\(522\) 0 0
\(523\) −1.54815e12 −0.904805 −0.452402 0.891814i \(-0.649433\pi\)
−0.452402 + 0.891814i \(0.649433\pi\)
\(524\) −7.36779e11 −0.426920
\(525\) 0 0
\(526\) −1.20534e12 −0.686553
\(527\) −1.27490e12 −0.719992
\(528\) 0 0
\(529\) 1.70983e12 0.949299
\(530\) −1.96675e12 −1.08270
\(531\) 0 0
\(532\) 8.87363e11 0.480285
\(533\) −8.76110e11 −0.470204
\(534\) 0 0
\(535\) 3.13641e12 1.65516
\(536\) 6.91455e11 0.361845
\(537\) 0 0
\(538\) −2.40089e12 −1.23553
\(539\) −1.36349e12 −0.695829
\(540\) 0 0
\(541\) −6.21988e11 −0.312172 −0.156086 0.987743i \(-0.549888\pi\)
−0.156086 + 0.987743i \(0.549888\pi\)
\(542\) −2.99757e11 −0.149201
\(543\) 0 0
\(544\) −1.49677e11 −0.0732757
\(545\) 3.54882e12 1.72306
\(546\) 0 0
\(547\) 4.17951e11 0.199610 0.0998050 0.995007i \(-0.468178\pi\)
0.0998050 + 0.995007i \(0.468178\pi\)
\(548\) 1.02521e12 0.485622
\(549\) 0 0
\(550\) 2.35052e12 1.09530
\(551\) −6.05426e11 −0.279820
\(552\) 0 0
\(553\) 1.47690e12 0.671566
\(554\) 2.12571e12 0.958758
\(555\) 0 0
\(556\) 4.75459e11 0.210997
\(557\) 1.53061e12 0.673776 0.336888 0.941545i \(-0.390626\pi\)
0.336888 + 0.941545i \(0.390626\pi\)
\(558\) 0 0
\(559\) 6.30557e11 0.273131
\(560\) −6.02503e11 −0.258889
\(561\) 0 0
\(562\) −8.28392e8 −0.000350286 0
\(563\) 3.69013e12 1.54794 0.773969 0.633223i \(-0.218269\pi\)
0.773969 + 0.633223i \(0.218269\pi\)
\(564\) 0 0
\(565\) −3.68522e12 −1.52141
\(566\) −1.96082e12 −0.803090
\(567\) 0 0
\(568\) 4.59535e11 0.185247
\(569\) −7.45427e11 −0.298126 −0.149063 0.988828i \(-0.547626\pi\)
−0.149063 + 0.988828i \(0.547626\pi\)
\(570\) 0 0
\(571\) 3.49122e12 1.37440 0.687202 0.726467i \(-0.258839\pi\)
0.687202 + 0.726467i \(0.258839\pi\)
\(572\) 8.15934e11 0.318693
\(573\) 0 0
\(574\) 1.40297e12 0.539444
\(575\) 3.93939e12 1.50288
\(576\) 0 0
\(577\) −4.10159e12 −1.54050 −0.770249 0.637743i \(-0.779868\pi\)
−0.770249 + 0.637743i \(0.779868\pi\)
\(578\) −1.57140e12 −0.585613
\(579\) 0 0
\(580\) 4.11073e11 0.150832
\(581\) 2.43829e12 0.887753
\(582\) 0 0
\(583\) −4.26516e12 −1.52907
\(584\) −1.26452e12 −0.449851
\(585\) 0 0
\(586\) −6.33821e11 −0.222038
\(587\) −4.48627e11 −0.155960 −0.0779801 0.996955i \(-0.524847\pi\)
−0.0779801 + 0.996955i \(0.524847\pi\)
\(588\) 0 0
\(589\) −6.78149e12 −2.32170
\(590\) −2.63509e12 −0.895285
\(591\) 0 0
\(592\) 1.29751e12 0.434173
\(593\) −8.10869e11 −0.269280 −0.134640 0.990895i \(-0.542988\pi\)
−0.134640 + 0.990895i \(0.542988\pi\)
\(594\) 0 0
\(595\) 1.31230e12 0.429248
\(596\) −1.77763e12 −0.577077
\(597\) 0 0
\(598\) 1.36748e12 0.437285
\(599\) −4.83382e12 −1.53416 −0.767078 0.641553i \(-0.778290\pi\)
−0.767078 + 0.641553i \(0.778290\pi\)
\(600\) 0 0
\(601\) 3.86625e12 1.20880 0.604401 0.796680i \(-0.293413\pi\)
0.604401 + 0.796680i \(0.293413\pi\)
\(602\) −1.00975e12 −0.313351
\(603\) 0 0
\(604\) −1.28991e12 −0.394361
\(605\) 5.08442e12 1.54292
\(606\) 0 0
\(607\) 2.90770e10 0.00869362 0.00434681 0.999991i \(-0.498616\pi\)
0.00434681 + 0.999991i \(0.498616\pi\)
\(608\) −7.96169e11 −0.236287
\(609\) 0 0
\(610\) −4.60164e12 −1.34564
\(611\) 1.28541e12 0.373125
\(612\) 0 0
\(613\) 8.01432e11 0.229242 0.114621 0.993409i \(-0.463435\pi\)
0.114621 + 0.993409i \(0.463435\pi\)
\(614\) −6.37599e11 −0.181046
\(615\) 0 0
\(616\) −1.30661e12 −0.365622
\(617\) 1.95977e12 0.544404 0.272202 0.962240i \(-0.412248\pi\)
0.272202 + 0.962240i \(0.412248\pi\)
\(618\) 0 0
\(619\) 1.92323e12 0.526531 0.263266 0.964723i \(-0.415200\pi\)
0.263266 + 0.964723i \(0.415200\pi\)
\(620\) 4.60451e12 1.25147
\(621\) 0 0
\(622\) −7.01148e11 −0.187825
\(623\) 3.64219e12 0.968649
\(624\) 0 0
\(625\) −3.50087e12 −0.917733
\(626\) −1.51172e12 −0.393448
\(627\) 0 0
\(628\) −1.24480e12 −0.319360
\(629\) −2.82608e12 −0.719875
\(630\) 0 0
\(631\) 2.04866e12 0.514444 0.257222 0.966352i \(-0.417193\pi\)
0.257222 + 0.966352i \(0.417193\pi\)
\(632\) −1.32512e12 −0.330391
\(633\) 0 0
\(634\) −3.10335e12 −0.762832
\(635\) −2.84113e12 −0.693440
\(636\) 0 0
\(637\) −8.90036e11 −0.214181
\(638\) 8.91468e11 0.213016
\(639\) 0 0
\(640\) 5.40584e11 0.127366
\(641\) 3.30653e12 0.773592 0.386796 0.922165i \(-0.373582\pi\)
0.386796 + 0.922165i \(0.373582\pi\)
\(642\) 0 0
\(643\) −3.81079e12 −0.879155 −0.439577 0.898205i \(-0.644872\pi\)
−0.439577 + 0.898205i \(0.644872\pi\)
\(644\) −2.18983e12 −0.501677
\(645\) 0 0
\(646\) 1.73412e12 0.391772
\(647\) −5.14649e12 −1.15463 −0.577314 0.816522i \(-0.695899\pi\)
−0.577314 + 0.816522i \(0.695899\pi\)
\(648\) 0 0
\(649\) −5.71455e12 −1.26439
\(650\) 1.53433e12 0.337139
\(651\) 0 0
\(652\) −1.33274e12 −0.288822
\(653\) 3.24645e12 0.698715 0.349357 0.936990i \(-0.386400\pi\)
0.349357 + 0.936990i \(0.386400\pi\)
\(654\) 0 0
\(655\) −5.79589e12 −1.23037
\(656\) −1.25879e12 −0.265391
\(657\) 0 0
\(658\) −2.05841e12 −0.428070
\(659\) −3.28645e12 −0.678801 −0.339400 0.940642i \(-0.610224\pi\)
−0.339400 + 0.940642i \(0.610224\pi\)
\(660\) 0 0
\(661\) −6.21697e11 −0.126670 −0.0633348 0.997992i \(-0.520174\pi\)
−0.0633348 + 0.997992i \(0.520174\pi\)
\(662\) 9.59387e11 0.194148
\(663\) 0 0
\(664\) −2.18770e12 −0.436749
\(665\) 6.98047e12 1.38416
\(666\) 0 0
\(667\) 1.49407e12 0.292283
\(668\) −2.68165e12 −0.521083
\(669\) 0 0
\(670\) 5.43935e12 1.04282
\(671\) −9.97929e12 −1.90041
\(672\) 0 0
\(673\) 9.46448e12 1.77840 0.889199 0.457520i \(-0.151262\pi\)
0.889199 + 0.457520i \(0.151262\pi\)
\(674\) −1.66345e12 −0.310484
\(675\) 0 0
\(676\) −2.18214e12 −0.401904
\(677\) −3.73730e12 −0.683768 −0.341884 0.939742i \(-0.611065\pi\)
−0.341884 + 0.939742i \(0.611065\pi\)
\(678\) 0 0
\(679\) 2.93945e12 0.530705
\(680\) −1.17744e12 −0.211178
\(681\) 0 0
\(682\) 9.98550e12 1.76742
\(683\) −1.24743e12 −0.219343 −0.109671 0.993968i \(-0.534980\pi\)
−0.109671 + 0.993968i \(0.534980\pi\)
\(684\) 0 0
\(685\) 8.06481e12 1.39954
\(686\) 4.37280e12 0.753879
\(687\) 0 0
\(688\) 9.05981e11 0.154160
\(689\) −2.78414e12 −0.470656
\(690\) 0 0
\(691\) −2.65796e12 −0.443504 −0.221752 0.975103i \(-0.571178\pi\)
−0.221752 + 0.975103i \(0.571178\pi\)
\(692\) 1.46372e12 0.242650
\(693\) 0 0
\(694\) 1.53113e12 0.250551
\(695\) 3.74022e12 0.608086
\(696\) 0 0
\(697\) 2.74175e12 0.440029
\(698\) 5.13417e11 0.0818693
\(699\) 0 0
\(700\) −2.45703e12 −0.386785
\(701\) −3.12836e12 −0.489311 −0.244656 0.969610i \(-0.578675\pi\)
−0.244656 + 0.969610i \(0.578675\pi\)
\(702\) 0 0
\(703\) −1.50326e13 −2.32133
\(704\) 1.17233e12 0.179876
\(705\) 0 0
\(706\) 3.54180e12 0.536541
\(707\) −6.30233e12 −0.948666
\(708\) 0 0
\(709\) 1.08160e13 1.60753 0.803763 0.594950i \(-0.202828\pi\)
0.803763 + 0.594950i \(0.202828\pi\)
\(710\) 3.61495e12 0.533875
\(711\) 0 0
\(712\) −3.26788e12 −0.476548
\(713\) 1.67353e13 2.42511
\(714\) 0 0
\(715\) 6.41857e12 0.918462
\(716\) 4.52364e12 0.643249
\(717\) 0 0
\(718\) 4.03282e12 0.566304
\(719\) −5.06139e10 −0.00706300 −0.00353150 0.999994i \(-0.501124\pi\)
−0.00353150 + 0.999994i \(0.501124\pi\)
\(720\) 0 0
\(721\) 7.59254e12 1.04635
\(722\) 4.06123e12 0.556212
\(723\) 0 0
\(724\) 6.29512e12 0.851492
\(725\) 1.67637e12 0.225346
\(726\) 0 0
\(727\) 3.34338e12 0.443895 0.221948 0.975059i \(-0.428759\pi\)
0.221948 + 0.975059i \(0.428759\pi\)
\(728\) −8.52906e11 −0.112541
\(729\) 0 0
\(730\) −9.94741e12 −1.29645
\(731\) −1.97330e12 −0.255603
\(732\) 0 0
\(733\) −4.16161e12 −0.532468 −0.266234 0.963908i \(-0.585779\pi\)
−0.266234 + 0.963908i \(0.585779\pi\)
\(734\) 1.15607e12 0.147012
\(735\) 0 0
\(736\) 1.96478e12 0.246811
\(737\) 1.17960e13 1.47275
\(738\) 0 0
\(739\) 9.32557e12 1.15020 0.575102 0.818081i \(-0.304962\pi\)
0.575102 + 0.818081i \(0.304962\pi\)
\(740\) 1.02069e13 1.25127
\(741\) 0 0
\(742\) 4.45842e12 0.539963
\(743\) −8.93818e12 −1.07597 −0.537984 0.842955i \(-0.680814\pi\)
−0.537984 + 0.842955i \(0.680814\pi\)
\(744\) 0 0
\(745\) −1.39838e13 −1.66311
\(746\) 7.65366e11 0.0904783
\(747\) 0 0
\(748\) −2.55344e12 −0.298241
\(749\) −7.10993e12 −0.825462
\(750\) 0 0
\(751\) 3.61027e12 0.414152 0.207076 0.978325i \(-0.433605\pi\)
0.207076 + 0.978325i \(0.433605\pi\)
\(752\) 1.84686e12 0.210598
\(753\) 0 0
\(754\) 5.81917e11 0.0655677
\(755\) −1.01471e13 −1.13653
\(756\) 0 0
\(757\) 1.48103e13 1.63920 0.819599 0.572938i \(-0.194196\pi\)
0.819599 + 0.572938i \(0.194196\pi\)
\(758\) 8.06184e12 0.886998
\(759\) 0 0
\(760\) −6.26309e12 −0.680969
\(761\) −1.70198e13 −1.83960 −0.919798 0.392391i \(-0.871648\pi\)
−0.919798 + 0.392391i \(0.871648\pi\)
\(762\) 0 0
\(763\) −8.04483e12 −0.859323
\(764\) −6.30656e11 −0.0669688
\(765\) 0 0
\(766\) 9.26200e12 0.972020
\(767\) −3.73025e12 −0.389187
\(768\) 0 0
\(769\) −1.19791e13 −1.23526 −0.617629 0.786470i \(-0.711906\pi\)
−0.617629 + 0.786470i \(0.711906\pi\)
\(770\) −1.02785e13 −1.05371
\(771\) 0 0
\(772\) −8.68305e12 −0.879821
\(773\) −7.00938e12 −0.706110 −0.353055 0.935603i \(-0.614857\pi\)
−0.353055 + 0.935603i \(0.614857\pi\)
\(774\) 0 0
\(775\) 1.87774e13 1.86972
\(776\) −2.63737e12 −0.261092
\(777\) 0 0
\(778\) −7.71167e12 −0.754640
\(779\) 1.45841e13 1.41893
\(780\) 0 0
\(781\) 7.83951e12 0.753979
\(782\) −4.27947e12 −0.409222
\(783\) 0 0
\(784\) −1.27880e12 −0.120887
\(785\) −9.79224e12 −0.920383
\(786\) 0 0
\(787\) −7.91010e12 −0.735014 −0.367507 0.930021i \(-0.619789\pi\)
−0.367507 + 0.930021i \(0.619789\pi\)
\(788\) −1.24780e12 −0.115286
\(789\) 0 0
\(790\) −1.04241e13 −0.952175
\(791\) 8.35404e12 0.758756
\(792\) 0 0
\(793\) −6.51411e12 −0.584959
\(794\) 8.04593e11 0.0718429
\(795\) 0 0
\(796\) 9.05464e12 0.799397
\(797\) 7.16965e12 0.629412 0.314706 0.949189i \(-0.398094\pi\)
0.314706 + 0.949189i \(0.398094\pi\)
\(798\) 0 0
\(799\) −4.02263e12 −0.349180
\(800\) 2.20452e12 0.190287
\(801\) 0 0
\(802\) −9.76632e12 −0.833578
\(803\) −2.15723e13 −1.83095
\(804\) 0 0
\(805\) −1.72264e13 −1.44581
\(806\) 6.51816e12 0.544023
\(807\) 0 0
\(808\) 5.65464e12 0.466717
\(809\) 1.58279e13 1.29914 0.649568 0.760304i \(-0.274950\pi\)
0.649568 + 0.760304i \(0.274950\pi\)
\(810\) 0 0
\(811\) −9.43072e11 −0.0765510 −0.0382755 0.999267i \(-0.512186\pi\)
−0.0382755 + 0.999267i \(0.512186\pi\)
\(812\) −9.31863e11 −0.0752229
\(813\) 0 0
\(814\) 2.21350e13 1.76714
\(815\) −1.04840e13 −0.832374
\(816\) 0 0
\(817\) −1.04965e13 −0.824224
\(818\) 1.19256e13 0.931300
\(819\) 0 0
\(820\) −9.90232e12 −0.764847
\(821\) 1.91719e13 1.47273 0.736363 0.676587i \(-0.236542\pi\)
0.736363 + 0.676587i \(0.236542\pi\)
\(822\) 0 0
\(823\) −9.33830e12 −0.709527 −0.354763 0.934956i \(-0.615439\pi\)
−0.354763 + 0.934956i \(0.615439\pi\)
\(824\) −6.81225e12 −0.514776
\(825\) 0 0
\(826\) 5.97349e12 0.446496
\(827\) −1.08669e13 −0.807854 −0.403927 0.914791i \(-0.632355\pi\)
−0.403927 + 0.914791i \(0.632355\pi\)
\(828\) 0 0
\(829\) −3.98687e12 −0.293181 −0.146591 0.989197i \(-0.546830\pi\)
−0.146591 + 0.989197i \(0.546830\pi\)
\(830\) −1.72096e13 −1.25869
\(831\) 0 0
\(832\) 7.65253e11 0.0553669
\(833\) 2.78533e12 0.200436
\(834\) 0 0
\(835\) −2.10953e13 −1.50174
\(836\) −1.35824e13 −0.961716
\(837\) 0 0
\(838\) −4.74055e11 −0.0332071
\(839\) 1.87689e13 1.30770 0.653852 0.756622i \(-0.273152\pi\)
0.653852 + 0.756622i \(0.273152\pi\)
\(840\) 0 0
\(841\) −1.38714e13 −0.956174
\(842\) 8.64146e12 0.592492
\(843\) 0 0
\(844\) 5.22056e11 0.0354141
\(845\) −1.71659e13 −1.15827
\(846\) 0 0
\(847\) −1.15259e13 −0.769482
\(848\) −4.00023e12 −0.265646
\(849\) 0 0
\(850\) −4.80164e12 −0.315503
\(851\) 3.70975e13 2.42472
\(852\) 0 0
\(853\) −1.34814e12 −0.0871893 −0.0435947 0.999049i \(-0.513881\pi\)
−0.0435947 + 0.999049i \(0.513881\pi\)
\(854\) 1.04315e13 0.671097
\(855\) 0 0
\(856\) 6.37924e12 0.406104
\(857\) 5.07330e11 0.0321275 0.0160637 0.999871i \(-0.494887\pi\)
0.0160637 + 0.999871i \(0.494887\pi\)
\(858\) 0 0
\(859\) 2.87459e13 1.80139 0.900693 0.434456i \(-0.143059\pi\)
0.900693 + 0.434456i \(0.143059\pi\)
\(860\) 7.12693e12 0.444283
\(861\) 0 0
\(862\) −9.11626e12 −0.562385
\(863\) −3.00660e11 −0.0184513 −0.00922566 0.999957i \(-0.502937\pi\)
−0.00922566 + 0.999957i \(0.502937\pi\)
\(864\) 0 0
\(865\) 1.15144e13 0.699309
\(866\) −1.85454e13 −1.12048
\(867\) 0 0
\(868\) −1.04380e13 −0.624133
\(869\) −2.26061e13 −1.34473
\(870\) 0 0
\(871\) 7.69997e12 0.453323
\(872\) 7.21807e12 0.422763
\(873\) 0 0
\(874\) −2.27635e13 −1.31959
\(875\) −1.37231e12 −0.0791435
\(876\) 0 0
\(877\) 9.08872e12 0.518806 0.259403 0.965769i \(-0.416474\pi\)
0.259403 + 0.965769i \(0.416474\pi\)
\(878\) 1.40566e12 0.0798277
\(879\) 0 0
\(880\) 9.22217e12 0.518395
\(881\) −1.67414e12 −0.0936266 −0.0468133 0.998904i \(-0.514907\pi\)
−0.0468133 + 0.998904i \(0.514907\pi\)
\(882\) 0 0
\(883\) −2.69670e13 −1.49283 −0.746413 0.665483i \(-0.768226\pi\)
−0.746413 + 0.665483i \(0.768226\pi\)
\(884\) −1.66679e12 −0.0918005
\(885\) 0 0
\(886\) 3.16357e11 0.0172475
\(887\) 3.31395e13 1.79759 0.898793 0.438373i \(-0.144445\pi\)
0.898793 + 0.438373i \(0.144445\pi\)
\(888\) 0 0
\(889\) 6.44056e12 0.345832
\(890\) −2.57069e13 −1.37339
\(891\) 0 0
\(892\) 1.62394e13 0.858872
\(893\) −2.13974e13 −1.12597
\(894\) 0 0
\(895\) 3.55853e13 1.85382
\(896\) −1.22545e12 −0.0635199
\(897\) 0 0
\(898\) −7.59917e12 −0.389963
\(899\) 7.12158e12 0.363628
\(900\) 0 0
\(901\) 8.71285e12 0.440452
\(902\) −2.14745e13 −1.08017
\(903\) 0 0
\(904\) −7.49550e12 −0.373287
\(905\) 4.95207e13 2.45397
\(906\) 0 0
\(907\) 2.80197e13 1.37477 0.687386 0.726292i \(-0.258758\pi\)
0.687386 + 0.726292i \(0.258758\pi\)
\(908\) −7.97971e12 −0.389584
\(909\) 0 0
\(910\) −6.70941e12 −0.324338
\(911\) 2.45209e13 1.17952 0.589758 0.807580i \(-0.299223\pi\)
0.589758 + 0.807580i \(0.299223\pi\)
\(912\) 0 0
\(913\) −3.73214e13 −1.77762
\(914\) 1.32450e13 0.627762
\(915\) 0 0
\(916\) 1.60015e13 0.750983
\(917\) 1.31387e13 0.613608
\(918\) 0 0
\(919\) 2.79427e13 1.29226 0.646128 0.763229i \(-0.276387\pi\)
0.646128 + 0.763229i \(0.276387\pi\)
\(920\) 1.54560e13 0.711299
\(921\) 0 0
\(922\) 6.81667e12 0.310658
\(923\) 5.11734e12 0.232079
\(924\) 0 0
\(925\) 4.16241e13 1.86942
\(926\) 1.46775e12 0.0655999
\(927\) 0 0
\(928\) 8.36096e11 0.0370075
\(929\) −1.17529e12 −0.0517697 −0.0258848 0.999665i \(-0.508240\pi\)
−0.0258848 + 0.999665i \(0.508240\pi\)
\(930\) 0 0
\(931\) 1.48159e13 0.646329
\(932\) −1.69642e13 −0.736483
\(933\) 0 0
\(934\) 2.02102e13 0.868980
\(935\) −2.00867e13 −0.859520
\(936\) 0 0
\(937\) −3.99627e12 −0.169366 −0.0846830 0.996408i \(-0.526988\pi\)
−0.0846830 + 0.996408i \(0.526988\pi\)
\(938\) −1.23305e13 −0.520076
\(939\) 0 0
\(940\) 1.45284e13 0.606936
\(941\) −7.08647e12 −0.294630 −0.147315 0.989090i \(-0.547063\pi\)
−0.147315 + 0.989090i \(0.547063\pi\)
\(942\) 0 0
\(943\) −3.59905e13 −1.48213
\(944\) −5.35960e12 −0.219664
\(945\) 0 0
\(946\) 1.54557e13 0.627449
\(947\) −4.28949e13 −1.73313 −0.866564 0.499066i \(-0.833676\pi\)
−0.866564 + 0.499066i \(0.833676\pi\)
\(948\) 0 0
\(949\) −1.40816e13 −0.563578
\(950\) −2.55411e13 −1.01738
\(951\) 0 0
\(952\) 2.66914e12 0.105319
\(953\) 1.57454e13 0.618350 0.309175 0.951005i \(-0.399947\pi\)
0.309175 + 0.951005i \(0.399947\pi\)
\(954\) 0 0
\(955\) −4.96108e12 −0.193002
\(956\) 1.07253e13 0.415289
\(957\) 0 0
\(958\) −1.98016e13 −0.759548
\(959\) −1.82821e13 −0.697980
\(960\) 0 0
\(961\) 5.33305e13 2.01707
\(962\) 1.44489e13 0.543936
\(963\) 0 0
\(964\) 1.23603e13 0.460982
\(965\) −6.83055e13 −2.53561
\(966\) 0 0
\(967\) 9.01621e12 0.331593 0.165796 0.986160i \(-0.446981\pi\)
0.165796 + 0.986160i \(0.446981\pi\)
\(968\) 1.03414e13 0.378564
\(969\) 0 0
\(970\) −2.07469e13 −0.752456
\(971\) −1.47845e13 −0.533730 −0.266865 0.963734i \(-0.585988\pi\)
−0.266865 + 0.963734i \(0.585988\pi\)
\(972\) 0 0
\(973\) −8.47870e12 −0.303265
\(974\) 6.91698e12 0.246264
\(975\) 0 0
\(976\) −9.35944e12 −0.330161
\(977\) −2.19982e13 −0.772435 −0.386217 0.922408i \(-0.626219\pi\)
−0.386217 + 0.922408i \(0.626219\pi\)
\(978\) 0 0
\(979\) −5.57489e13 −1.93961
\(980\) −1.00597e13 −0.348392
\(981\) 0 0
\(982\) 2.61028e13 0.895746
\(983\) 3.06326e13 1.04639 0.523194 0.852214i \(-0.324740\pi\)
0.523194 + 0.852214i \(0.324740\pi\)
\(984\) 0 0
\(985\) −9.81587e12 −0.332251
\(986\) −1.82109e12 −0.0613599
\(987\) 0 0
\(988\) −8.86606e12 −0.296022
\(989\) 2.59032e13 0.860935
\(990\) 0 0
\(991\) −1.39052e13 −0.457978 −0.228989 0.973429i \(-0.573542\pi\)
−0.228989 + 0.973429i \(0.573542\pi\)
\(992\) 9.36526e12 0.307056
\(993\) 0 0
\(994\) −8.19474e12 −0.266254
\(995\) 7.12286e13 2.30383
\(996\) 0 0
\(997\) 1.22601e13 0.392975 0.196488 0.980506i \(-0.437046\pi\)
0.196488 + 0.980506i \(0.437046\pi\)
\(998\) −1.14965e13 −0.366842
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.10.a.g.1.2 yes 2
3.2 odd 2 54.10.a.f.1.1 2
9.2 odd 6 162.10.c.o.109.2 4
9.4 even 3 162.10.c.l.55.1 4
9.5 odd 6 162.10.c.o.55.2 4
9.7 even 3 162.10.c.l.109.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.10.a.f.1.1 2 3.2 odd 2
54.10.a.g.1.2 yes 2 1.1 even 1 trivial
162.10.c.l.55.1 4 9.4 even 3
162.10.c.l.109.1 4 9.7 even 3
162.10.c.o.55.2 4 9.5 odd 6
162.10.c.o.109.2 4 9.2 odd 6