Properties

Label 539.4.a.l.1.2
Level $539$
Weight $4$
Character 539.1
Self dual yes
Analytic conductor $31.802$
Analytic rank $1$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,4,Mod(1,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 539.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-4,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.8020294931\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4x^{9} - 46x^{8} + 148x^{7} + 614x^{6} - 1476x^{5} - 3064x^{4} + 4428x^{3} + 4321x^{2} - 3480x - 658 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.44050\) of defining polynomial
Character \(\chi\) \(=\) 539.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.85471 q^{2} +5.89940 q^{3} +15.5682 q^{4} -4.11981 q^{5} -28.6399 q^{6} -36.7416 q^{8} +7.80287 q^{9} +20.0005 q^{10} +11.0000 q^{11} +91.8432 q^{12} -44.4887 q^{13} -24.3044 q^{15} +53.8242 q^{16} +40.7793 q^{17} -37.8807 q^{18} +115.075 q^{19} -64.1382 q^{20} -53.4018 q^{22} -5.44165 q^{23} -216.753 q^{24} -108.027 q^{25} +215.980 q^{26} -113.251 q^{27} +5.46469 q^{29} +117.991 q^{30} -198.523 q^{31} +32.6321 q^{32} +64.8934 q^{33} -197.972 q^{34} +121.477 q^{36} -271.779 q^{37} -558.658 q^{38} -262.457 q^{39} +151.368 q^{40} -286.044 q^{41} +299.844 q^{43} +171.251 q^{44} -32.1463 q^{45} +26.4176 q^{46} -259.640 q^{47} +317.530 q^{48} +524.441 q^{50} +240.573 q^{51} -692.611 q^{52} +648.664 q^{53} +549.803 q^{54} -45.3179 q^{55} +678.875 q^{57} -26.5295 q^{58} +206.083 q^{59} -378.376 q^{60} -177.991 q^{61} +963.774 q^{62} -589.013 q^{64} +183.285 q^{65} -315.039 q^{66} -123.722 q^{67} +634.861 q^{68} -32.1024 q^{69} -516.226 q^{71} -286.690 q^{72} +431.312 q^{73} +1319.41 q^{74} -637.295 q^{75} +1791.52 q^{76} +1274.15 q^{78} -1120.78 q^{79} -221.745 q^{80} -878.793 q^{81} +1388.66 q^{82} +79.4687 q^{83} -168.003 q^{85} -1455.66 q^{86} +32.2384 q^{87} -404.158 q^{88} +1093.57 q^{89} +156.061 q^{90} -84.7169 q^{92} -1171.17 q^{93} +1260.48 q^{94} -474.089 q^{95} +192.510 q^{96} -1113.81 q^{97} +85.8316 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 4 q^{2} + 8 q^{4} - 84 q^{8} - 18 q^{9} + 110 q^{11} - 76 q^{15} + 40 q^{16} - 44 q^{22} - 384 q^{23} - 338 q^{25} - 340 q^{29} - 228 q^{30} - 276 q^{32} - 60 q^{36} - 1384 q^{37} - 1232 q^{39} - 100 q^{43}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.85471 −1.71640 −0.858200 0.513315i \(-0.828417\pi\)
−0.858200 + 0.513315i \(0.828417\pi\)
\(3\) 5.89940 1.13534 0.567670 0.823256i \(-0.307845\pi\)
0.567670 + 0.823256i \(0.307845\pi\)
\(4\) 15.5682 1.94603
\(5\) −4.11981 −0.368487 −0.184243 0.982881i \(-0.558983\pi\)
−0.184243 + 0.982881i \(0.558983\pi\)
\(6\) −28.6399 −1.94870
\(7\) 0 0
\(8\) −36.7416 −1.62377
\(9\) 7.80287 0.288995
\(10\) 20.0005 0.632471
\(11\) 11.0000 0.301511
\(12\) 91.8432 2.20940
\(13\) −44.4887 −0.949150 −0.474575 0.880215i \(-0.657398\pi\)
−0.474575 + 0.880215i \(0.657398\pi\)
\(14\) 0 0
\(15\) −24.3044 −0.418358
\(16\) 53.8242 0.841003
\(17\) 40.7793 0.581790 0.290895 0.956755i \(-0.406047\pi\)
0.290895 + 0.956755i \(0.406047\pi\)
\(18\) −37.8807 −0.496032
\(19\) 115.075 1.38948 0.694740 0.719261i \(-0.255520\pi\)
0.694740 + 0.719261i \(0.255520\pi\)
\(20\) −64.1382 −0.717086
\(21\) 0 0
\(22\) −53.4018 −0.517514
\(23\) −5.44165 −0.0493331 −0.0246666 0.999696i \(-0.507852\pi\)
−0.0246666 + 0.999696i \(0.507852\pi\)
\(24\) −216.753 −1.84353
\(25\) −108.027 −0.864217
\(26\) 215.980 1.62912
\(27\) −113.251 −0.807232
\(28\) 0 0
\(29\) 5.46469 0.0349920 0.0174960 0.999847i \(-0.494431\pi\)
0.0174960 + 0.999847i \(0.494431\pi\)
\(30\) 117.991 0.718069
\(31\) −198.523 −1.15019 −0.575094 0.818087i \(-0.695035\pi\)
−0.575094 + 0.818087i \(0.695035\pi\)
\(32\) 32.6321 0.180269
\(33\) 64.8934 0.342318
\(34\) −197.972 −0.998584
\(35\) 0 0
\(36\) 121.477 0.562394
\(37\) −271.779 −1.20757 −0.603786 0.797147i \(-0.706342\pi\)
−0.603786 + 0.797147i \(0.706342\pi\)
\(38\) −558.658 −2.38490
\(39\) −262.457 −1.07761
\(40\) 151.368 0.598336
\(41\) −286.044 −1.08957 −0.544787 0.838575i \(-0.683389\pi\)
−0.544787 + 0.838575i \(0.683389\pi\)
\(42\) 0 0
\(43\) 299.844 1.06339 0.531695 0.846936i \(-0.321555\pi\)
0.531695 + 0.846936i \(0.321555\pi\)
\(44\) 171.251 0.586750
\(45\) −32.1463 −0.106491
\(46\) 26.4176 0.0846754
\(47\) −259.640 −0.805797 −0.402898 0.915245i \(-0.631997\pi\)
−0.402898 + 0.915245i \(0.631997\pi\)
\(48\) 317.530 0.954823
\(49\) 0 0
\(50\) 524.441 1.48334
\(51\) 240.573 0.660528
\(52\) −692.611 −1.84707
\(53\) 648.664 1.68115 0.840574 0.541697i \(-0.182218\pi\)
0.840574 + 0.541697i \(0.182218\pi\)
\(54\) 549.803 1.38553
\(55\) −45.3179 −0.111103
\(56\) 0 0
\(57\) 678.875 1.57753
\(58\) −26.5295 −0.0600603
\(59\) 206.083 0.454741 0.227371 0.973808i \(-0.426987\pi\)
0.227371 + 0.973808i \(0.426987\pi\)
\(60\) −378.376 −0.814136
\(61\) −177.991 −0.373596 −0.186798 0.982398i \(-0.559811\pi\)
−0.186798 + 0.982398i \(0.559811\pi\)
\(62\) 963.774 1.97418
\(63\) 0 0
\(64\) −589.013 −1.15042
\(65\) 183.285 0.349749
\(66\) −315.039 −0.587554
\(67\) −123.722 −0.225597 −0.112799 0.993618i \(-0.535982\pi\)
−0.112799 + 0.993618i \(0.535982\pi\)
\(68\) 634.861 1.13218
\(69\) −32.1024 −0.0560099
\(70\) 0 0
\(71\) −516.226 −0.862884 −0.431442 0.902141i \(-0.641995\pi\)
−0.431442 + 0.902141i \(0.641995\pi\)
\(72\) −286.690 −0.469261
\(73\) 431.312 0.691524 0.345762 0.938322i \(-0.387620\pi\)
0.345762 + 0.938322i \(0.387620\pi\)
\(74\) 1319.41 2.07268
\(75\) −637.295 −0.981180
\(76\) 1791.52 2.70397
\(77\) 0 0
\(78\) 1274.15 1.84961
\(79\) −1120.78 −1.59617 −0.798086 0.602543i \(-0.794154\pi\)
−0.798086 + 0.602543i \(0.794154\pi\)
\(80\) −221.745 −0.309898
\(81\) −878.793 −1.20548
\(82\) 1388.66 1.87014
\(83\) 79.4687 0.105094 0.0525471 0.998618i \(-0.483266\pi\)
0.0525471 + 0.998618i \(0.483266\pi\)
\(84\) 0 0
\(85\) −168.003 −0.214382
\(86\) −1455.66 −1.82520
\(87\) 32.2384 0.0397278
\(88\) −404.158 −0.489584
\(89\) 1093.57 1.30245 0.651224 0.758886i \(-0.274256\pi\)
0.651224 + 0.758886i \(0.274256\pi\)
\(90\) 156.061 0.182781
\(91\) 0 0
\(92\) −84.7169 −0.0960038
\(93\) −1171.17 −1.30585
\(94\) 1260.48 1.38307
\(95\) −474.089 −0.512005
\(96\) 192.510 0.204666
\(97\) −1113.81 −1.16588 −0.582941 0.812515i \(-0.698098\pi\)
−0.582941 + 0.812515i \(0.698098\pi\)
\(98\) 0 0
\(99\) 85.8316 0.0871354
\(100\) −1681.79 −1.68179
\(101\) −844.439 −0.831929 −0.415964 0.909381i \(-0.636556\pi\)
−0.415964 + 0.909381i \(0.636556\pi\)
\(102\) −1167.91 −1.13373
\(103\) −1851.34 −1.77105 −0.885523 0.464596i \(-0.846199\pi\)
−0.885523 + 0.464596i \(0.846199\pi\)
\(104\) 1634.59 1.54120
\(105\) 0 0
\(106\) −3149.08 −2.88552
\(107\) 2053.86 1.85564 0.927822 0.373022i \(-0.121678\pi\)
0.927822 + 0.373022i \(0.121678\pi\)
\(108\) −1763.13 −1.57090
\(109\) −1922.51 −1.68938 −0.844691 0.535254i \(-0.820216\pi\)
−0.844691 + 0.535254i \(0.820216\pi\)
\(110\) 220.005 0.190697
\(111\) −1603.33 −1.37100
\(112\) 0 0
\(113\) −1834.00 −1.52680 −0.763400 0.645926i \(-0.776471\pi\)
−0.763400 + 0.645926i \(0.776471\pi\)
\(114\) −3295.75 −2.70767
\(115\) 22.4185 0.0181786
\(116\) 85.0756 0.0680955
\(117\) −347.140 −0.274300
\(118\) −1000.47 −0.780518
\(119\) 0 0
\(120\) 892.983 0.679315
\(121\) 121.000 0.0909091
\(122\) 864.094 0.641241
\(123\) −1687.48 −1.23704
\(124\) −3090.66 −2.23830
\(125\) 960.027 0.686940
\(126\) 0 0
\(127\) −1633.03 −1.14101 −0.570505 0.821294i \(-0.693252\pi\)
−0.570505 + 0.821294i \(0.693252\pi\)
\(128\) 2598.43 1.79431
\(129\) 1768.90 1.20731
\(130\) −889.796 −0.600310
\(131\) −1274.62 −0.850106 −0.425053 0.905169i \(-0.639744\pi\)
−0.425053 + 0.905169i \(0.639744\pi\)
\(132\) 1010.28 0.666160
\(133\) 0 0
\(134\) 600.634 0.387215
\(135\) 466.574 0.297454
\(136\) −1498.30 −0.944690
\(137\) −2229.26 −1.39021 −0.695104 0.718909i \(-0.744642\pi\)
−0.695104 + 0.718909i \(0.744642\pi\)
\(138\) 155.848 0.0961353
\(139\) 649.837 0.396536 0.198268 0.980148i \(-0.436468\pi\)
0.198268 + 0.980148i \(0.436468\pi\)
\(140\) 0 0
\(141\) −1531.72 −0.914853
\(142\) 2506.13 1.48105
\(143\) −489.376 −0.286180
\(144\) 419.983 0.243046
\(145\) −22.5135 −0.0128941
\(146\) −2093.90 −1.18693
\(147\) 0 0
\(148\) −4231.12 −2.34997
\(149\) 1510.31 0.830397 0.415198 0.909731i \(-0.363712\pi\)
0.415198 + 0.909731i \(0.363712\pi\)
\(150\) 3093.89 1.68410
\(151\) 654.054 0.352491 0.176246 0.984346i \(-0.443605\pi\)
0.176246 + 0.984346i \(0.443605\pi\)
\(152\) −4228.06 −2.25619
\(153\) 318.195 0.168134
\(154\) 0 0
\(155\) 817.878 0.423829
\(156\) −4085.99 −2.09706
\(157\) 2856.39 1.45201 0.726003 0.687692i \(-0.241376\pi\)
0.726003 + 0.687692i \(0.241376\pi\)
\(158\) 5441.07 2.73967
\(159\) 3826.73 1.90867
\(160\) −134.438 −0.0664267
\(161\) 0 0
\(162\) 4266.29 2.06908
\(163\) −2834.74 −1.36217 −0.681085 0.732204i \(-0.738492\pi\)
−0.681085 + 0.732204i \(0.738492\pi\)
\(164\) −4453.20 −2.12034
\(165\) −267.348 −0.126140
\(166\) −385.798 −0.180384
\(167\) −2532.48 −1.17347 −0.586733 0.809780i \(-0.699586\pi\)
−0.586733 + 0.809780i \(0.699586\pi\)
\(168\) 0 0
\(169\) −217.753 −0.0991139
\(170\) 815.605 0.367965
\(171\) 897.919 0.401553
\(172\) 4668.04 2.06939
\(173\) −573.147 −0.251882 −0.125941 0.992038i \(-0.540195\pi\)
−0.125941 + 0.992038i \(0.540195\pi\)
\(174\) −156.508 −0.0681888
\(175\) 0 0
\(176\) 592.066 0.253572
\(177\) 1215.77 0.516285
\(178\) −5308.95 −2.23552
\(179\) −274.651 −0.114684 −0.0573419 0.998355i \(-0.518263\pi\)
−0.0573419 + 0.998355i \(0.518263\pi\)
\(180\) −500.462 −0.207235
\(181\) 3958.51 1.62560 0.812801 0.582541i \(-0.197942\pi\)
0.812801 + 0.582541i \(0.197942\pi\)
\(182\) 0 0
\(183\) −1050.04 −0.424159
\(184\) 199.935 0.0801055
\(185\) 1119.68 0.444974
\(186\) 5685.69 2.24137
\(187\) 448.572 0.175416
\(188\) −4042.14 −1.56810
\(189\) 0 0
\(190\) 2301.56 0.878805
\(191\) −1726.80 −0.654171 −0.327086 0.944995i \(-0.606067\pi\)
−0.327086 + 0.944995i \(0.606067\pi\)
\(192\) −3474.82 −1.30611
\(193\) −155.412 −0.0579627 −0.0289813 0.999580i \(-0.509226\pi\)
−0.0289813 + 0.999580i \(0.509226\pi\)
\(194\) 5407.24 2.00112
\(195\) 1081.27 0.397084
\(196\) 0 0
\(197\) −889.441 −0.321675 −0.160838 0.986981i \(-0.551420\pi\)
−0.160838 + 0.986981i \(0.551420\pi\)
\(198\) −416.688 −0.149559
\(199\) −613.641 −0.218592 −0.109296 0.994009i \(-0.534860\pi\)
−0.109296 + 0.994009i \(0.534860\pi\)
\(200\) 3969.10 1.40329
\(201\) −729.884 −0.256130
\(202\) 4099.51 1.42792
\(203\) 0 0
\(204\) 3745.30 1.28541
\(205\) 1178.44 0.401493
\(206\) 8987.71 3.03982
\(207\) −42.4605 −0.0142570
\(208\) −2394.57 −0.798238
\(209\) 1265.83 0.418944
\(210\) 0 0
\(211\) −6093.90 −1.98825 −0.994127 0.108218i \(-0.965486\pi\)
−0.994127 + 0.108218i \(0.965486\pi\)
\(212\) 10098.6 3.27156
\(213\) −3045.42 −0.979666
\(214\) −9970.89 −3.18503
\(215\) −1235.30 −0.391845
\(216\) 4161.04 1.31076
\(217\) 0 0
\(218\) 9333.21 2.89966
\(219\) 2544.48 0.785114
\(220\) −705.520 −0.216210
\(221\) −1814.22 −0.552206
\(222\) 7783.71 2.35319
\(223\) −1881.69 −0.565054 −0.282527 0.959259i \(-0.591173\pi\)
−0.282527 + 0.959259i \(0.591173\pi\)
\(224\) 0 0
\(225\) −842.922 −0.249755
\(226\) 8903.55 2.62060
\(227\) 3129.25 0.914960 0.457480 0.889220i \(-0.348752\pi\)
0.457480 + 0.889220i \(0.348752\pi\)
\(228\) 10568.9 3.06992
\(229\) 242.244 0.0699036 0.0349518 0.999389i \(-0.488872\pi\)
0.0349518 + 0.999389i \(0.488872\pi\)
\(230\) −108.836 −0.0312018
\(231\) 0 0
\(232\) −200.782 −0.0568188
\(233\) −1436.14 −0.403796 −0.201898 0.979407i \(-0.564711\pi\)
−0.201898 + 0.979407i \(0.564711\pi\)
\(234\) 1685.26 0.470809
\(235\) 1069.67 0.296925
\(236\) 3208.35 0.884940
\(237\) −6611.93 −1.81220
\(238\) 0 0
\(239\) 2855.04 0.772709 0.386354 0.922350i \(-0.373734\pi\)
0.386354 + 0.922350i \(0.373734\pi\)
\(240\) −1308.16 −0.351840
\(241\) −2302.62 −0.615455 −0.307727 0.951475i \(-0.599568\pi\)
−0.307727 + 0.951475i \(0.599568\pi\)
\(242\) −587.420 −0.156036
\(243\) −2126.56 −0.561394
\(244\) −2771.00 −0.727030
\(245\) 0 0
\(246\) 8192.25 2.12325
\(247\) −5119.56 −1.31882
\(248\) 7294.07 1.86764
\(249\) 468.817 0.119318
\(250\) −4660.66 −1.17906
\(251\) −2175.15 −0.546988 −0.273494 0.961874i \(-0.588179\pi\)
−0.273494 + 0.961874i \(0.588179\pi\)
\(252\) 0 0
\(253\) −59.8581 −0.0148745
\(254\) 7927.91 1.95843
\(255\) −991.114 −0.243396
\(256\) −7902.54 −1.92933
\(257\) 4748.60 1.15257 0.576284 0.817250i \(-0.304502\pi\)
0.576284 + 0.817250i \(0.304502\pi\)
\(258\) −8587.50 −2.07223
\(259\) 0 0
\(260\) 2853.42 0.680623
\(261\) 42.6403 0.0101125
\(262\) 6187.90 1.45912
\(263\) 2900.00 0.679930 0.339965 0.940438i \(-0.389585\pi\)
0.339965 + 0.940438i \(0.389585\pi\)
\(264\) −2384.29 −0.555844
\(265\) −2672.37 −0.619481
\(266\) 0 0
\(267\) 6451.39 1.47872
\(268\) −1926.13 −0.439019
\(269\) 2748.37 0.622940 0.311470 0.950256i \(-0.399179\pi\)
0.311470 + 0.950256i \(0.399179\pi\)
\(270\) −2265.08 −0.510550
\(271\) −2535.68 −0.568383 −0.284191 0.958768i \(-0.591725\pi\)
−0.284191 + 0.958768i \(0.591725\pi\)
\(272\) 2194.91 0.489287
\(273\) 0 0
\(274\) 10822.4 2.38615
\(275\) −1188.30 −0.260571
\(276\) −499.779 −0.108997
\(277\) 1557.73 0.337889 0.168944 0.985626i \(-0.445964\pi\)
0.168944 + 0.985626i \(0.445964\pi\)
\(278\) −3154.77 −0.680614
\(279\) −1549.05 −0.332399
\(280\) 0 0
\(281\) −6642.94 −1.41027 −0.705133 0.709075i \(-0.749113\pi\)
−0.705133 + 0.709075i \(0.749113\pi\)
\(282\) 7436.07 1.57025
\(283\) 3932.86 0.826093 0.413046 0.910710i \(-0.364465\pi\)
0.413046 + 0.910710i \(0.364465\pi\)
\(284\) −8036.73 −1.67920
\(285\) −2796.84 −0.581299
\(286\) 2375.78 0.491199
\(287\) 0 0
\(288\) 254.624 0.0520968
\(289\) −3250.05 −0.661521
\(290\) 109.296 0.0221314
\(291\) −6570.82 −1.32367
\(292\) 6714.77 1.34573
\(293\) −6137.97 −1.22384 −0.611918 0.790921i \(-0.709602\pi\)
−0.611918 + 0.790921i \(0.709602\pi\)
\(294\) 0 0
\(295\) −849.022 −0.167566
\(296\) 9985.60 1.96081
\(297\) −1245.77 −0.243389
\(298\) −7332.10 −1.42529
\(299\) 242.092 0.0468246
\(300\) −9921.56 −1.90941
\(301\) 0 0
\(302\) −3175.25 −0.605016
\(303\) −4981.68 −0.944521
\(304\) 6193.84 1.16856
\(305\) 733.288 0.137665
\(306\) −1544.75 −0.288586
\(307\) 5838.84 1.08547 0.542736 0.839903i \(-0.317388\pi\)
0.542736 + 0.839903i \(0.317388\pi\)
\(308\) 0 0
\(309\) −10921.8 −2.01074
\(310\) −3970.56 −0.727461
\(311\) 7761.86 1.41522 0.707612 0.706601i \(-0.249773\pi\)
0.707612 + 0.706601i \(0.249773\pi\)
\(312\) 9643.09 1.74978
\(313\) 6181.00 1.11620 0.558100 0.829774i \(-0.311531\pi\)
0.558100 + 0.829774i \(0.311531\pi\)
\(314\) −13867.0 −2.49222
\(315\) 0 0
\(316\) −17448.6 −3.10620
\(317\) 5737.86 1.01663 0.508313 0.861173i \(-0.330269\pi\)
0.508313 + 0.861173i \(0.330269\pi\)
\(318\) −18577.7 −3.27605
\(319\) 60.1116 0.0105505
\(320\) 2426.62 0.423913
\(321\) 12116.5 2.10679
\(322\) 0 0
\(323\) 4692.69 0.808385
\(324\) −13681.3 −2.34589
\(325\) 4805.99 0.820272
\(326\) 13761.8 2.33803
\(327\) −11341.6 −1.91802
\(328\) 10509.7 1.76921
\(329\) 0 0
\(330\) 1297.90 0.216506
\(331\) −6488.71 −1.07750 −0.538749 0.842466i \(-0.681103\pi\)
−0.538749 + 0.842466i \(0.681103\pi\)
\(332\) 1237.19 0.204517
\(333\) −2120.66 −0.348983
\(334\) 12294.4 2.01414
\(335\) 509.710 0.0831297
\(336\) 0 0
\(337\) 5300.69 0.856816 0.428408 0.903585i \(-0.359075\pi\)
0.428408 + 0.903585i \(0.359075\pi\)
\(338\) 1057.13 0.170119
\(339\) −10819.5 −1.73344
\(340\) −2615.51 −0.417193
\(341\) −2183.76 −0.346795
\(342\) −4359.14 −0.689226
\(343\) 0 0
\(344\) −11016.8 −1.72670
\(345\) 132.256 0.0206389
\(346\) 2782.46 0.432330
\(347\) 6265.02 0.969233 0.484617 0.874727i \(-0.338959\pi\)
0.484617 + 0.874727i \(0.338959\pi\)
\(348\) 501.895 0.0773115
\(349\) 8120.80 1.24555 0.622774 0.782401i \(-0.286005\pi\)
0.622774 + 0.782401i \(0.286005\pi\)
\(350\) 0 0
\(351\) 5038.41 0.766184
\(352\) 358.954 0.0543531
\(353\) 10721.1 1.61650 0.808249 0.588840i \(-0.200415\pi\)
0.808249 + 0.588840i \(0.200415\pi\)
\(354\) −5902.19 −0.886152
\(355\) 2126.75 0.317961
\(356\) 17024.9 2.53460
\(357\) 0 0
\(358\) 1333.35 0.196843
\(359\) −6877.75 −1.01112 −0.505562 0.862790i \(-0.668715\pi\)
−0.505562 + 0.862790i \(0.668715\pi\)
\(360\) 1181.11 0.172916
\(361\) 6383.35 0.930654
\(362\) −19217.4 −2.79018
\(363\) 713.827 0.103213
\(364\) 0 0
\(365\) −1776.92 −0.254817
\(366\) 5097.63 0.728026
\(367\) −3386.40 −0.481659 −0.240829 0.970567i \(-0.577419\pi\)
−0.240829 + 0.970567i \(0.577419\pi\)
\(368\) −292.892 −0.0414893
\(369\) −2231.96 −0.314882
\(370\) −5435.71 −0.763754
\(371\) 0 0
\(372\) −18233.0 −2.54123
\(373\) −4673.85 −0.648801 −0.324401 0.945920i \(-0.605163\pi\)
−0.324401 + 0.945920i \(0.605163\pi\)
\(374\) −2177.69 −0.301084
\(375\) 5663.58 0.779909
\(376\) 9539.61 1.30843
\(377\) −243.117 −0.0332127
\(378\) 0 0
\(379\) −3746.77 −0.507806 −0.253903 0.967230i \(-0.581714\pi\)
−0.253903 + 0.967230i \(0.581714\pi\)
\(380\) −7380.73 −0.996377
\(381\) −9633.91 −1.29543
\(382\) 8383.11 1.12282
\(383\) −7041.24 −0.939402 −0.469701 0.882826i \(-0.655638\pi\)
−0.469701 + 0.882826i \(0.655638\pi\)
\(384\) 15329.2 2.03715
\(385\) 0 0
\(386\) 754.480 0.0994872
\(387\) 2339.65 0.307315
\(388\) −17340.1 −2.26884
\(389\) 3770.10 0.491393 0.245696 0.969347i \(-0.420983\pi\)
0.245696 + 0.969347i \(0.420983\pi\)
\(390\) −5249.26 −0.681555
\(391\) −221.906 −0.0287015
\(392\) 0 0
\(393\) −7519.47 −0.965158
\(394\) 4317.98 0.552124
\(395\) 4617.40 0.588169
\(396\) 1336.25 0.169568
\(397\) −4230.65 −0.534836 −0.267418 0.963581i \(-0.586171\pi\)
−0.267418 + 0.963581i \(0.586171\pi\)
\(398\) 2979.05 0.375192
\(399\) 0 0
\(400\) −5814.47 −0.726809
\(401\) −4455.02 −0.554796 −0.277398 0.960755i \(-0.589472\pi\)
−0.277398 + 0.960755i \(0.589472\pi\)
\(402\) 3543.38 0.439621
\(403\) 8832.05 1.09170
\(404\) −13146.4 −1.61896
\(405\) 3620.46 0.444202
\(406\) 0 0
\(407\) −2989.57 −0.364097
\(408\) −8839.04 −1.07254
\(409\) 5021.55 0.607090 0.303545 0.952817i \(-0.401830\pi\)
0.303545 + 0.952817i \(0.401830\pi\)
\(410\) −5721.01 −0.689123
\(411\) −13151.3 −1.57836
\(412\) −28822.1 −3.44651
\(413\) 0 0
\(414\) 206.134 0.0244708
\(415\) −327.396 −0.0387259
\(416\) −1451.76 −0.171102
\(417\) 3833.64 0.450202
\(418\) −6145.24 −0.719075
\(419\) 5218.89 0.608495 0.304247 0.952593i \(-0.401595\pi\)
0.304247 + 0.952593i \(0.401595\pi\)
\(420\) 0 0
\(421\) 3993.60 0.462319 0.231159 0.972916i \(-0.425748\pi\)
0.231159 + 0.972916i \(0.425748\pi\)
\(422\) 29584.2 3.41264
\(423\) −2025.94 −0.232871
\(424\) −23833.0 −2.72979
\(425\) −4405.27 −0.502793
\(426\) 14784.6 1.68150
\(427\) 0 0
\(428\) 31975.0 3.61114
\(429\) −2887.02 −0.324911
\(430\) 5997.03 0.672564
\(431\) 5398.58 0.603342 0.301671 0.953412i \(-0.402456\pi\)
0.301671 + 0.953412i \(0.402456\pi\)
\(432\) −6095.67 −0.678884
\(433\) 14819.2 1.64472 0.822361 0.568966i \(-0.192657\pi\)
0.822361 + 0.568966i \(0.192657\pi\)
\(434\) 0 0
\(435\) −132.816 −0.0146392
\(436\) −29930.0 −3.28759
\(437\) −626.200 −0.0685474
\(438\) −12352.7 −1.34757
\(439\) 9137.14 0.993376 0.496688 0.867929i \(-0.334549\pi\)
0.496688 + 0.867929i \(0.334549\pi\)
\(440\) 1665.05 0.180405
\(441\) 0 0
\(442\) 8807.50 0.947806
\(443\) −5432.36 −0.582616 −0.291308 0.956629i \(-0.594091\pi\)
−0.291308 + 0.956629i \(0.594091\pi\)
\(444\) −24961.0 −2.66801
\(445\) −4505.29 −0.479935
\(446\) 9135.05 0.969859
\(447\) 8909.90 0.942782
\(448\) 0 0
\(449\) −15009.5 −1.57760 −0.788802 0.614648i \(-0.789298\pi\)
−0.788802 + 0.614648i \(0.789298\pi\)
\(450\) 4092.15 0.428679
\(451\) −3146.48 −0.328519
\(452\) −28552.2 −2.97120
\(453\) 3858.53 0.400197
\(454\) −15191.6 −1.57044
\(455\) 0 0
\(456\) −24943.0 −2.56154
\(457\) 14612.6 1.49573 0.747865 0.663850i \(-0.231079\pi\)
0.747865 + 0.663850i \(0.231079\pi\)
\(458\) −1176.02 −0.119982
\(459\) −4618.31 −0.469639
\(460\) 349.017 0.0353761
\(461\) 17012.4 1.71876 0.859380 0.511337i \(-0.170850\pi\)
0.859380 + 0.511337i \(0.170850\pi\)
\(462\) 0 0
\(463\) 6094.36 0.611726 0.305863 0.952076i \(-0.401055\pi\)
0.305863 + 0.952076i \(0.401055\pi\)
\(464\) 294.133 0.0294284
\(465\) 4824.99 0.481190
\(466\) 6972.04 0.693076
\(467\) −11622.7 −1.15168 −0.575838 0.817564i \(-0.695324\pi\)
−0.575838 + 0.817564i \(0.695324\pi\)
\(468\) −5404.36 −0.533796
\(469\) 0 0
\(470\) −5192.93 −0.509643
\(471\) 16851.0 1.64852
\(472\) −7571.83 −0.738393
\(473\) 3298.28 0.320624
\(474\) 32099.0 3.11046
\(475\) −12431.3 −1.20081
\(476\) 0 0
\(477\) 5061.44 0.485844
\(478\) −13860.4 −1.32628
\(479\) −20039.2 −1.91151 −0.955755 0.294164i \(-0.904959\pi\)
−0.955755 + 0.294164i \(0.904959\pi\)
\(480\) −793.104 −0.0754168
\(481\) 12091.1 1.14617
\(482\) 11178.5 1.05637
\(483\) 0 0
\(484\) 1883.76 0.176912
\(485\) 4588.69 0.429612
\(486\) 10323.8 0.963577
\(487\) −16120.0 −1.49994 −0.749968 0.661474i \(-0.769931\pi\)
−0.749968 + 0.661474i \(0.769931\pi\)
\(488\) 6539.67 0.606633
\(489\) −16723.2 −1.54653
\(490\) 0 0
\(491\) −2949.34 −0.271083 −0.135542 0.990772i \(-0.543277\pi\)
−0.135542 + 0.990772i \(0.543277\pi\)
\(492\) −26271.2 −2.40731
\(493\) 222.846 0.0203580
\(494\) 24854.0 2.26363
\(495\) −353.610 −0.0321082
\(496\) −10685.4 −0.967312
\(497\) 0 0
\(498\) −2275.97 −0.204797
\(499\) −6590.50 −0.591245 −0.295623 0.955305i \(-0.595527\pi\)
−0.295623 + 0.955305i \(0.595527\pi\)
\(500\) 14945.9 1.33680
\(501\) −14940.1 −1.33228
\(502\) 10559.7 0.938850
\(503\) 16436.2 1.45697 0.728485 0.685062i \(-0.240225\pi\)
0.728485 + 0.685062i \(0.240225\pi\)
\(504\) 0 0
\(505\) 3478.93 0.306555
\(506\) 290.594 0.0255306
\(507\) −1284.61 −0.112528
\(508\) −25423.5 −2.22044
\(509\) −5359.31 −0.466694 −0.233347 0.972394i \(-0.574968\pi\)
−0.233347 + 0.972394i \(0.574968\pi\)
\(510\) 4811.58 0.417765
\(511\) 0 0
\(512\) 17577.1 1.51720
\(513\) −13032.5 −1.12163
\(514\) −23053.1 −1.97827
\(515\) 7627.15 0.652607
\(516\) 27538.6 2.34946
\(517\) −2856.04 −0.242957
\(518\) 0 0
\(519\) −3381.22 −0.285971
\(520\) −6734.19 −0.567911
\(521\) 14787.0 1.24344 0.621718 0.783241i \(-0.286435\pi\)
0.621718 + 0.783241i \(0.286435\pi\)
\(522\) −207.006 −0.0173571
\(523\) 11638.8 0.973094 0.486547 0.873654i \(-0.338256\pi\)
0.486547 + 0.873654i \(0.338256\pi\)
\(524\) −19843.5 −1.65433
\(525\) 0 0
\(526\) −14078.7 −1.16703
\(527\) −8095.64 −0.669168
\(528\) 3492.83 0.287890
\(529\) −12137.4 −0.997566
\(530\) 12973.6 1.06328
\(531\) 1608.04 0.131418
\(532\) 0 0
\(533\) 12725.7 1.03417
\(534\) −31319.6 −2.53808
\(535\) −8461.50 −0.683781
\(536\) 4545.74 0.366317
\(537\) −1620.28 −0.130205
\(538\) −13342.5 −1.06921
\(539\) 0 0
\(540\) 7263.74 0.578855
\(541\) 16465.4 1.30851 0.654255 0.756274i \(-0.272982\pi\)
0.654255 + 0.756274i \(0.272982\pi\)
\(542\) 12310.0 0.975573
\(543\) 23352.8 1.84561
\(544\) 1330.71 0.104878
\(545\) 7920.35 0.622515
\(546\) 0 0
\(547\) 20673.9 1.61600 0.807998 0.589185i \(-0.200551\pi\)
0.807998 + 0.589185i \(0.200551\pi\)
\(548\) −34705.6 −2.70539
\(549\) −1388.84 −0.107968
\(550\) 5768.85 0.447245
\(551\) 628.852 0.0486207
\(552\) 1179.50 0.0909469
\(553\) 0 0
\(554\) −7562.36 −0.579953
\(555\) 6605.41 0.505197
\(556\) 10116.8 0.771670
\(557\) −3023.82 −0.230024 −0.115012 0.993364i \(-0.536691\pi\)
−0.115012 + 0.993364i \(0.536691\pi\)
\(558\) 7520.21 0.570530
\(559\) −13339.7 −1.00932
\(560\) 0 0
\(561\) 2646.30 0.199157
\(562\) 32249.6 2.42058
\(563\) 3319.87 0.248518 0.124259 0.992250i \(-0.460345\pi\)
0.124259 + 0.992250i \(0.460345\pi\)
\(564\) −23846.2 −1.78033
\(565\) 7555.74 0.562606
\(566\) −19092.9 −1.41791
\(567\) 0 0
\(568\) 18967.0 1.40112
\(569\) 13382.1 0.985955 0.492978 0.870042i \(-0.335908\pi\)
0.492978 + 0.870042i \(0.335908\pi\)
\(570\) 13577.8 0.997742
\(571\) 13975.4 1.02426 0.512131 0.858908i \(-0.328856\pi\)
0.512131 + 0.858908i \(0.328856\pi\)
\(572\) −7618.72 −0.556914
\(573\) −10187.1 −0.742706
\(574\) 0 0
\(575\) 587.846 0.0426346
\(576\) −4595.99 −0.332465
\(577\) 17492.0 1.26205 0.631023 0.775764i \(-0.282635\pi\)
0.631023 + 0.775764i \(0.282635\pi\)
\(578\) 15778.1 1.13543
\(579\) −916.837 −0.0658073
\(580\) −350.495 −0.0250923
\(581\) 0 0
\(582\) 31899.5 2.27195
\(583\) 7135.30 0.506885
\(584\) −15847.1 −1.12287
\(585\) 1430.15 0.101076
\(586\) 29798.1 2.10059
\(587\) 19568.3 1.37593 0.687964 0.725745i \(-0.258505\pi\)
0.687964 + 0.725745i \(0.258505\pi\)
\(588\) 0 0
\(589\) −22845.2 −1.59816
\(590\) 4121.76 0.287610
\(591\) −5247.17 −0.365211
\(592\) −14628.3 −1.01557
\(593\) −8768.80 −0.607237 −0.303618 0.952794i \(-0.598195\pi\)
−0.303618 + 0.952794i \(0.598195\pi\)
\(594\) 6047.84 0.417754
\(595\) 0 0
\(596\) 23512.8 1.61598
\(597\) −3620.11 −0.248176
\(598\) −1175.29 −0.0803697
\(599\) 2894.13 0.197414 0.0987069 0.995117i \(-0.468529\pi\)
0.0987069 + 0.995117i \(0.468529\pi\)
\(600\) 23415.3 1.59321
\(601\) −1745.49 −0.118469 −0.0592346 0.998244i \(-0.518866\pi\)
−0.0592346 + 0.998244i \(0.518866\pi\)
\(602\) 0 0
\(603\) −965.386 −0.0651966
\(604\) 10182.5 0.685959
\(605\) −498.497 −0.0334988
\(606\) 24184.6 1.62118
\(607\) −16026.7 −1.07167 −0.535836 0.844322i \(-0.680004\pi\)
−0.535836 + 0.844322i \(0.680004\pi\)
\(608\) 3755.16 0.250480
\(609\) 0 0
\(610\) −3559.90 −0.236289
\(611\) 11551.1 0.764822
\(612\) 4953.74 0.327195
\(613\) −10412.1 −0.686035 −0.343017 0.939329i \(-0.611449\pi\)
−0.343017 + 0.939329i \(0.611449\pi\)
\(614\) −28345.9 −1.86311
\(615\) 6952.11 0.455831
\(616\) 0 0
\(617\) −91.3588 −0.00596105 −0.00298052 0.999996i \(-0.500949\pi\)
−0.00298052 + 0.999996i \(0.500949\pi\)
\(618\) 53022.1 3.45123
\(619\) −21103.7 −1.37032 −0.685160 0.728392i \(-0.740268\pi\)
−0.685160 + 0.728392i \(0.740268\pi\)
\(620\) 12732.9 0.824785
\(621\) 616.275 0.0398233
\(622\) −37681.6 −2.42909
\(623\) 0 0
\(624\) −14126.5 −0.906271
\(625\) 9548.27 0.611089
\(626\) −30007.0 −1.91585
\(627\) 7467.63 0.475643
\(628\) 44469.0 2.82565
\(629\) −11082.9 −0.702552
\(630\) 0 0
\(631\) 18083.2 1.14086 0.570430 0.821347i \(-0.306777\pi\)
0.570430 + 0.821347i \(0.306777\pi\)
\(632\) 41179.3 2.59181
\(633\) −35950.4 −2.25734
\(634\) −27855.7 −1.74494
\(635\) 6727.78 0.420447
\(636\) 59575.4 3.71434
\(637\) 0 0
\(638\) −291.825 −0.0181089
\(639\) −4028.05 −0.249369
\(640\) −10705.0 −0.661178
\(641\) −2999.52 −0.184827 −0.0924133 0.995721i \(-0.529458\pi\)
−0.0924133 + 0.995721i \(0.529458\pi\)
\(642\) −58822.3 −3.61609
\(643\) 20905.2 1.28215 0.641075 0.767478i \(-0.278489\pi\)
0.641075 + 0.767478i \(0.278489\pi\)
\(644\) 0 0
\(645\) −7287.52 −0.444877
\(646\) −22781.7 −1.38751
\(647\) 23032.1 1.39951 0.699755 0.714383i \(-0.253292\pi\)
0.699755 + 0.714383i \(0.253292\pi\)
\(648\) 32288.3 1.95741
\(649\) 2266.91 0.137110
\(650\) −23331.7 −1.40792
\(651\) 0 0
\(652\) −44131.9 −2.65082
\(653\) 5176.54 0.310220 0.155110 0.987897i \(-0.450427\pi\)
0.155110 + 0.987897i \(0.450427\pi\)
\(654\) 55060.3 3.29209
\(655\) 5251.18 0.313253
\(656\) −15396.1 −0.916334
\(657\) 3365.47 0.199847
\(658\) 0 0
\(659\) −3226.07 −0.190698 −0.0953490 0.995444i \(-0.530397\pi\)
−0.0953490 + 0.995444i \(0.530397\pi\)
\(660\) −4162.14 −0.245471
\(661\) −22662.6 −1.33355 −0.666773 0.745261i \(-0.732325\pi\)
−0.666773 + 0.745261i \(0.732325\pi\)
\(662\) 31500.8 1.84942
\(663\) −10702.8 −0.626941
\(664\) −2919.81 −0.170649
\(665\) 0 0
\(666\) 10295.2 0.598994
\(667\) −29.7369 −0.00172626
\(668\) −39426.2 −2.28360
\(669\) −11100.8 −0.641528
\(670\) −2474.50 −0.142684
\(671\) −1957.90 −0.112644
\(672\) 0 0
\(673\) 25252.6 1.44639 0.723193 0.690646i \(-0.242674\pi\)
0.723193 + 0.690646i \(0.242674\pi\)
\(674\) −25733.3 −1.47064
\(675\) 12234.2 0.697624
\(676\) −3390.03 −0.192879
\(677\) −964.426 −0.0547502 −0.0273751 0.999625i \(-0.508715\pi\)
−0.0273751 + 0.999625i \(0.508715\pi\)
\(678\) 52525.6 2.97527
\(679\) 0 0
\(680\) 6172.69 0.348106
\(681\) 18460.7 1.03879
\(682\) 10601.5 0.595239
\(683\) −855.516 −0.0479288 −0.0239644 0.999713i \(-0.507629\pi\)
−0.0239644 + 0.999713i \(0.507629\pi\)
\(684\) 13979.0 0.781434
\(685\) 9184.12 0.512273
\(686\) 0 0
\(687\) 1429.09 0.0793642
\(688\) 16138.9 0.894314
\(689\) −28858.2 −1.59566
\(690\) −642.064 −0.0354246
\(691\) −12028.3 −0.662197 −0.331098 0.943596i \(-0.607419\pi\)
−0.331098 + 0.943596i \(0.607419\pi\)
\(692\) −8922.89 −0.490170
\(693\) 0 0
\(694\) −30414.9 −1.66359
\(695\) −2677.20 −0.146118
\(696\) −1184.49 −0.0645086
\(697\) −11664.6 −0.633902
\(698\) −39424.2 −2.13786
\(699\) −8472.35 −0.458446
\(700\) 0 0
\(701\) 17608.5 0.948738 0.474369 0.880326i \(-0.342676\pi\)
0.474369 + 0.880326i \(0.342676\pi\)
\(702\) −24460.0 −1.31508
\(703\) −31275.1 −1.67790
\(704\) −6479.14 −0.346864
\(705\) 6310.40 0.337111
\(706\) −52047.6 −2.77456
\(707\) 0 0
\(708\) 18927.3 1.00471
\(709\) −15103.8 −0.800050 −0.400025 0.916504i \(-0.630999\pi\)
−0.400025 + 0.916504i \(0.630999\pi\)
\(710\) −10324.8 −0.545749
\(711\) −8745.31 −0.461286
\(712\) −40179.4 −2.11487
\(713\) 1080.29 0.0567424
\(714\) 0 0
\(715\) 2016.14 0.105453
\(716\) −4275.84 −0.223178
\(717\) 16843.0 0.877287
\(718\) 33389.5 1.73550
\(719\) −20022.6 −1.03855 −0.519275 0.854607i \(-0.673798\pi\)
−0.519275 + 0.854607i \(0.673798\pi\)
\(720\) −1730.25 −0.0895592
\(721\) 0 0
\(722\) −30989.3 −1.59737
\(723\) −13584.0 −0.698750
\(724\) 61627.1 3.16347
\(725\) −590.335 −0.0302407
\(726\) −3465.42 −0.177154
\(727\) −23331.6 −1.19026 −0.595131 0.803629i \(-0.702900\pi\)
−0.595131 + 0.803629i \(0.702900\pi\)
\(728\) 0 0
\(729\) 11182.0 0.568105
\(730\) 8626.45 0.437369
\(731\) 12227.4 0.618669
\(732\) −16347.2 −0.825425
\(733\) −12218.0 −0.615663 −0.307832 0.951441i \(-0.599603\pi\)
−0.307832 + 0.951441i \(0.599603\pi\)
\(734\) 16440.0 0.826719
\(735\) 0 0
\(736\) −177.573 −0.00889323
\(737\) −1360.94 −0.0680202
\(738\) 10835.5 0.540463
\(739\) 34196.9 1.70224 0.851118 0.524975i \(-0.175925\pi\)
0.851118 + 0.524975i \(0.175925\pi\)
\(740\) 17431.4 0.865933
\(741\) −30202.3 −1.49731
\(742\) 0 0
\(743\) −33416.9 −1.65000 −0.824998 0.565135i \(-0.808824\pi\)
−0.824998 + 0.565135i \(0.808824\pi\)
\(744\) 43030.6 2.12040
\(745\) −6222.17 −0.305990
\(746\) 22690.2 1.11360
\(747\) 620.084 0.0303718
\(748\) 6983.47 0.341365
\(749\) 0 0
\(750\) −27495.1 −1.33864
\(751\) −31791.8 −1.54474 −0.772369 0.635174i \(-0.780929\pi\)
−0.772369 + 0.635174i \(0.780929\pi\)
\(752\) −13974.9 −0.677677
\(753\) −12832.0 −0.621017
\(754\) 1180.26 0.0570062
\(755\) −2694.58 −0.129888
\(756\) 0 0
\(757\) −6779.94 −0.325523 −0.162762 0.986665i \(-0.552040\pi\)
−0.162762 + 0.986665i \(0.552040\pi\)
\(758\) 18189.5 0.871599
\(759\) −353.127 −0.0168876
\(760\) 17418.8 0.831376
\(761\) −7330.25 −0.349174 −0.174587 0.984642i \(-0.555859\pi\)
−0.174587 + 0.984642i \(0.555859\pi\)
\(762\) 46769.9 2.22348
\(763\) 0 0
\(764\) −26883.2 −1.27304
\(765\) −1310.90 −0.0619553
\(766\) 34183.2 1.61239
\(767\) −9168.37 −0.431618
\(768\) −46620.2 −2.19045
\(769\) −19265.9 −0.903439 −0.451720 0.892160i \(-0.649189\pi\)
−0.451720 + 0.892160i \(0.649189\pi\)
\(770\) 0 0
\(771\) 28013.9 1.30855
\(772\) −2419.49 −0.112797
\(773\) 37972.7 1.76686 0.883429 0.468565i \(-0.155229\pi\)
0.883429 + 0.468565i \(0.155229\pi\)
\(774\) −11358.3 −0.527475
\(775\) 21445.9 0.994013
\(776\) 40923.3 1.89312
\(777\) 0 0
\(778\) −18302.8 −0.843427
\(779\) −32916.6 −1.51394
\(780\) 16833.5 0.772738
\(781\) −5678.49 −0.260169
\(782\) 1077.29 0.0492633
\(783\) −618.884 −0.0282466
\(784\) 0 0
\(785\) −11767.8 −0.535045
\(786\) 36504.9 1.65660
\(787\) 27617.9 1.25092 0.625458 0.780258i \(-0.284912\pi\)
0.625458 + 0.780258i \(0.284912\pi\)
\(788\) −13847.0 −0.625990
\(789\) 17108.2 0.771951
\(790\) −22416.2 −1.00953
\(791\) 0 0
\(792\) −3153.59 −0.141487
\(793\) 7918.58 0.354599
\(794\) 20538.6 0.917993
\(795\) −15765.4 −0.703321
\(796\) −9553.30 −0.425387
\(797\) 2043.47 0.0908200 0.0454100 0.998968i \(-0.485541\pi\)
0.0454100 + 0.998968i \(0.485541\pi\)
\(798\) 0 0
\(799\) −10587.9 −0.468804
\(800\) −3525.16 −0.155791
\(801\) 8532.97 0.376401
\(802\) 21627.8 0.952251
\(803\) 4744.43 0.208502
\(804\) −11363.0 −0.498436
\(805\) 0 0
\(806\) −42877.1 −1.87380
\(807\) 16213.7 0.707249
\(808\) 31026.1 1.35086
\(809\) −26909.6 −1.16946 −0.584729 0.811228i \(-0.698799\pi\)
−0.584729 + 0.811228i \(0.698799\pi\)
\(810\) −17576.3 −0.762429
\(811\) −2152.16 −0.0931844 −0.0465922 0.998914i \(-0.514836\pi\)
−0.0465922 + 0.998914i \(0.514836\pi\)
\(812\) 0 0
\(813\) −14959.0 −0.645307
\(814\) 14513.5 0.624935
\(815\) 11678.6 0.501942
\(816\) 12948.6 0.555506
\(817\) 34504.7 1.47756
\(818\) −24378.2 −1.04201
\(819\) 0 0
\(820\) 18346.3 0.781318
\(821\) −37914.9 −1.61174 −0.805871 0.592091i \(-0.798302\pi\)
−0.805871 + 0.592091i \(0.798302\pi\)
\(822\) 63845.7 2.70909
\(823\) 39023.8 1.65284 0.826419 0.563055i \(-0.190374\pi\)
0.826419 + 0.563055i \(0.190374\pi\)
\(824\) 68021.1 2.87576
\(825\) −7010.25 −0.295837
\(826\) 0 0
\(827\) 14151.2 0.595025 0.297513 0.954718i \(-0.403843\pi\)
0.297513 + 0.954718i \(0.403843\pi\)
\(828\) −661.035 −0.0277446
\(829\) 32259.7 1.35154 0.675770 0.737113i \(-0.263811\pi\)
0.675770 + 0.737113i \(0.263811\pi\)
\(830\) 1589.41 0.0664691
\(831\) 9189.69 0.383619
\(832\) 26204.4 1.09192
\(833\) 0 0
\(834\) −18611.2 −0.772728
\(835\) 10433.3 0.432407
\(836\) 19706.7 0.815277
\(837\) 22483.1 0.928469
\(838\) −25336.2 −1.04442
\(839\) −27554.4 −1.13383 −0.566915 0.823776i \(-0.691863\pi\)
−0.566915 + 0.823776i \(0.691863\pi\)
\(840\) 0 0
\(841\) −24359.1 −0.998776
\(842\) −19387.8 −0.793524
\(843\) −39189.4 −1.60113
\(844\) −94871.4 −3.86920
\(845\) 897.101 0.0365222
\(846\) 9835.36 0.399701
\(847\) 0 0
\(848\) 34913.8 1.41385
\(849\) 23201.5 0.937896
\(850\) 21386.3 0.862993
\(851\) 1478.92 0.0595733
\(852\) −47411.8 −1.90646
\(853\) −17185.1 −0.689808 −0.344904 0.938638i \(-0.612089\pi\)
−0.344904 + 0.938638i \(0.612089\pi\)
\(854\) 0 0
\(855\) −3699.25 −0.147967
\(856\) −75462.1 −3.01313
\(857\) 10479.5 0.417705 0.208853 0.977947i \(-0.433027\pi\)
0.208853 + 0.977947i \(0.433027\pi\)
\(858\) 14015.7 0.557677
\(859\) −39134.8 −1.55444 −0.777219 0.629231i \(-0.783370\pi\)
−0.777219 + 0.629231i \(0.783370\pi\)
\(860\) −19231.4 −0.762543
\(861\) 0 0
\(862\) −26208.6 −1.03558
\(863\) 41738.1 1.64633 0.823163 0.567805i \(-0.192207\pi\)
0.823163 + 0.567805i \(0.192207\pi\)
\(864\) −3695.64 −0.145519
\(865\) 2361.26 0.0928151
\(866\) −71942.9 −2.82300
\(867\) −19173.3 −0.751051
\(868\) 0 0
\(869\) −12328.6 −0.481264
\(870\) 644.783 0.0251267
\(871\) 5504.23 0.214126
\(872\) 70636.0 2.74316
\(873\) −8690.94 −0.336934
\(874\) 3040.02 0.117655
\(875\) 0 0
\(876\) 39613.1 1.52786
\(877\) −44718.3 −1.72181 −0.860907 0.508763i \(-0.830103\pi\)
−0.860907 + 0.508763i \(0.830103\pi\)
\(878\) −44358.2 −1.70503
\(879\) −36210.3 −1.38947
\(880\) −2439.20 −0.0934379
\(881\) −35092.6 −1.34200 −0.670999 0.741459i \(-0.734134\pi\)
−0.670999 + 0.741459i \(0.734134\pi\)
\(882\) 0 0
\(883\) 29569.8 1.12696 0.563479 0.826130i \(-0.309462\pi\)
0.563479 + 0.826130i \(0.309462\pi\)
\(884\) −28244.2 −1.07461
\(885\) −5008.72 −0.190244
\(886\) 26372.5 1.00000
\(887\) 39879.6 1.50961 0.754807 0.655947i \(-0.227731\pi\)
0.754807 + 0.655947i \(0.227731\pi\)
\(888\) 58909.0 2.22619
\(889\) 0 0
\(890\) 21871.9 0.823760
\(891\) −9666.72 −0.363465
\(892\) −29294.5 −1.09961
\(893\) −29878.2 −1.11964
\(894\) −43255.0 −1.61819
\(895\) 1131.51 0.0422595
\(896\) 0 0
\(897\) 1428.20 0.0531618
\(898\) 72867.0 2.70780
\(899\) −1084.87 −0.0402474
\(900\) −13122.8 −0.486030
\(901\) 26452.0 0.978074
\(902\) 15275.3 0.563870
\(903\) 0 0
\(904\) 67384.2 2.47917
\(905\) −16308.3 −0.599013
\(906\) −18732.0 −0.686899
\(907\) −28212.9 −1.03285 −0.516425 0.856333i \(-0.672737\pi\)
−0.516425 + 0.856333i \(0.672737\pi\)
\(908\) 48717.0 1.78054
\(909\) −6589.05 −0.240423
\(910\) 0 0
\(911\) 216.357 0.00786851 0.00393426 0.999992i \(-0.498748\pi\)
0.00393426 + 0.999992i \(0.498748\pi\)
\(912\) 36539.9 1.32671
\(913\) 874.156 0.0316871
\(914\) −70940.0 −2.56727
\(915\) 4325.95 0.156297
\(916\) 3771.31 0.136034
\(917\) 0 0
\(918\) 22420.6 0.806088
\(919\) 23788.4 0.853869 0.426935 0.904282i \(-0.359593\pi\)
0.426935 + 0.904282i \(0.359593\pi\)
\(920\) −823.694 −0.0295178
\(921\) 34445.6 1.23238
\(922\) −82590.5 −2.95008
\(923\) 22966.2 0.819006
\(924\) 0 0
\(925\) 29359.5 1.04360
\(926\) −29586.4 −1.04997
\(927\) −14445.7 −0.511824
\(928\) 178.325 0.00630796
\(929\) 41261.9 1.45722 0.728611 0.684928i \(-0.240166\pi\)
0.728611 + 0.684928i \(0.240166\pi\)
\(930\) −23423.9 −0.825915
\(931\) 0 0
\(932\) −22358.1 −0.785800
\(933\) 45790.3 1.60676
\(934\) 56424.7 1.97674
\(935\) −1848.03 −0.0646385
\(936\) 12754.5 0.445399
\(937\) −2424.87 −0.0845431 −0.0422716 0.999106i \(-0.513459\pi\)
−0.0422716 + 0.999106i \(0.513459\pi\)
\(938\) 0 0
\(939\) 36464.1 1.26727
\(940\) 16652.9 0.577826
\(941\) −25122.6 −0.870321 −0.435160 0.900353i \(-0.643308\pi\)
−0.435160 + 0.900353i \(0.643308\pi\)
\(942\) −81806.7 −2.82952
\(943\) 1556.55 0.0537521
\(944\) 11092.2 0.382438
\(945\) 0 0
\(946\) −16012.2 −0.550320
\(947\) −38241.4 −1.31223 −0.656114 0.754662i \(-0.727801\pi\)
−0.656114 + 0.754662i \(0.727801\pi\)
\(948\) −102936. −3.52659
\(949\) −19188.5 −0.656360
\(950\) 60350.3 2.06108
\(951\) 33849.9 1.15421
\(952\) 0 0
\(953\) −9595.98 −0.326175 −0.163087 0.986612i \(-0.552145\pi\)
−0.163087 + 0.986612i \(0.552145\pi\)
\(954\) −24571.9 −0.833903
\(955\) 7114.07 0.241053
\(956\) 44448.0 1.50371
\(957\) 354.622 0.0119784
\(958\) 97284.5 3.28092
\(959\) 0 0
\(960\) 14315.6 0.481285
\(961\) 9620.54 0.322934
\(962\) −58698.8 −1.96728
\(963\) 16026.0 0.536273
\(964\) −35847.7 −1.19769
\(965\) 640.267 0.0213585
\(966\) 0 0
\(967\) −14335.7 −0.476739 −0.238369 0.971175i \(-0.576613\pi\)
−0.238369 + 0.971175i \(0.576613\pi\)
\(968\) −4445.74 −0.147615
\(969\) 27684.0 0.917791
\(970\) −22276.8 −0.737386
\(971\) 16995.1 0.561686 0.280843 0.959754i \(-0.409386\pi\)
0.280843 + 0.959754i \(0.409386\pi\)
\(972\) −33106.8 −1.09249
\(973\) 0 0
\(974\) 78258.2 2.57449
\(975\) 28352.4 0.931287
\(976\) −9580.20 −0.314196
\(977\) −9992.06 −0.327200 −0.163600 0.986527i \(-0.552311\pi\)
−0.163600 + 0.986527i \(0.552311\pi\)
\(978\) 81186.5 2.65446
\(979\) 12029.2 0.392703
\(980\) 0 0
\(981\) −15001.1 −0.488224
\(982\) 14318.2 0.465287
\(983\) −3773.62 −0.122441 −0.0612206 0.998124i \(-0.519499\pi\)
−0.0612206 + 0.998124i \(0.519499\pi\)
\(984\) 62000.9 2.00866
\(985\) 3664.33 0.118533
\(986\) −1081.85 −0.0349424
\(987\) 0 0
\(988\) −79702.5 −2.56647
\(989\) −1631.65 −0.0524604
\(990\) 1716.67 0.0551106
\(991\) 25846.6 0.828501 0.414251 0.910163i \(-0.364044\pi\)
0.414251 + 0.910163i \(0.364044\pi\)
\(992\) −6478.24 −0.207343
\(993\) −38279.5 −1.22333
\(994\) 0 0
\(995\) 2528.08 0.0805483
\(996\) 7298.66 0.232196
\(997\) −30809.7 −0.978688 −0.489344 0.872091i \(-0.662764\pi\)
−0.489344 + 0.872091i \(0.662764\pi\)
\(998\) 31995.0 1.01481
\(999\) 30779.3 0.974790
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.4.a.l.1.2 yes 10
7.6 odd 2 inner 539.4.a.l.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.4.a.l.1.1 10 7.6 odd 2 inner
539.4.a.l.1.2 yes 10 1.1 even 1 trivial