Defining parameters
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(54))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 87 | 12 | 75 |
Cusp forms | 75 | 12 | 63 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(20\) | \(3\) | \(17\) | \(17\) | \(3\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(23\) | \(3\) | \(20\) | \(20\) | \(3\) | \(17\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(22\) | \(4\) | \(18\) | \(19\) | \(4\) | \(15\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(22\) | \(2\) | \(20\) | \(19\) | \(2\) | \(17\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(42\) | \(5\) | \(37\) | \(36\) | \(5\) | \(31\) | \(6\) | \(0\) | \(6\) | ||||
Minus space | \(-\) | \(45\) | \(7\) | \(38\) | \(39\) | \(7\) | \(32\) | \(6\) | \(0\) | \(6\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(54))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(54))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(54)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 2}\)