Properties

Label 162.10.c.l.55.1
Level $162$
Weight $10$
Character 162.55
Analytic conductor $83.436$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,10,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-32,0,-512,-912] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.4358054585\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{3329})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 833x^{2} + 832x + 692224 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.1
Root \(-14.1744 - 24.5507i\) of defining polynomial
Character \(\chi\) \(=\) 162.55
Dual form 162.10.c.l.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.00000 + 13.8564i) q^{2} +(-128.000 - 221.703i) q^{4} +(-1006.92 - 1744.03i) q^{5} +(2282.58 - 3953.55i) q^{7} +4096.00 q^{8} +32221.3 q^{10} +(-34938.1 + 60514.6i) q^{11} +(-22806.3 - 39501.7i) q^{13} +(36521.3 + 63256.7i) q^{14} +(-32768.0 + 56755.8i) q^{16} -142743. q^{17} -759286. q^{19} +(-257771. + 446472. i) q^{20} +(-559010. - 968234. i) q^{22} +(-936881. - 1.62273e6i) q^{23} +(-1.05120e6 + 1.82073e6i) q^{25} +729802. q^{26} -1.16868e6 q^{28} +(-398681. + 690537. i) q^{29} +(-4.46571e6 - 7.73483e6i) q^{31} +(-524288. - 908093. i) q^{32} +(1.14194e6 - 1.97791e6i) q^{34} -9.19347e6 q^{35} +1.97984e7 q^{37} +(6.07429e6 - 1.05210e7i) q^{38} +(-4.12433e6 - 7.14355e6i) q^{40} +(9.60381e6 + 1.66343e7i) q^{41} +(-6.91208e6 + 1.19721e7i) q^{43} +1.78883e7 q^{44} +2.99802e7 q^{46} +(-1.40905e7 + 2.44054e7i) q^{47} +(9.75646e6 + 1.68987e7i) q^{49} +(-1.68192e7 - 2.91316e7i) q^{50} +(-5.83842e6 + 1.01124e7i) q^{52} -6.10387e7 q^{53} +1.40719e8 q^{55} +(9.34945e6 - 1.61937e7i) q^{56} +(-6.37890e6 - 1.10486e7i) q^{58} +(4.08905e7 + 7.08244e7i) q^{59} +(7.14068e7 - 1.23680e8i) q^{61} +1.42903e8 q^{62} +1.67772e7 q^{64} +(-4.59281e7 + 7.95498e7i) q^{65} +(-8.44061e7 - 1.46196e8i) q^{67} +(1.82711e7 + 3.16465e7i) q^{68} +(7.35477e7 - 1.27388e8i) q^{70} +1.12191e8 q^{71} -3.08721e8 q^{73} +(-1.58387e8 + 2.74335e8i) q^{74} +(9.71886e7 + 1.68336e8i) q^{76} +(1.59498e8 + 2.76259e8i) q^{77} +(1.61758e8 - 2.80173e8i) q^{79} +1.31979e8 q^{80} -3.07322e8 q^{82} +(2.67054e8 - 4.62551e8i) q^{83} +(1.43730e8 + 2.48948e8i) q^{85} +(-1.10593e8 - 1.91553e8i) q^{86} +(-1.43107e8 + 2.47868e8i) q^{88} -7.97823e8 q^{89} -2.08229e8 q^{91} +(-2.39842e8 + 4.15418e8i) q^{92} +(-2.25447e8 - 3.90486e8i) q^{94} +(7.64537e8 + 1.32422e9i) q^{95} +(3.21944e8 - 5.57624e8i) q^{97} -3.12207e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} - 512 q^{4} - 912 q^{5} - 6448 q^{7} + 16384 q^{8} + 29184 q^{10} - 15126 q^{11} - 28912 q^{13} - 103168 q^{14} - 131072 q^{16} + 799920 q^{17} + 16208 q^{19} - 233472 q^{20} - 242016 q^{22}+ \cdots + 1965542016 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 + 13.8564i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −128.000 221.703i −0.250000 0.433013i
\(5\) −1006.92 1744.03i −0.720490 1.24793i −0.960803 0.277231i \(-0.910583\pi\)
0.240313 0.970695i \(-0.422750\pi\)
\(6\) 0 0
\(7\) 2282.58 3953.55i 0.359323 0.622366i −0.628525 0.777789i \(-0.716341\pi\)
0.987848 + 0.155424i \(0.0496743\pi\)
\(8\) 4096.00 0.353553
\(9\) 0 0
\(10\) 32221.3 1.01893
\(11\) −34938.1 + 60514.6i −0.719503 + 1.24622i 0.241694 + 0.970353i \(0.422297\pi\)
−0.961197 + 0.275863i \(0.911036\pi\)
\(12\) 0 0
\(13\) −22806.3 39501.7i −0.221468 0.383593i 0.733786 0.679380i \(-0.237751\pi\)
−0.955254 + 0.295787i \(0.904418\pi\)
\(14\) 36521.3 + 63256.7i 0.254080 + 0.440079i
\(15\) 0 0
\(16\) −32768.0 + 56755.8i −0.125000 + 0.216506i
\(17\) −142743. −0.414510 −0.207255 0.978287i \(-0.566453\pi\)
−0.207255 + 0.978287i \(0.566453\pi\)
\(18\) 0 0
\(19\) −759286. −1.33664 −0.668319 0.743874i \(-0.732986\pi\)
−0.668319 + 0.743874i \(0.732986\pi\)
\(20\) −257771. + 446472.i −0.360245 + 0.623963i
\(21\) 0 0
\(22\) −559010. 968234.i −0.508766 0.881208i
\(23\) −936881. 1.62273e6i −0.698086 1.20912i −0.969129 0.246554i \(-0.920702\pi\)
0.271043 0.962567i \(-0.412632\pi\)
\(24\) 0 0
\(25\) −1.05120e6 + 1.82073e6i −0.538213 + 0.932212i
\(26\) 729802. 0.313202
\(27\) 0 0
\(28\) −1.16868e6 −0.359323
\(29\) −398681. + 690537.i −0.104673 + 0.181299i −0.913605 0.406604i \(-0.866713\pi\)
0.808932 + 0.587903i \(0.200046\pi\)
\(30\) 0 0
\(31\) −4.46571e6 7.73483e6i −0.868485 1.50426i −0.863544 0.504273i \(-0.831761\pi\)
−0.00494109 0.999988i \(-0.501573\pi\)
\(32\) −524288. 908093.i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 1.14194e6 1.97791e6i 0.146551 0.253834i
\(35\) −9.19347e6 −1.03555
\(36\) 0 0
\(37\) 1.97984e7 1.73669 0.868345 0.495960i \(-0.165184\pi\)
0.868345 + 0.495960i \(0.165184\pi\)
\(38\) 6.07429e6 1.05210e7i 0.472573 0.818521i
\(39\) 0 0
\(40\) −4.12433e6 7.14355e6i −0.254732 0.441209i
\(41\) 9.60381e6 + 1.66343e7i 0.530782 + 0.919341i 0.999355 + 0.0359165i \(0.0114350\pi\)
−0.468573 + 0.883425i \(0.655232\pi\)
\(42\) 0 0
\(43\) −6.91208e6 + 1.19721e7i −0.308320 + 0.534025i −0.977995 0.208629i \(-0.933100\pi\)
0.669675 + 0.742654i \(0.266433\pi\)
\(44\) 1.78883e7 0.719503
\(45\) 0 0
\(46\) 2.99802e7 0.987243
\(47\) −1.40905e7 + 2.44054e7i −0.421196 + 0.729533i −0.996057 0.0887180i \(-0.971723\pi\)
0.574860 + 0.818251i \(0.305056\pi\)
\(48\) 0 0
\(49\) 9.75646e6 + 1.68987e7i 0.241774 + 0.418765i
\(50\) −1.68192e7 2.91316e7i −0.380574 0.659174i
\(51\) 0 0
\(52\) −5.83842e6 + 1.01124e7i −0.110734 + 0.191797i
\(53\) −6.10387e7 −1.06259 −0.531293 0.847188i \(-0.678293\pi\)
−0.531293 + 0.847188i \(0.678293\pi\)
\(54\) 0 0
\(55\) 1.40719e8 2.07358
\(56\) 9.34945e6 1.61937e7i 0.127040 0.220039i
\(57\) 0 0
\(58\) −6.37890e6 1.10486e7i −0.0740150 0.128198i
\(59\) 4.08905e7 + 7.08244e7i 0.439327 + 0.760937i 0.997638 0.0686950i \(-0.0218835\pi\)
−0.558310 + 0.829632i \(0.688550\pi\)
\(60\) 0 0
\(61\) 7.14068e7 1.23680e8i 0.660322 1.14371i −0.320209 0.947347i \(-0.603753\pi\)
0.980531 0.196364i \(-0.0629134\pi\)
\(62\) 1.42903e8 1.22822
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −4.59281e7 + 7.95498e7i −0.319131 + 0.552750i
\(66\) 0 0
\(67\) −8.44061e7 1.46196e8i −0.511726 0.886335i −0.999908 0.0135930i \(-0.995673\pi\)
0.488182 0.872742i \(-0.337660\pi\)
\(68\) 1.82711e7 + 3.16465e7i 0.103627 + 0.179488i
\(69\) 0 0
\(70\) 7.35477e7 1.27388e8i 0.366124 0.634145i
\(71\) 1.12191e8 0.523958 0.261979 0.965074i \(-0.415625\pi\)
0.261979 + 0.965074i \(0.415625\pi\)
\(72\) 0 0
\(73\) −3.08721e8 −1.27237 −0.636185 0.771536i \(-0.719489\pi\)
−0.636185 + 0.771536i \(0.719489\pi\)
\(74\) −1.58387e8 + 2.74335e8i −0.614013 + 1.06350i
\(75\) 0 0
\(76\) 9.71886e7 + 1.68336e8i 0.334160 + 0.578782i
\(77\) 1.59498e8 + 2.76259e8i 0.517068 + 0.895588i
\(78\) 0 0
\(79\) 1.61758e8 2.80173e8i 0.467244 0.809290i −0.532056 0.846709i \(-0.678580\pi\)
0.999300 + 0.0374190i \(0.0119136\pi\)
\(80\) 1.31979e8 0.360245
\(81\) 0 0
\(82\) −3.07322e8 −0.750639
\(83\) 2.67054e8 4.62551e8i 0.617657 1.06981i −0.372255 0.928130i \(-0.621415\pi\)
0.989912 0.141683i \(-0.0452512\pi\)
\(84\) 0 0
\(85\) 1.43730e8 + 2.48948e8i 0.298650 + 0.517278i
\(86\) −1.10593e8 1.91553e8i −0.218015 0.377613i
\(87\) 0 0
\(88\) −1.43107e8 + 2.47868e8i −0.254383 + 0.440604i
\(89\) −7.97823e8 −1.34788 −0.673941 0.738785i \(-0.735400\pi\)
−0.673941 + 0.738785i \(0.735400\pi\)
\(90\) 0 0
\(91\) −2.08229e8 −0.318313
\(92\) −2.39842e8 + 4.15418e8i −0.349043 + 0.604561i
\(93\) 0 0
\(94\) −2.25447e8 3.90486e8i −0.297831 0.515858i
\(95\) 7.64537e8 + 1.32422e9i 0.963036 + 1.66803i
\(96\) 0 0
\(97\) 3.21944e8 5.57624e8i 0.369239 0.639541i −0.620207 0.784438i \(-0.712952\pi\)
0.989447 + 0.144897i \(0.0462849\pi\)
\(98\) −3.12207e8 −0.341920
\(99\) 0 0
\(100\) 5.38213e8 0.538213
\(101\) −6.90263e8 + 1.19557e9i −0.660038 + 1.14322i 0.320568 + 0.947226i \(0.396126\pi\)
−0.980605 + 0.195993i \(0.937207\pi\)
\(102\) 0 0
\(103\) 8.31574e8 + 1.44033e9i 0.728003 + 1.26094i 0.957726 + 0.287683i \(0.0928848\pi\)
−0.229722 + 0.973256i \(0.573782\pi\)
\(104\) −9.34147e7 1.61799e8i −0.0783006 0.135621i
\(105\) 0 0
\(106\) 4.88309e8 8.45777e8i 0.375681 0.650698i
\(107\) 1.55743e9 1.14864 0.574318 0.818632i \(-0.305267\pi\)
0.574318 + 0.818632i \(0.305267\pi\)
\(108\) 0 0
\(109\) 1.76222e9 1.19575 0.597877 0.801588i \(-0.296011\pi\)
0.597877 + 0.801588i \(0.296011\pi\)
\(110\) −1.12575e9 + 1.94986e9i −0.733122 + 1.26980i
\(111\) 0 0
\(112\) 1.49591e8 + 2.59100e8i 0.0898307 + 0.155591i
\(113\) 9.14978e8 + 1.58479e9i 0.527907 + 0.914362i 0.999471 + 0.0325298i \(0.0103564\pi\)
−0.471564 + 0.881832i \(0.656310\pi\)
\(114\) 0 0
\(115\) −1.88672e9 + 3.26790e9i −1.00593 + 1.74232i
\(116\) 2.04125e8 0.104673
\(117\) 0 0
\(118\) −1.30850e9 −0.621303
\(119\) −3.25823e8 + 5.64341e8i −0.148943 + 0.257977i
\(120\) 0 0
\(121\) −1.26237e9 2.18650e9i −0.535370 0.927288i
\(122\) 1.14251e9 + 1.97888e9i 0.466918 + 0.808726i
\(123\) 0 0
\(124\) −1.14322e9 + 1.98012e9i −0.434243 + 0.752130i
\(125\) 3.00605e8 0.110129
\(126\) 0 0
\(127\) −1.41081e9 −0.481228 −0.240614 0.970621i \(-0.577349\pi\)
−0.240614 + 0.970621i \(0.577349\pi\)
\(128\) −1.34218e8 + 2.32472e8i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −7.34850e8 1.27280e9i −0.225659 0.390854i
\(131\) 1.43902e9 + 2.49246e9i 0.426920 + 0.739447i 0.996598 0.0824213i \(-0.0262653\pi\)
−0.569678 + 0.821868i \(0.692932\pi\)
\(132\) 0 0
\(133\) −1.73313e9 + 3.00187e9i −0.480285 + 0.831878i
\(134\) 2.70100e9 0.723689
\(135\) 0 0
\(136\) −5.84676e8 −0.146551
\(137\) −2.00235e9 + 3.46818e9i −0.485622 + 0.841122i −0.999863 0.0165235i \(-0.994740\pi\)
0.514242 + 0.857645i \(0.328073\pi\)
\(138\) 0 0
\(139\) −9.28631e8 1.60844e9i −0.210997 0.365458i 0.741030 0.671472i \(-0.234338\pi\)
−0.952027 + 0.306014i \(0.901004\pi\)
\(140\) 1.17676e9 + 2.03821e9i 0.258889 + 0.448408i
\(141\) 0 0
\(142\) −8.97530e8 + 1.55457e9i −0.185247 + 0.320857i
\(143\) 3.18724e9 0.637387
\(144\) 0 0
\(145\) 1.60576e9 0.301664
\(146\) 2.46977e9 4.27777e9i 0.449851 0.779165i
\(147\) 0 0
\(148\) −2.53420e9 4.38936e9i −0.434173 0.752009i
\(149\) 3.47194e9 + 6.01358e9i 0.577077 + 0.999527i 0.995813 + 0.0914189i \(0.0291402\pi\)
−0.418735 + 0.908108i \(0.637526\pi\)
\(150\) 0 0
\(151\) 2.51936e9 4.36366e9i 0.394361 0.683053i −0.598659 0.801004i \(-0.704299\pi\)
0.993019 + 0.117951i \(0.0376327\pi\)
\(152\) −3.11003e9 −0.472573
\(153\) 0 0
\(154\) −5.10394e9 −0.731245
\(155\) −8.99318e9 + 1.55766e10i −1.25147 + 2.16761i
\(156\) 0 0
\(157\) 2.43125e9 + 4.21104e9i 0.319360 + 0.553147i 0.980355 0.197243i \(-0.0631988\pi\)
−0.660995 + 0.750390i \(0.729865\pi\)
\(158\) 2.58813e9 + 4.48277e9i 0.330391 + 0.572255i
\(159\) 0 0
\(160\) −1.05583e9 + 1.82875e9i −0.127366 + 0.220604i
\(161\) −8.55403e9 −1.00335
\(162\) 0 0
\(163\) −5.20600e9 −0.577644 −0.288822 0.957383i \(-0.593264\pi\)
−0.288822 + 0.957383i \(0.593264\pi\)
\(164\) 2.45858e9 4.25838e9i 0.265391 0.459671i
\(165\) 0 0
\(166\) 4.27286e9 + 7.40081e9i 0.436749 + 0.756472i
\(167\) 5.23759e9 + 9.07177e9i 0.521083 + 0.902543i 0.999699 + 0.0245187i \(0.00780532\pi\)
−0.478616 + 0.878024i \(0.658861\pi\)
\(168\) 0 0
\(169\) 4.26199e9 7.38199e9i 0.401904 0.696119i
\(170\) −4.59937e9 −0.422355
\(171\) 0 0
\(172\) 3.53899e9 0.308320
\(173\) −2.85883e9 + 4.95164e9i −0.242650 + 0.420283i −0.961468 0.274916i \(-0.911350\pi\)
0.718818 + 0.695198i \(0.244683\pi\)
\(174\) 0 0
\(175\) 4.79889e9 + 8.31191e9i 0.386785 + 0.669931i
\(176\) −2.28971e9 3.96589e9i −0.179876 0.311554i
\(177\) 0 0
\(178\) 6.38259e9 1.10550e10i 0.476548 0.825406i
\(179\) 1.76705e10 1.28650 0.643249 0.765657i \(-0.277586\pi\)
0.643249 + 0.765657i \(0.277586\pi\)
\(180\) 0 0
\(181\) 2.45903e10 1.70298 0.851492 0.524368i \(-0.175698\pi\)
0.851492 + 0.524368i \(0.175698\pi\)
\(182\) 1.66583e9 2.88531e9i 0.112541 0.194926i
\(183\) 0 0
\(184\) −3.83747e9 6.64668e9i −0.246811 0.427489i
\(185\) −1.99353e10 3.45290e10i −1.25127 2.16726i
\(186\) 0 0
\(187\) 4.98718e9 8.63805e9i 0.298241 0.516569i
\(188\) 7.21431e9 0.421196
\(189\) 0 0
\(190\) −2.44652e10 −1.36194
\(191\) 1.23175e9 2.13346e9i 0.0669688 0.115993i −0.830597 0.556874i \(-0.812001\pi\)
0.897566 + 0.440881i \(0.145334\pi\)
\(192\) 0 0
\(193\) 1.69591e10 + 2.93740e10i 0.879821 + 1.52389i 0.851537 + 0.524295i \(0.175671\pi\)
0.0282845 + 0.999600i \(0.490996\pi\)
\(194\) 5.15111e9 + 8.92198e9i 0.261092 + 0.452224i
\(195\) 0 0
\(196\) 2.49765e9 4.32606e9i 0.120887 0.209383i
\(197\) −4.87423e9 −0.230573 −0.115286 0.993332i \(-0.536779\pi\)
−0.115286 + 0.993332i \(0.536779\pi\)
\(198\) 0 0
\(199\) 3.53697e10 1.59879 0.799397 0.600804i \(-0.205153\pi\)
0.799397 + 0.600804i \(0.205153\pi\)
\(200\) −4.30570e9 + 7.45770e9i −0.190287 + 0.329587i
\(201\) 0 0
\(202\) −1.10442e10 1.91291e10i −0.466717 0.808378i
\(203\) 1.82004e9 + 3.15241e9i 0.0752229 + 0.130290i
\(204\) 0 0
\(205\) 1.93405e10 3.34987e10i 0.764847 1.32475i
\(206\) −2.66104e10 −1.02955
\(207\) 0 0
\(208\) 2.98927e9 0.110734
\(209\) 2.65280e10 4.59479e10i 0.961716 1.66574i
\(210\) 0 0
\(211\) −1.01964e9 1.76607e9i −0.0354141 0.0613390i 0.847775 0.530356i \(-0.177942\pi\)
−0.883189 + 0.469017i \(0.844608\pi\)
\(212\) 7.81295e9 + 1.35324e10i 0.265646 + 0.460113i
\(213\) 0 0
\(214\) −1.24595e10 + 2.15804e10i −0.406104 + 0.703393i
\(215\) 2.78396e10 0.888565
\(216\) 0 0
\(217\) −4.07733e10 −1.24827
\(218\) −1.40978e10 + 2.44181e10i −0.422763 + 0.732247i
\(219\) 0 0
\(220\) −1.80120e10 3.11978e10i −0.518395 0.897887i
\(221\) 3.25544e9 + 5.63860e9i 0.0918005 + 0.159003i
\(222\) 0 0
\(223\) −3.17176e10 + 5.49365e10i −0.858872 + 1.48761i 0.0141339 + 0.999900i \(0.495501\pi\)
−0.873006 + 0.487710i \(0.837832\pi\)
\(224\) −4.78692e9 −0.127040
\(225\) 0 0
\(226\) −2.92793e10 −0.746573
\(227\) 1.55854e10 2.69947e10i 0.389584 0.674779i −0.602810 0.797885i \(-0.705952\pi\)
0.992394 + 0.123106i \(0.0392855\pi\)
\(228\) 0 0
\(229\) −3.12529e10 5.41316e10i −0.750983 1.30074i −0.947346 0.320210i \(-0.896246\pi\)
0.196363 0.980531i \(-0.437087\pi\)
\(230\) −3.01875e10 5.22864e10i −0.711299 1.23201i
\(231\) 0 0
\(232\) −1.63300e9 + 2.82844e9i −0.0370075 + 0.0640989i
\(233\) −6.62666e10 −1.47297 −0.736483 0.676456i \(-0.763515\pi\)
−0.736483 + 0.676456i \(0.763515\pi\)
\(234\) 0 0
\(235\) 5.67516e10 1.21387
\(236\) 1.04680e10 1.81310e10i 0.219664 0.380469i
\(237\) 0 0
\(238\) −5.21316e9 9.02946e9i −0.105319 0.182417i
\(239\) −2.09479e10 3.62829e10i −0.415289 0.719302i 0.580170 0.814496i \(-0.302986\pi\)
−0.995459 + 0.0951940i \(0.969653\pi\)
\(240\) 0 0
\(241\) −2.41413e10 + 4.18139e10i −0.460982 + 0.798443i −0.999010 0.0444831i \(-0.985836\pi\)
0.538029 + 0.842927i \(0.319169\pi\)
\(242\) 4.03960e10 0.757127
\(243\) 0 0
\(244\) −3.65603e10 −0.660322
\(245\) 1.96479e10 3.40311e10i 0.348392 0.603432i
\(246\) 0 0
\(247\) 1.73165e10 + 2.99931e10i 0.296022 + 0.512725i
\(248\) −1.82915e10 3.16819e10i −0.307056 0.531837i
\(249\) 0 0
\(250\) −2.40484e9 + 4.16530e9i −0.0389364 + 0.0674398i
\(251\) 3.68932e10 0.586699 0.293349 0.956005i \(-0.405230\pi\)
0.293349 + 0.956005i \(0.405230\pi\)
\(252\) 0 0
\(253\) 1.30932e11 2.00910
\(254\) 1.12864e10 1.95487e10i 0.170140 0.294691i
\(255\) 0 0
\(256\) −2.14748e9 3.71955e9i −0.0312500 0.0541266i
\(257\) −1.04030e10 1.80186e10i −0.148751 0.257645i 0.782015 0.623260i \(-0.214192\pi\)
−0.930766 + 0.365615i \(0.880859\pi\)
\(258\) 0 0
\(259\) 4.51914e10 7.82739e10i 0.624033 1.08086i
\(260\) 2.35152e10 0.319131
\(261\) 0 0
\(262\) −4.60487e10 −0.603756
\(263\) 3.76669e10 6.52410e10i 0.485467 0.840853i −0.514394 0.857554i \(-0.671983\pi\)
0.999861 + 0.0167013i \(0.00531643\pi\)
\(264\) 0 0
\(265\) 6.14608e10 + 1.06453e11i 0.765582 + 1.32603i
\(266\) −2.77301e10 4.80299e10i −0.339613 0.588226i
\(267\) 0 0
\(268\) −2.16080e10 + 3.74261e10i −0.255863 + 0.443167i
\(269\) −1.50056e11 −1.74730 −0.873650 0.486554i \(-0.838254\pi\)
−0.873650 + 0.486554i \(0.838254\pi\)
\(270\) 0 0
\(271\) −1.87348e10 −0.211003 −0.105501 0.994419i \(-0.533645\pi\)
−0.105501 + 0.994419i \(0.533645\pi\)
\(272\) 4.67740e9 8.10150e9i 0.0518137 0.0897440i
\(273\) 0 0
\(274\) −3.20377e10 5.54909e10i −0.343387 0.594763i
\(275\) −7.34538e10 1.27226e11i −0.774492 1.34146i
\(276\) 0 0
\(277\) −6.64283e10 + 1.15057e11i −0.677945 + 1.17423i 0.297654 + 0.954674i \(0.403796\pi\)
−0.975599 + 0.219561i \(0.929538\pi\)
\(278\) 2.97162e10 0.298395
\(279\) 0 0
\(280\) −3.76564e10 −0.366124
\(281\) 2.58872e7 4.48380e7i 0.000247689 0.000429011i −0.865902 0.500214i \(-0.833254\pi\)
0.866149 + 0.499785i \(0.166588\pi\)
\(282\) 0 0
\(283\) 6.12757e10 + 1.06133e11i 0.567870 + 0.983580i 0.996776 + 0.0802311i \(0.0255658\pi\)
−0.428906 + 0.903349i \(0.641101\pi\)
\(284\) −1.43605e10 2.48731e10i −0.130990 0.226880i
\(285\) 0 0
\(286\) −2.54979e10 + 4.41637e10i −0.225350 + 0.390318i
\(287\) 8.76859e10 0.762889
\(288\) 0 0
\(289\) −9.82123e10 −0.828182
\(290\) −1.28460e10 + 2.22500e10i −0.106654 + 0.184731i
\(291\) 0 0
\(292\) 3.95163e10 + 6.84443e10i 0.318093 + 0.550953i
\(293\) 1.98069e10 + 3.43066e10i 0.157005 + 0.271940i 0.933787 0.357829i \(-0.116483\pi\)
−0.776783 + 0.629769i \(0.783150\pi\)
\(294\) 0 0
\(295\) 8.23466e10 1.42628e11i 0.633062 1.09650i
\(296\) 8.10943e10 0.614013
\(297\) 0 0
\(298\) −1.11102e11 −0.816111
\(299\) −4.27336e10 + 7.40168e10i −0.309207 + 0.535562i
\(300\) 0 0
\(301\) 3.15548e10 + 5.46545e10i 0.221573 + 0.383775i
\(302\) 4.03097e10 + 6.98185e10i 0.278855 + 0.482991i
\(303\) 0 0
\(304\) 2.48803e10 4.30939e10i 0.167080 0.289391i
\(305\) −2.87603e11 −1.90302
\(306\) 0 0
\(307\) −3.98499e10 −0.256038 −0.128019 0.991772i \(-0.540862\pi\)
−0.128019 + 0.991772i \(0.540862\pi\)
\(308\) 4.08315e10 7.07223e10i 0.258534 0.447794i
\(309\) 0 0
\(310\) −1.43891e11 2.49226e11i −0.884924 1.53273i
\(311\) 2.19109e10 + 3.79507e10i 0.132812 + 0.230037i 0.924760 0.380552i \(-0.124266\pi\)
−0.791947 + 0.610589i \(0.790933\pi\)
\(312\) 0 0
\(313\) 4.72413e10 8.18244e10i 0.278210 0.481874i −0.692730 0.721197i \(-0.743592\pi\)
0.970940 + 0.239323i \(0.0769256\pi\)
\(314\) −7.77998e10 −0.451643
\(315\) 0 0
\(316\) −8.28201e10 −0.467244
\(317\) 9.69797e10 1.67974e11i 0.539404 0.934275i −0.459532 0.888161i \(-0.651983\pi\)
0.998936 0.0461138i \(-0.0146837\pi\)
\(318\) 0 0
\(319\) −2.78584e10 4.82521e10i −0.150625 0.260891i
\(320\) −1.68932e10 2.92600e10i −0.0900613 0.155991i
\(321\) 0 0
\(322\) 6.84322e10 1.18528e11i 0.354739 0.614426i
\(323\) 1.08383e11 0.554050
\(324\) 0 0
\(325\) 9.58958e10 0.476787
\(326\) 4.16480e10 7.21365e10i 0.204228 0.353733i
\(327\) 0 0
\(328\) 3.93372e10 + 6.81340e10i 0.187660 + 0.325036i
\(329\) 6.43252e10 + 1.11414e11i 0.302691 + 0.524276i
\(330\) 0 0
\(331\) −2.99808e10 + 5.19283e10i −0.137283 + 0.237782i −0.926467 0.376375i \(-0.877170\pi\)
0.789184 + 0.614157i \(0.210504\pi\)
\(332\) −1.36732e11 −0.617657
\(333\) 0 0
\(334\) −1.67603e11 −0.736923
\(335\) −1.69980e11 + 2.94414e11i −0.737387 + 1.27719i
\(336\) 0 0
\(337\) 5.19827e10 + 9.00366e10i 0.219545 + 0.380264i 0.954669 0.297669i \(-0.0962093\pi\)
−0.735124 + 0.677933i \(0.762876\pi\)
\(338\) 6.81919e10 + 1.18112e11i 0.284189 + 0.492230i
\(339\) 0 0
\(340\) 3.67950e10 6.37307e10i 0.149325 0.258639i
\(341\) 6.24094e11 2.49951
\(342\) 0 0
\(343\) 2.73300e11 1.06615
\(344\) −2.83119e10 + 4.90376e10i −0.109007 + 0.188806i
\(345\) 0 0
\(346\) −4.57413e10 7.92262e10i −0.171580 0.297185i
\(347\) −4.78480e10 8.28751e10i −0.177166 0.306861i 0.763743 0.645521i \(-0.223360\pi\)
−0.940909 + 0.338660i \(0.890026\pi\)
\(348\) 0 0
\(349\) −1.60443e10 + 2.77895e10i −0.0578903 + 0.100269i −0.893518 0.449027i \(-0.851771\pi\)
0.835628 + 0.549296i \(0.185104\pi\)
\(350\) −1.53564e11 −0.546996
\(351\) 0 0
\(352\) 7.32706e10 0.254383
\(353\) −1.10681e11 + 1.91706e11i −0.379392 + 0.657126i −0.990974 0.134055i \(-0.957200\pi\)
0.611582 + 0.791181i \(0.290533\pi\)
\(354\) 0 0
\(355\) −1.12967e11 1.95665e11i −0.377507 0.653861i
\(356\) 1.02121e11 + 1.76879e11i 0.336970 + 0.583650i
\(357\) 0 0
\(358\) −1.41364e11 + 2.44849e11i −0.454846 + 0.787816i
\(359\) 2.52052e11 0.800874 0.400437 0.916324i \(-0.368858\pi\)
0.400437 + 0.916324i \(0.368858\pi\)
\(360\) 0 0
\(361\) 2.53827e11 0.786603
\(362\) −1.96722e11 + 3.40733e11i −0.602095 + 1.04286i
\(363\) 0 0
\(364\) 2.66533e10 + 4.61649e10i 0.0795784 + 0.137834i
\(365\) 3.10856e11 + 5.38419e11i 0.916731 + 1.58782i
\(366\) 0 0
\(367\) −3.61273e10 + 6.25744e10i −0.103953 + 0.180053i −0.913310 0.407265i \(-0.866483\pi\)
0.809357 + 0.587317i \(0.199816\pi\)
\(368\) 1.22799e11 0.349043
\(369\) 0 0
\(370\) 6.37931e11 1.76956
\(371\) −1.39326e11 + 2.41319e11i −0.381811 + 0.661316i
\(372\) 0 0
\(373\) −2.39177e10 4.14266e10i −0.0639778 0.110813i 0.832262 0.554382i \(-0.187045\pi\)
−0.896240 + 0.443569i \(0.853712\pi\)
\(374\) 7.97948e10 + 1.38209e11i 0.210888 + 0.365269i
\(375\) 0 0
\(376\) −5.77145e10 + 9.99644e10i −0.148915 + 0.257929i
\(377\) 3.63698e10 0.0927268
\(378\) 0 0
\(379\) 5.03865e11 1.25440 0.627202 0.778857i \(-0.284200\pi\)
0.627202 + 0.778857i \(0.284200\pi\)
\(380\) 1.95721e11 3.39000e11i 0.481518 0.834013i
\(381\) 0 0
\(382\) 1.97080e10 + 3.41353e10i 0.0473541 + 0.0820197i
\(383\) −2.89438e11 5.01321e11i −0.687322 1.19048i −0.972701 0.232062i \(-0.925453\pi\)
0.285379 0.958415i \(-0.407881\pi\)
\(384\) 0 0
\(385\) 3.21203e11 5.56339e11i 0.745085 1.29053i
\(386\) −5.42691e11 −1.24426
\(387\) 0 0
\(388\) −1.64835e11 −0.369239
\(389\) 2.40990e11 4.17406e11i 0.533611 0.924242i −0.465618 0.884986i \(-0.654168\pi\)
0.999229 0.0392560i \(-0.0124988\pi\)
\(390\) 0 0
\(391\) 1.33733e11 + 2.31633e11i 0.289364 + 0.501193i
\(392\) 3.99624e10 + 6.92170e10i 0.0854801 + 0.148056i
\(393\) 0 0
\(394\) 3.89938e10 6.75393e10i 0.0815197 0.141196i
\(395\) −6.51507e11 −1.34658
\(396\) 0 0
\(397\) 5.02870e10 0.101601 0.0508006 0.998709i \(-0.483823\pi\)
0.0508006 + 0.998709i \(0.483823\pi\)
\(398\) −2.82957e11 + 4.90097e11i −0.565259 + 0.979057i
\(399\) 0 0
\(400\) −6.88913e10 1.19323e11i −0.134553 0.233053i
\(401\) 3.05197e11 + 5.28617e11i 0.589429 + 1.02092i 0.994307 + 0.106550i \(0.0339804\pi\)
−0.404879 + 0.914370i \(0.632686\pi\)
\(402\) 0 0
\(403\) −2.03693e11 + 3.52806e11i −0.384683 + 0.666290i
\(404\) 3.53415e11 0.660038
\(405\) 0 0
\(406\) −5.82414e10 −0.106381
\(407\) −6.91719e11 + 1.19809e12i −1.24955 + 2.16429i
\(408\) 0 0
\(409\) −3.72674e11 6.45491e11i −0.658529 1.14061i −0.980997 0.194025i \(-0.937846\pi\)
0.322468 0.946580i \(-0.395488\pi\)
\(410\) 3.09447e11 + 5.35979e11i 0.540828 + 0.936742i
\(411\) 0 0
\(412\) 2.12883e11 3.68724e11i 0.364002 0.630469i
\(413\) 3.73343e11 0.631441
\(414\) 0 0
\(415\) −1.07560e12 −1.78006
\(416\) −2.39142e10 + 4.14205e10i −0.0391503 + 0.0678103i
\(417\) 0 0
\(418\) 4.24449e11 + 7.35166e11i 0.680036 + 1.17786i
\(419\) 1.48142e10 + 2.56590e10i 0.0234809 + 0.0406702i 0.877527 0.479527i \(-0.159192\pi\)
−0.854046 + 0.520197i \(0.825858\pi\)
\(420\) 0 0
\(421\) −2.70046e11 + 4.67733e11i −0.418955 + 0.725652i −0.995835 0.0911777i \(-0.970937\pi\)
0.576879 + 0.816829i \(0.304270\pi\)
\(422\) 3.26285e10 0.0500831
\(423\) 0 0
\(424\) −2.50014e11 −0.375681
\(425\) 1.50051e11 2.59896e11i 0.223095 0.386411i
\(426\) 0 0
\(427\) −3.25984e11 5.64620e11i −0.474537 0.821923i
\(428\) −1.99351e11 3.45287e11i −0.287159 0.497374i
\(429\) 0 0
\(430\) −2.22716e11 + 3.85756e11i −0.314155 + 0.544133i
\(431\) −5.69766e11 −0.795333 −0.397666 0.917530i \(-0.630180\pi\)
−0.397666 + 0.917530i \(0.630180\pi\)
\(432\) 0 0
\(433\) −1.15909e12 −1.58460 −0.792301 0.610131i \(-0.791117\pi\)
−0.792301 + 0.610131i \(0.791117\pi\)
\(434\) 3.26187e11 5.64972e11i 0.441329 0.764404i
\(435\) 0 0
\(436\) −2.25565e11 3.90689e11i −0.298938 0.517777i
\(437\) 7.11360e11 + 1.23211e12i 0.933089 + 1.61616i
\(438\) 0 0
\(439\) −4.39268e10 + 7.60834e10i −0.0564467 + 0.0977686i −0.892868 0.450319i \(-0.851310\pi\)
0.836421 + 0.548087i \(0.184644\pi\)
\(440\) 5.76385e11 0.733122
\(441\) 0 0
\(442\) −1.04174e11 −0.129826
\(443\) −9.88616e9 + 1.71233e10i −0.0121958 + 0.0211238i −0.872059 0.489401i \(-0.837215\pi\)
0.859863 + 0.510525i \(0.170549\pi\)
\(444\) 0 0
\(445\) 8.03341e11 + 1.39143e12i 0.971136 + 1.68206i
\(446\) −5.07482e11 8.78984e11i −0.607314 1.05190i
\(447\) 0 0
\(448\) 3.82953e10 6.63295e10i 0.0449154 0.0777957i
\(449\) −4.74948e11 −0.551490 −0.275745 0.961231i \(-0.588925\pi\)
−0.275745 + 0.961231i \(0.588925\pi\)
\(450\) 0 0
\(451\) −1.34216e12 −1.52760
\(452\) 2.34234e11 4.05706e11i 0.263954 0.457181i
\(453\) 0 0
\(454\) 2.49366e11 + 4.31915e11i 0.275477 + 0.477141i
\(455\) 2.09669e11 + 3.63158e11i 0.229342 + 0.397232i
\(456\) 0 0
\(457\) −4.13907e11 + 7.16908e11i −0.443895 + 0.768848i −0.997974 0.0636154i \(-0.979737\pi\)
0.554080 + 0.832464i \(0.313070\pi\)
\(458\) 1.00009e12 1.06205
\(459\) 0 0
\(460\) 9.66001e11 1.00593
\(461\) −2.13021e11 + 3.68963e11i −0.219669 + 0.380477i −0.954707 0.297549i \(-0.903831\pi\)
0.735038 + 0.678026i \(0.237164\pi\)
\(462\) 0 0
\(463\) −4.58672e10 7.94444e10i −0.0463861 0.0803431i 0.841900 0.539633i \(-0.181437\pi\)
−0.888286 + 0.459290i \(0.848104\pi\)
\(464\) −2.61280e10 4.52550e10i −0.0261683 0.0453248i
\(465\) 0 0
\(466\) 5.30133e11 9.18217e11i 0.520772 0.902004i
\(467\) 1.26314e12 1.22892 0.614462 0.788947i \(-0.289373\pi\)
0.614462 + 0.788947i \(0.289373\pi\)
\(468\) 0 0
\(469\) −7.70655e11 −0.735499
\(470\) −4.54013e11 + 7.86373e11i −0.429168 + 0.743342i
\(471\) 0 0
\(472\) 1.67487e11 + 2.90097e11i 0.155326 + 0.269032i
\(473\) −4.82991e11 8.36565e11i −0.443674 0.768465i
\(474\) 0 0
\(475\) 7.98159e11 1.38245e12i 0.719396 1.24603i
\(476\) 1.66821e11 0.148943
\(477\) 0 0
\(478\) 6.70333e11 0.587307
\(479\) 6.18800e11 1.07179e12i 0.537082 0.930253i −0.461978 0.886892i \(-0.652860\pi\)
0.999059 0.0433615i \(-0.0138067\pi\)
\(480\) 0 0
\(481\) −4.51529e11 7.82071e11i −0.384621 0.666182i
\(482\) −3.86260e11 6.69023e11i −0.325963 0.564585i
\(483\) 0 0
\(484\) −3.23168e11 + 5.59743e11i −0.267685 + 0.463644i
\(485\) −1.29668e12 −1.06413
\(486\) 0 0
\(487\) 4.32311e11 0.348270 0.174135 0.984722i \(-0.444287\pi\)
0.174135 + 0.984722i \(0.444287\pi\)
\(488\) 2.92482e11 5.06594e11i 0.233459 0.404363i
\(489\) 0 0
\(490\) 3.14366e11 + 5.44498e11i 0.246350 + 0.426691i
\(491\) −8.15711e11 1.41285e12i −0.633388 1.09706i −0.986854 0.161613i \(-0.948330\pi\)
0.353466 0.935447i \(-0.385003\pi\)
\(492\) 0 0
\(493\) 5.69090e10 9.85693e10i 0.0433880 0.0751503i
\(494\) −5.54128e11 −0.418639
\(495\) 0 0
\(496\) 5.85329e11 0.434243
\(497\) 2.56086e11 4.43553e11i 0.188270 0.326093i
\(498\) 0 0
\(499\) 3.59266e11 + 6.22267e11i 0.259396 + 0.449288i 0.966080 0.258242i \(-0.0831431\pi\)
−0.706684 + 0.707529i \(0.749810\pi\)
\(500\) −3.84774e10 6.66448e10i −0.0275322 0.0476871i
\(501\) 0 0
\(502\) −2.95146e11 + 5.11208e11i −0.207429 + 0.359278i
\(503\) −5.17308e11 −0.360324 −0.180162 0.983637i \(-0.557662\pi\)
−0.180162 + 0.983637i \(0.557662\pi\)
\(504\) 0 0
\(505\) 2.78015e12 1.90220
\(506\) −1.04745e12 + 1.81424e12i −0.710325 + 1.23032i
\(507\) 0 0
\(508\) 1.80583e11 + 3.12779e11i 0.120307 + 0.208378i
\(509\) −3.98945e11 6.90992e11i −0.263441 0.456292i 0.703713 0.710484i \(-0.251524\pi\)
−0.967154 + 0.254192i \(0.918191\pi\)
\(510\) 0 0
\(511\) −7.04681e11 + 1.22054e12i −0.457192 + 0.791880i
\(512\) 6.87195e10 0.0441942
\(513\) 0 0
\(514\) 3.32897e11 0.210366
\(515\) 1.67465e12 2.90058e12i 1.04904 1.81699i
\(516\) 0 0
\(517\) −9.84588e11 1.70536e12i −0.606104 1.04980i
\(518\) 7.23063e11 + 1.25238e12i 0.441258 + 0.764281i
\(519\) 0 0
\(520\) −1.88122e11 + 3.25836e11i −0.112830 + 0.195427i
\(521\) −8.24635e10 −0.0490334 −0.0245167 0.999699i \(-0.507805\pi\)
−0.0245167 + 0.999699i \(0.507805\pi\)
\(522\) 0 0
\(523\) −1.54815e12 −0.904805 −0.452402 0.891814i \(-0.649433\pi\)
−0.452402 + 0.891814i \(0.649433\pi\)
\(524\) 3.68389e11 6.38069e11i 0.213460 0.369723i
\(525\) 0 0
\(526\) 6.02671e11 + 1.04386e12i 0.343277 + 0.594573i
\(527\) 6.37449e11 + 1.10409e12i 0.359996 + 0.623531i
\(528\) 0 0
\(529\) −8.54916e11 + 1.48076e12i −0.474649 + 0.822117i
\(530\) −1.96675e12 −1.08270
\(531\) 0 0
\(532\) 8.87363e11 0.480285
\(533\) 4.38055e11 7.58734e11i 0.235102 0.407209i
\(534\) 0 0
\(535\) −1.56820e12 2.71621e12i −0.827581 1.43341i
\(536\) −3.45727e11 5.98817e11i −0.180922 0.313367i
\(537\) 0 0
\(538\) 1.20045e12 2.07923e12i 0.617764 1.07000i
\(539\) −1.36349e12 −0.695829
\(540\) 0 0
\(541\) −6.21988e11 −0.312172 −0.156086 0.987743i \(-0.549888\pi\)
−0.156086 + 0.987743i \(0.549888\pi\)
\(542\) 1.49879e11 2.59597e11i 0.0746007 0.129212i
\(543\) 0 0
\(544\) 7.48385e10 + 1.29624e11i 0.0366378 + 0.0634586i
\(545\) −1.77441e12 3.07337e12i −0.861529 1.49221i
\(546\) 0 0
\(547\) −2.08975e11 + 3.61956e11i −0.0998050 + 0.172867i −0.911604 0.411070i \(-0.865155\pi\)
0.811799 + 0.583937i \(0.198489\pi\)
\(548\) 1.02521e12 0.485622
\(549\) 0 0
\(550\) 2.35052e12 1.09530
\(551\) 3.02713e11 5.24315e11i 0.139910 0.242331i
\(552\) 0 0
\(553\) −7.38451e11 1.27903e12i −0.335783 0.581593i
\(554\) −1.06285e12 1.84092e12i −0.479379 0.830309i
\(555\) 0 0
\(556\) −2.37730e11 + 4.11760e11i −0.105499 + 0.182729i
\(557\) 1.53061e12 0.673776 0.336888 0.941545i \(-0.390626\pi\)
0.336888 + 0.941545i \(0.390626\pi\)
\(558\) 0 0
\(559\) 6.30557e11 0.273131
\(560\) 3.01252e11 5.21783e11i 0.129444 0.224204i
\(561\) 0 0
\(562\) 4.14196e8 + 7.17408e8i 0.000175143 + 0.000303356i
\(563\) −1.84506e12 3.19574e12i −0.773969 1.34055i −0.935372 0.353665i \(-0.884935\pi\)
0.161403 0.986889i \(-0.448398\pi\)
\(564\) 0 0
\(565\) 1.84261e12 3.19150e12i 0.760704 1.31758i
\(566\) −1.96082e12 −0.803090
\(567\) 0 0
\(568\) 4.59535e11 0.185247
\(569\) 3.72714e11 6.45559e11i 0.149063 0.258185i −0.781818 0.623506i \(-0.785708\pi\)
0.930881 + 0.365321i \(0.119041\pi\)
\(570\) 0 0
\(571\) −1.74561e12 3.02348e12i −0.687202 1.19027i −0.972739 0.231901i \(-0.925505\pi\)
0.285538 0.958368i \(-0.407828\pi\)
\(572\) −4.07967e11 7.06620e11i −0.159347 0.275996i
\(573\) 0 0
\(574\) −7.01487e11 + 1.21501e12i −0.269722 + 0.467172i
\(575\) 3.93939e12 1.50288
\(576\) 0 0
\(577\) −4.10159e12 −1.54050 −0.770249 0.637743i \(-0.779868\pi\)
−0.770249 + 0.637743i \(0.779868\pi\)
\(578\) 7.85698e11 1.36087e12i 0.292806 0.507156i
\(579\) 0 0
\(580\) −2.05537e11 3.56000e11i −0.0754160 0.130624i
\(581\) −1.21914e12 2.11162e12i −0.443876 0.768817i
\(582\) 0 0
\(583\) 2.13258e12 3.69373e12i 0.764533 1.32421i
\(584\) −1.26452e12 −0.449851
\(585\) 0 0
\(586\) −6.33821e11 −0.222038
\(587\) 2.24313e11 3.88522e11i 0.0779801 0.135066i −0.824398 0.566010i \(-0.808486\pi\)
0.902378 + 0.430945i \(0.141820\pi\)
\(588\) 0 0
\(589\) 3.39075e12 + 5.87295e12i 1.16085 + 2.01065i
\(590\) 1.31754e12 + 2.28205e12i 0.447643 + 0.775340i
\(591\) 0 0
\(592\) −6.48754e11 + 1.12368e12i −0.217086 + 0.376005i
\(593\) −8.10869e11 −0.269280 −0.134640 0.990895i \(-0.542988\pi\)
−0.134640 + 0.990895i \(0.542988\pi\)
\(594\) 0 0
\(595\) 1.31230e12 0.429248
\(596\) 8.88817e11 1.53948e12i 0.288539 0.499764i
\(597\) 0 0
\(598\) −6.83738e11 1.18427e12i −0.218642 0.378700i
\(599\) 2.41691e12 + 4.18621e12i 0.767078 + 1.32862i 0.939141 + 0.343533i \(0.111624\pi\)
−0.172062 + 0.985086i \(0.555043\pi\)
\(600\) 0 0
\(601\) −1.93313e12 + 3.34827e12i −0.604401 + 1.04685i 0.387745 + 0.921767i \(0.373254\pi\)
−0.992146 + 0.125086i \(0.960079\pi\)
\(602\) −1.00975e12 −0.313351
\(603\) 0 0
\(604\) −1.28991e12 −0.394361
\(605\) −2.54221e12 + 4.40324e12i −0.771458 + 1.33620i
\(606\) 0 0
\(607\) −1.45385e10 2.51814e10i −0.00434681 0.00752890i 0.863844 0.503760i \(-0.168050\pi\)
−0.868191 + 0.496231i \(0.834717\pi\)
\(608\) 3.98084e11 + 6.89502e11i 0.118143 + 0.204630i
\(609\) 0 0
\(610\) 2.30082e12 3.98514e12i 0.672820 1.16536i
\(611\) 1.28541e12 0.373125
\(612\) 0 0
\(613\) 8.01432e11 0.229242 0.114621 0.993409i \(-0.463435\pi\)
0.114621 + 0.993409i \(0.463435\pi\)
\(614\) 3.18799e11 5.52177e11i 0.0905232 0.156791i
\(615\) 0 0
\(616\) 6.53305e11 + 1.13156e12i 0.182811 + 0.316638i
\(617\) −9.79884e11 1.69721e12i −0.272202 0.471468i 0.697223 0.716854i \(-0.254419\pi\)
−0.969425 + 0.245386i \(0.921085\pi\)
\(618\) 0 0
\(619\) −9.61617e11 + 1.66557e12i −0.263266 + 0.455990i −0.967108 0.254367i \(-0.918133\pi\)
0.703842 + 0.710356i \(0.251466\pi\)
\(620\) 4.60451e12 1.25147
\(621\) 0 0
\(622\) −7.01148e11 −0.187825
\(623\) −1.82110e12 + 3.15423e12i −0.484325 + 0.838875i
\(624\) 0 0
\(625\) 1.75044e12 + 3.03184e12i 0.458866 + 0.794780i
\(626\) 7.55861e11 + 1.30919e12i 0.196724 + 0.340736i
\(627\) 0 0
\(628\) 6.22399e11 1.07803e12i 0.159680 0.276574i
\(629\) −2.82608e12 −0.719875
\(630\) 0 0
\(631\) 2.04866e12 0.514444 0.257222 0.966352i \(-0.417193\pi\)
0.257222 + 0.966352i \(0.417193\pi\)
\(632\) 6.62561e11 1.14759e12i 0.165196 0.286127i
\(633\) 0 0
\(634\) 1.55167e12 + 2.68758e12i 0.381416 + 0.660632i
\(635\) 1.42056e12 + 2.46049e12i 0.346720 + 0.600537i
\(636\) 0 0
\(637\) 4.45018e11 7.70793e11i 0.107090 0.185486i
\(638\) 8.91468e11 0.213016
\(639\) 0 0
\(640\) 5.40584e11 0.127366
\(641\) −1.65327e12 + 2.86354e12i −0.386796 + 0.669950i −0.992017 0.126108i \(-0.959752\pi\)
0.605221 + 0.796058i \(0.293085\pi\)
\(642\) 0 0
\(643\) 1.90539e12 + 3.30024e12i 0.439577 + 0.761370i 0.997657 0.0684173i \(-0.0217949\pi\)
−0.558080 + 0.829787i \(0.688462\pi\)
\(644\) 1.09492e12 + 1.89645e12i 0.250838 + 0.434465i
\(645\) 0 0
\(646\) −8.67062e11 + 1.50180e12i −0.195886 + 0.339285i
\(647\) −5.14649e12 −1.15463 −0.577314 0.816522i \(-0.695899\pi\)
−0.577314 + 0.816522i \(0.695899\pi\)
\(648\) 0 0
\(649\) −5.71455e12 −1.26439
\(650\) −7.67166e11 + 1.32877e12i −0.168570 + 0.291971i
\(651\) 0 0
\(652\) 6.66368e11 + 1.15418e12i 0.144411 + 0.250127i
\(653\) −1.62323e12 2.81151e12i −0.349357 0.605105i 0.636778 0.771047i \(-0.280267\pi\)
−0.986135 + 0.165942i \(0.946933\pi\)
\(654\) 0 0
\(655\) 2.89795e12 5.01939e12i 0.615183 1.06553i
\(656\) −1.25879e12 −0.265391
\(657\) 0 0
\(658\) −2.05841e12 −0.428070
\(659\) 1.64322e12 2.84615e12i 0.339400 0.587859i −0.644920 0.764250i \(-0.723109\pi\)
0.984320 + 0.176392i \(0.0564425\pi\)
\(660\) 0 0
\(661\) 3.10849e11 + 5.38406e11i 0.0633348 + 0.109699i 0.895954 0.444147i \(-0.146493\pi\)
−0.832619 + 0.553846i \(0.813160\pi\)
\(662\) −4.79693e11 8.30853e11i −0.0970740 0.168137i
\(663\) 0 0
\(664\) 1.09385e12 1.89461e12i 0.218375 0.378236i
\(665\) 6.98047e12 1.38416
\(666\) 0 0
\(667\) 1.49407e12 0.292283
\(668\) 1.34082e12 2.32237e12i 0.260542 0.451272i
\(669\) 0 0
\(670\) −2.71968e12 4.71062e12i −0.521411 0.903111i
\(671\) 4.98964e12 + 8.64232e12i 0.950207 + 1.64581i
\(672\) 0 0
\(673\) −4.73224e12 + 8.19648e12i −0.889199 + 1.54014i −0.0483757 + 0.998829i \(0.515404\pi\)
−0.840824 + 0.541309i \(0.817929\pi\)
\(674\) −1.66345e12 −0.310484
\(675\) 0 0
\(676\) −2.18214e12 −0.401904
\(677\) 1.86865e12 3.23660e12i 0.341884 0.592161i −0.642899 0.765951i \(-0.722268\pi\)
0.984783 + 0.173791i \(0.0556017\pi\)
\(678\) 0 0
\(679\) −1.46973e12 2.54564e12i −0.265352 0.459604i
\(680\) 5.88719e11 + 1.01969e12i 0.105589 + 0.182885i
\(681\) 0 0
\(682\) −4.99275e12 + 8.64770e12i −0.883711 + 1.53063i
\(683\) −1.24743e12 −0.219343 −0.109671 0.993968i \(-0.534980\pi\)
−0.109671 + 0.993968i \(0.534980\pi\)
\(684\) 0 0
\(685\) 8.06481e12 1.39954
\(686\) −2.18640e12 + 3.78696e12i −0.376939 + 0.652878i
\(687\) 0 0
\(688\) −4.52990e11 7.84602e11i −0.0770799 0.133506i
\(689\) 1.39207e12 + 2.41113e12i 0.235328 + 0.407600i
\(690\) 0 0
\(691\) 1.32898e12 2.30186e12i 0.221752 0.384086i −0.733588 0.679594i \(-0.762156\pi\)
0.955340 + 0.295509i \(0.0954891\pi\)
\(692\) 1.46372e12 0.242650
\(693\) 0 0
\(694\) 1.53113e12 0.250551
\(695\) −1.87011e12 + 3.23912e12i −0.304043 + 0.526618i
\(696\) 0 0
\(697\) −1.37088e12 2.37443e12i −0.220014 0.381076i
\(698\) −2.56709e11 4.44632e11i −0.0409347 0.0709009i
\(699\) 0 0
\(700\) 1.22851e12 2.12785e12i 0.193392 0.334965i
\(701\) −3.12836e12 −0.489311 −0.244656 0.969610i \(-0.578675\pi\)
−0.244656 + 0.969610i \(0.578675\pi\)
\(702\) 0 0
\(703\) −1.50326e13 −2.32133
\(704\) −5.86165e11 + 1.01527e12i −0.0899379 + 0.155777i
\(705\) 0 0
\(706\) −1.77090e12 3.06729e12i −0.268271 0.464658i
\(707\) 3.15116e12 + 5.45798e12i 0.474333 + 0.821569i
\(708\) 0 0
\(709\) −5.40799e12 + 9.36691e12i −0.803763 + 1.39216i 0.113361 + 0.993554i \(0.463838\pi\)
−0.917123 + 0.398604i \(0.869495\pi\)
\(710\) 3.61495e12 0.533875
\(711\) 0 0
\(712\) −3.26788e12 −0.476548
\(713\) −8.36767e12 + 1.44932e13i −1.21256 + 2.10021i
\(714\) 0 0
\(715\) −3.20929e12 5.55865e12i −0.459231 0.795411i
\(716\) −2.26182e12 3.91759e12i −0.321625 0.557070i
\(717\) 0 0
\(718\) −2.01641e12 + 3.49253e12i −0.283152 + 0.490433i
\(719\) −5.06139e10 −0.00706300 −0.00353150 0.999994i \(-0.501124\pi\)
−0.00353150 + 0.999994i \(0.501124\pi\)
\(720\) 0 0
\(721\) 7.59254e12 1.04635
\(722\) −2.03062e12 + 3.51713e12i −0.278106 + 0.481694i
\(723\) 0 0
\(724\) −3.14756e12 5.45173e12i −0.425746 0.737413i
\(725\) −8.38186e11 1.45178e12i −0.112673 0.195155i
\(726\) 0 0
\(727\) −1.67169e12 + 2.89545e12i −0.221948 + 0.384425i −0.955399 0.295317i \(-0.904575\pi\)
0.733452 + 0.679742i \(0.237908\pi\)
\(728\) −8.52906e11 −0.112541
\(729\) 0 0
\(730\) −9.94741e12 −1.29645
\(731\) 9.86652e11 1.70893e12i 0.127801 0.221359i
\(732\) 0 0
\(733\) 2.08081e12 + 3.60406e12i 0.266234 + 0.461131i 0.967886 0.251389i \(-0.0808873\pi\)
−0.701652 + 0.712520i \(0.747554\pi\)
\(734\) −5.78037e11 1.00119e12i −0.0735061 0.127316i
\(735\) 0 0
\(736\) −9.82391e11 + 1.70155e12i −0.123405 + 0.213744i
\(737\) 1.17960e13 1.47275
\(738\) 0 0
\(739\) 9.32557e12 1.15020 0.575102 0.818081i \(-0.304962\pi\)
0.575102 + 0.818081i \(0.304962\pi\)
\(740\) −5.10344e12 + 8.83943e12i −0.625634 + 1.08363i
\(741\) 0 0
\(742\) −2.22921e12 3.86111e12i −0.269981 0.467621i
\(743\) 4.46909e12 + 7.74069e12i 0.537984 + 0.931815i 0.999012 + 0.0444301i \(0.0141472\pi\)
−0.461029 + 0.887385i \(0.652519\pi\)
\(744\) 0 0
\(745\) 6.99190e12 1.21103e13i 0.831557 1.44030i
\(746\) 7.65366e11 0.0904783
\(747\) 0 0
\(748\) −2.55344e12 −0.298241
\(749\) 3.55497e12 6.15738e12i 0.412731 0.714871i
\(750\) 0 0
\(751\) −1.80514e12 3.12659e12i −0.207076 0.358666i 0.743716 0.668496i \(-0.233061\pi\)
−0.950792 + 0.309829i \(0.899728\pi\)
\(752\) −9.23432e11 1.59943e12i −0.105299 0.182383i
\(753\) 0 0
\(754\) −2.90959e11 + 5.03955e11i −0.0327839 + 0.0567833i
\(755\) −1.01471e13 −1.13653
\(756\) 0 0
\(757\) 1.48103e13 1.63920 0.819599 0.572938i \(-0.194196\pi\)
0.819599 + 0.572938i \(0.194196\pi\)
\(758\) −4.03092e12 + 6.98175e12i −0.443499 + 0.768163i
\(759\) 0 0
\(760\) 3.13154e12 + 5.42399e12i 0.340484 + 0.589736i
\(761\) 8.50988e12 + 1.47396e13i 0.919798 + 1.59314i 0.799720 + 0.600373i \(0.204981\pi\)
0.120079 + 0.992764i \(0.461685\pi\)
\(762\) 0 0
\(763\) 4.02242e12 6.96703e12i 0.429662 0.744196i
\(764\) −6.30656e11 −0.0669688
\(765\) 0 0
\(766\) 9.26200e12 0.972020
\(767\) 1.86512e12 3.23049e12i 0.194593 0.337046i
\(768\) 0 0
\(769\) 5.98957e12 + 1.03742e13i 0.617629 + 1.06976i 0.989917 + 0.141647i \(0.0452398\pi\)
−0.372289 + 0.928117i \(0.621427\pi\)
\(770\) 5.13924e12 + 8.90143e12i 0.526855 + 0.912539i
\(771\) 0 0
\(772\) 4.34152e12 7.51974e12i 0.439911 0.761947i
\(773\) −7.00938e12 −0.706110 −0.353055 0.935603i \(-0.614857\pi\)
−0.353055 + 0.935603i \(0.614857\pi\)
\(774\) 0 0
\(775\) 1.87774e13 1.86972
\(776\) 1.31868e12 2.28403e12i 0.130546 0.226112i
\(777\) 0 0
\(778\) 3.85583e12 + 6.67850e12i 0.377320 + 0.653538i
\(779\) −7.29204e12 1.26302e13i −0.709464 1.22883i
\(780\) 0 0
\(781\) −3.91975e12 + 6.78921e12i −0.376989 + 0.652965i
\(782\) −4.27947e12 −0.409222
\(783\) 0 0
\(784\) −1.27880e12 −0.120887
\(785\) 4.89612e12 8.48033e12i 0.460191 0.797075i
\(786\) 0 0
\(787\) 3.95505e12 + 6.85035e12i 0.367507 + 0.636541i 0.989175 0.146740i \(-0.0468780\pi\)
−0.621668 + 0.783281i \(0.713545\pi\)
\(788\) 6.23901e11 + 1.08063e12i 0.0576432 + 0.0998409i
\(789\) 0 0
\(790\) 5.21205e12 9.02754e12i 0.476088 0.824608i
\(791\) 8.35404e12 0.758756
\(792\) 0 0
\(793\) −6.51411e12 −0.584959
\(794\) −4.02296e11 + 6.96798e11i −0.0359214 + 0.0622178i
\(795\) 0 0
\(796\) −4.52732e12 7.84155e12i −0.399698 0.692298i
\(797\) −3.58482e12 6.20910e12i −0.314706 0.545087i 0.664669 0.747138i \(-0.268573\pi\)
−0.979375 + 0.202051i \(0.935239\pi\)
\(798\) 0 0
\(799\) 2.01131e12 3.48370e12i 0.174590 0.302399i
\(800\) 2.20452e12 0.190287
\(801\) 0 0
\(802\) −9.76632e12 −0.833578
\(803\) 1.07861e13 1.86822e13i 0.915475 1.58565i
\(804\) 0 0
\(805\) 8.61319e12 + 1.49185e13i 0.722907 + 1.25211i
\(806\) −3.25908e12 5.64490e12i −0.272012 0.471138i
\(807\) 0 0
\(808\) −2.82732e12 + 4.89706e12i −0.233359 + 0.404189i
\(809\) 1.58279e13 1.29914 0.649568 0.760304i \(-0.274950\pi\)
0.649568 + 0.760304i \(0.274950\pi\)
\(810\) 0 0
\(811\) −9.43072e11 −0.0765510 −0.0382755 0.999267i \(-0.512186\pi\)
−0.0382755 + 0.999267i \(0.512186\pi\)
\(812\) 4.65931e11 8.07017e11i 0.0376114 0.0651449i
\(813\) 0 0
\(814\) −1.10675e13 1.91695e13i −0.883568 1.53039i
\(815\) 5.24201e12 + 9.07942e12i 0.416187 + 0.720857i
\(816\) 0 0
\(817\) 5.24825e12 9.09023e12i 0.412112 0.713799i
\(818\) 1.19256e13 0.931300
\(819\) 0 0
\(820\) −9.90232e12 −0.764847
\(821\) −9.58597e12 + 1.66034e13i −0.736363 + 1.27542i 0.217760 + 0.976002i \(0.430125\pi\)
−0.954123 + 0.299416i \(0.903208\pi\)
\(822\) 0 0
\(823\) 4.66915e12 + 8.08721e12i 0.354763 + 0.614468i 0.987077 0.160244i \(-0.0512281\pi\)
−0.632314 + 0.774712i \(0.717895\pi\)
\(824\) 3.40613e12 + 5.89959e12i 0.257388 + 0.445809i
\(825\) 0 0
\(826\) −2.98675e12 + 5.17320e12i −0.223248 + 0.386677i
\(827\) −1.08669e13 −0.807854 −0.403927 0.914791i \(-0.632355\pi\)
−0.403927 + 0.914791i \(0.632355\pi\)
\(828\) 0 0
\(829\) −3.98687e12 −0.293181 −0.146591 0.989197i \(-0.546830\pi\)
−0.146591 + 0.989197i \(0.546830\pi\)
\(830\) 8.60482e12 1.49040e13i 0.629347 1.09006i
\(831\) 0 0
\(832\) −3.82627e11 6.62729e11i −0.0276834 0.0479491i
\(833\) −1.39267e12 2.41217e12i −0.100218 0.173582i
\(834\) 0 0
\(835\) 1.05476e13 1.82690e13i 0.750871 1.30055i
\(836\) −1.35824e13 −0.961716
\(837\) 0 0
\(838\) −4.74055e11 −0.0332071
\(839\) −9.38444e12 + 1.62543e13i −0.653852 + 1.13251i 0.328328 + 0.944564i \(0.393515\pi\)
−0.982180 + 0.187941i \(0.939818\pi\)
\(840\) 0 0
\(841\) 6.93568e12 + 1.20129e13i 0.478087 + 0.828071i
\(842\) −4.32073e12 7.48372e12i −0.296246 0.513113i
\(843\) 0 0
\(844\) −2.61028e11 + 4.52114e11i −0.0177070 + 0.0306695i
\(845\) −1.71659e13 −1.15827
\(846\) 0 0
\(847\) −1.15259e13 −0.769482
\(848\) 2.00012e12 3.46430e12i 0.132823 0.230056i
\(849\) 0 0
\(850\) 2.40082e12 + 4.15834e12i 0.157752 + 0.273234i
\(851\) −1.85488e13 3.21274e13i −1.21236 2.09987i
\(852\) 0 0
\(853\) 6.74068e11 1.16752e12i 0.0435947 0.0755082i −0.843405 0.537279i \(-0.819452\pi\)
0.886999 + 0.461771i \(0.152786\pi\)
\(854\) 1.04315e13 0.671097
\(855\) 0 0
\(856\) 6.37924e12 0.406104
\(857\) −2.53665e11 + 4.39361e11i −0.0160637 + 0.0278232i −0.873946 0.486024i \(-0.838447\pi\)
0.857882 + 0.513847i \(0.171780\pi\)
\(858\) 0 0
\(859\) −1.43730e13 2.48947e13i −0.900693 1.56005i −0.826596 0.562795i \(-0.809726\pi\)
−0.0740966 0.997251i \(-0.523607\pi\)
\(860\) −3.56346e12 6.17210e12i −0.222141 0.384760i
\(861\) 0 0
\(862\) 4.55813e12 7.89491e12i 0.281193 0.487040i
\(863\) −3.00660e11 −0.0184513 −0.00922566 0.999957i \(-0.502937\pi\)
−0.00922566 + 0.999957i \(0.502937\pi\)
\(864\) 0 0
\(865\) 1.15144e13 0.699309
\(866\) 9.27268e12 1.60608e13i 0.560241 0.970366i
\(867\) 0 0
\(868\) 5.21899e12 + 9.03955e12i 0.312067 + 0.540515i
\(869\) 1.13030e13 + 1.95774e13i 0.672367 + 1.16457i
\(870\) 0 0
\(871\) −3.84999e12 + 6.66837e12i −0.226661 + 0.392589i
\(872\) 7.21807e12 0.422763
\(873\) 0 0
\(874\) −2.27635e13 −1.31959
\(875\) 6.86154e11 1.18845e12i 0.0395718 0.0685403i
\(876\) 0 0
\(877\) −4.54436e12 7.87107e12i −0.259403 0.449299i 0.706679 0.707534i \(-0.250192\pi\)
−0.966082 + 0.258235i \(0.916859\pi\)
\(878\) −7.02828e11 1.21733e12i −0.0399139 0.0691328i
\(879\) 0 0
\(880\) −4.61108e12 + 7.98663e12i −0.259198 + 0.448943i
\(881\) −1.67414e12 −0.0936266 −0.0468133 0.998904i \(-0.514907\pi\)
−0.0468133 + 0.998904i \(0.514907\pi\)
\(882\) 0 0
\(883\) −2.69670e13 −1.49283 −0.746413 0.665483i \(-0.768226\pi\)
−0.746413 + 0.665483i \(0.768226\pi\)
\(884\) 8.33394e11 1.44348e12i 0.0459003 0.0795016i
\(885\) 0 0
\(886\) −1.58179e11 2.73973e11i −0.00862375 0.0149368i
\(887\) −1.65697e13 2.86996e13i −0.898793 1.55676i −0.829039 0.559191i \(-0.811112\pi\)
−0.0697540 0.997564i \(-0.522221\pi\)
\(888\) 0 0
\(889\) −3.22028e12 + 5.57769e12i −0.172916 + 0.299499i
\(890\) −2.57069e13 −1.37339
\(891\) 0 0
\(892\) 1.62394e13 0.858872
\(893\) 1.06987e13 1.85307e13i 0.562987 0.975123i
\(894\) 0 0
\(895\) −1.77927e13 3.08178e13i −0.926910 1.60545i
\(896\) 6.12726e11 + 1.06127e12i 0.0317600 + 0.0550099i
\(897\) 0 0
\(898\) 3.79959e12 6.58108e12i 0.194981 0.337717i
\(899\) 7.12158e12 0.363628
\(900\) 0 0
\(901\) 8.71285e12 0.440452
\(902\) 1.07373e13 1.85975e13i 0.540087 0.935459i
\(903\) 0 0
\(904\) 3.74775e12 + 6.49129e12i 0.186643 + 0.323276i
\(905\) −2.47604e13 4.28862e13i −1.22698 2.12520i
\(906\) 0 0
\(907\) −1.40098e13 + 2.42658e13i −0.687386 + 1.19059i 0.285295 + 0.958440i \(0.407909\pi\)
−0.972681 + 0.232147i \(0.925425\pi\)
\(908\) −7.97971e12 −0.389584
\(909\) 0 0
\(910\) −6.70941e12 −0.324338
\(911\) −1.22604e13 + 2.12357e13i −0.589758 + 1.02149i 0.404506 + 0.914535i \(0.367443\pi\)
−0.994264 + 0.106955i \(0.965890\pi\)
\(912\) 0 0
\(913\) 1.86607e13 + 3.23213e13i 0.888812 + 1.53947i
\(914\) −6.62251e12 1.14705e13i −0.313881 0.543658i
\(915\) 0 0
\(916\) −8.00074e12 + 1.38577e13i −0.375492 + 0.650371i
\(917\) 1.31387e13 0.613608
\(918\) 0 0
\(919\) 2.79427e13 1.29226 0.646128 0.763229i \(-0.276387\pi\)
0.646128 + 0.763229i \(0.276387\pi\)
\(920\) −7.72801e12 + 1.33853e13i −0.355650 + 0.616003i
\(921\) 0 0
\(922\) −3.40833e12 5.90341e12i −0.155329 0.269038i
\(923\) −2.55867e12 4.43175e12i −0.116040 0.200987i
\(924\) 0 0
\(925\) −2.08120e13 + 3.60475e13i −0.934710 + 1.61896i
\(926\) 1.46775e12 0.0655999
\(927\) 0 0
\(928\) 8.36096e11 0.0370075
\(929\) 5.87646e11 1.01783e12i 0.0258848 0.0448338i −0.852793 0.522249i \(-0.825093\pi\)
0.878678 + 0.477416i \(0.158426\pi\)
\(930\) 0 0
\(931\) −7.40794e12 1.28309e13i −0.323165 0.559738i
\(932\) 8.48212e12 + 1.46915e13i 0.368242 + 0.637813i
\(933\) 0 0
\(934\) −1.01051e13 + 1.75026e13i −0.434490 + 0.752559i
\(935\) −2.00867e13 −0.859520
\(936\) 0 0
\(937\) −3.99627e12 −0.169366 −0.0846830 0.996408i \(-0.526988\pi\)
−0.0846830 + 0.996408i \(0.526988\pi\)
\(938\) 6.16524e12 1.06785e13i 0.260038 0.450399i
\(939\) 0 0
\(940\) −7.26421e12 1.25820e13i −0.303468 0.525622i
\(941\) 3.54323e12 + 6.13706e12i 0.147315 + 0.255157i 0.930234 0.366966i \(-0.119604\pi\)
−0.782919 + 0.622123i \(0.786270\pi\)
\(942\) 0 0
\(943\) 1.79953e13 3.11687e13i 0.741064 1.28356i
\(944\) −5.35960e12 −0.219664
\(945\) 0 0
\(946\) 1.54557e13 0.627449
\(947\) 2.14474e13 3.71481e13i 0.866564 1.50093i 0.00107803 0.999999i \(-0.499657\pi\)
0.865486 0.500933i \(-0.167010\pi\)
\(948\) 0 0
\(949\) 7.04080e12 + 1.21950e13i 0.281789 + 0.488073i
\(950\) 1.27705e13 + 2.21192e13i 0.508690 + 0.881077i
\(951\) 0 0
\(952\) −1.33457e12 + 2.31154e12i −0.0526593 + 0.0912085i
\(953\) 1.57454e13 0.618350 0.309175 0.951005i \(-0.399947\pi\)
0.309175 + 0.951005i \(0.399947\pi\)
\(954\) 0 0
\(955\) −4.96108e12 −0.193002
\(956\) −5.36267e12 + 9.28841e12i −0.207644 + 0.359651i
\(957\) 0 0
\(958\) 9.90080e12 + 1.71487e13i 0.379774 + 0.657788i
\(959\) 9.14107e12 + 1.58328e13i 0.348990 + 0.604469i
\(960\) 0 0
\(961\) −2.66652e13 + 4.61856e13i −1.00853 + 1.74683i
\(962\) 1.44489e13 0.543936
\(963\) 0 0
\(964\) 1.23603e13 0.460982
\(965\) 3.41527e13 5.91543e13i 1.26781 2.19590i
\(966\) 0 0
\(967\) −4.50810e12 7.80826e12i −0.165796 0.287168i 0.771141 0.636664i \(-0.219686\pi\)
−0.936938 + 0.349496i \(0.886353\pi\)
\(968\) −5.17068e12 8.95589e12i −0.189282 0.327846i
\(969\) 0 0
\(970\) 1.03735e13 1.79674e13i 0.376228 0.651646i
\(971\) −1.47845e13 −0.533730 −0.266865 0.963734i \(-0.585988\pi\)
−0.266865 + 0.963734i \(0.585988\pi\)
\(972\) 0 0
\(973\) −8.47870e12 −0.303265
\(974\) −3.45849e12 + 5.99028e12i −0.123132 + 0.213271i
\(975\) 0 0
\(976\) 4.67972e12 + 8.10551e12i 0.165080 + 0.285928i
\(977\) 1.09991e13 + 1.90510e13i 0.386217 + 0.668948i 0.991937 0.126730i \(-0.0404481\pi\)
−0.605720 + 0.795678i \(0.707115\pi\)
\(978\) 0 0
\(979\) 2.78745e13 4.82800e13i 0.969805 1.67975i
\(980\) −1.00597e13 −0.348392
\(981\) 0 0
\(982\) 2.61028e13 0.895746
\(983\) −1.53163e13 + 2.65286e13i −0.523194 + 0.906198i 0.476442 + 0.879206i \(0.341926\pi\)
−0.999636 + 0.0269921i \(0.991407\pi\)
\(984\) 0 0
\(985\) 4.90794e12 + 8.50080e12i 0.166125 + 0.287738i
\(986\) 9.10544e11 + 1.57711e12i 0.0306800 + 0.0531393i
\(987\) 0 0
\(988\) 4.43303e12 7.67823e12i 0.148011 0.256363i
\(989\) 2.59032e13 0.860935
\(990\) 0 0
\(991\) −1.39052e13 −0.457978 −0.228989 0.973429i \(-0.573542\pi\)
−0.228989 + 0.973429i \(0.573542\pi\)
\(992\) −4.68263e12 + 8.11056e12i −0.153528 + 0.265918i
\(993\) 0 0
\(994\) 4.09737e12 + 7.09685e12i 0.133127 + 0.230583i
\(995\) −3.56143e13 6.16858e13i −1.15192 1.99518i
\(996\) 0 0
\(997\) −6.13004e12 + 1.06175e13i −0.196488 + 0.340326i −0.947387 0.320090i \(-0.896287\pi\)
0.750900 + 0.660416i \(0.229620\pi\)
\(998\) −1.14965e13 −0.366842
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.10.c.l.55.1 4
3.2 odd 2 162.10.c.o.55.2 4
9.2 odd 6 54.10.a.f.1.1 2
9.4 even 3 inner 162.10.c.l.109.1 4
9.5 odd 6 162.10.c.o.109.2 4
9.7 even 3 54.10.a.g.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.10.a.f.1.1 2 9.2 odd 6
54.10.a.g.1.2 yes 2 9.7 even 3
162.10.c.l.55.1 4 1.1 even 1 trivial
162.10.c.l.109.1 4 9.4 even 3 inner
162.10.c.o.55.2 4 3.2 odd 2
162.10.c.o.109.2 4 9.5 odd 6