Properties

Label 54.10.a
Level $54$
Weight $10$
Character orbit 54.a
Rep. character $\chi_{54}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $8$
Sturm bound $90$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(90\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(54))\).

Total New Old
Modular forms 87 12 75
Cusp forms 75 12 63
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(20\)\(3\)\(17\)\(17\)\(3\)\(14\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(23\)\(3\)\(20\)\(20\)\(3\)\(17\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(22\)\(4\)\(18\)\(19\)\(4\)\(15\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(22\)\(2\)\(20\)\(19\)\(2\)\(17\)\(3\)\(0\)\(3\)
Plus space\(+\)\(42\)\(5\)\(37\)\(36\)\(5\)\(31\)\(6\)\(0\)\(6\)
Minus space\(-\)\(45\)\(7\)\(38\)\(39\)\(7\)\(32\)\(6\)\(0\)\(6\)

Trace form

\( 12 q + 3072 q^{4} - 2028 q^{7} + 107424 q^{10} - 238602 q^{13} + 786432 q^{16} + 1246506 q^{19} - 1213344 q^{22} + 7193082 q^{25} - 519168 q^{28} + 13496190 q^{31} + 14957568 q^{34} + 16326654 q^{37} + 27500544 q^{40}+ \cdots - 3923856408 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(54))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
54.10.a.a 54.a 1.a $1$ $27.812$ \(\Q\) None 54.10.a.a \(-16\) \(0\) \(-1176\) \(-11473\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}+2^{8}q^{4}-1176q^{5}-11473q^{7}+\cdots\)
54.10.a.b 54.a 1.a $1$ $27.812$ \(\Q\) None 54.10.a.b \(-16\) \(0\) \(435\) \(-2527\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}+2^{8}q^{4}+435q^{5}-2527q^{7}+\cdots\)
54.10.a.c 54.a 1.a $1$ $27.812$ \(\Q\) None 54.10.a.b \(16\) \(0\) \(-435\) \(-2527\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+2^{8}q^{4}-435q^{5}-2527q^{7}+\cdots\)
54.10.a.d 54.a 1.a $1$ $27.812$ \(\Q\) None 54.10.a.a \(16\) \(0\) \(1176\) \(-11473\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+2^{8}q^{4}+1176q^{5}-11473q^{7}+\cdots\)
54.10.a.e 54.a 1.a $2$ $27.812$ \(\Q(\sqrt{301}) \) None 54.10.a.e \(-32\) \(0\) \(-1704\) \(6538\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}+2^{8}q^{4}+(-852-\beta )q^{5}+\cdots\)
54.10.a.f 54.a 1.a $2$ $27.812$ \(\Q(\sqrt{3329}) \) None 54.10.a.f \(-32\) \(0\) \(-912\) \(6448\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{4}q^{2}+2^{8}q^{4}+(-456-\beta )q^{5}+\cdots\)
54.10.a.g 54.a 1.a $2$ $27.812$ \(\Q(\sqrt{3329}) \) None 54.10.a.f \(32\) \(0\) \(912\) \(6448\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+2^{8}q^{4}+(456-\beta )q^{5}+(3224+\cdots)q^{7}+\cdots\)
54.10.a.h 54.a 1.a $2$ $27.812$ \(\Q(\sqrt{301}) \) None 54.10.a.e \(32\) \(0\) \(1704\) \(6538\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{4}q^{2}+2^{8}q^{4}+(852-\beta )q^{5}+(3269+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(54))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(54)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)