Properties

Label 539.4
Level 539
Weight 4
Dimension 32854
Nonzero newspaces 16
Sturm bound 94080
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(94080\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(539))\).

Total New Old
Modular forms 35880 33726 2154
Cusp forms 34680 32854 1826
Eisenstein series 1200 872 328

Trace form

\( 32854 q - 125 q^{2} - 149 q^{3} - 125 q^{4} - 77 q^{5} - 43 q^{6} - 96 q^{7} - 289 q^{8} - 213 q^{9} - 138 q^{10} - 90 q^{11} + 60 q^{12} - 93 q^{13} - 96 q^{14} - 243 q^{15} - 265 q^{16} + 37 q^{17} - 202 q^{18}+ \cdots - 14837 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(539))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
539.4.a \(\chi_{539}(1, \cdot)\) 539.4.a.a 1 1
539.4.a.b 1
539.4.a.c 1
539.4.a.d 2
539.4.a.e 2
539.4.a.f 4
539.4.a.g 4
539.4.a.h 5
539.4.a.i 6
539.4.a.j 9
539.4.a.k 9
539.4.a.l 10
539.4.a.m 10
539.4.a.n 10
539.4.a.o 10
539.4.a.p 18
539.4.b \(\chi_{539}(538, \cdot)\) n/a 116 1
539.4.e \(\chi_{539}(67, \cdot)\) n/a 200 2
539.4.f \(\chi_{539}(148, \cdot)\) n/a 472 4
539.4.i \(\chi_{539}(362, \cdot)\) n/a 232 2
539.4.j \(\chi_{539}(78, \cdot)\) n/a 840 6
539.4.m \(\chi_{539}(195, \cdot)\) n/a 464 4
539.4.p \(\chi_{539}(76, \cdot)\) n/a 996 6
539.4.q \(\chi_{539}(214, \cdot)\) n/a 928 8
539.4.r \(\chi_{539}(23, \cdot)\) n/a 1680 12
539.4.s \(\chi_{539}(19, \cdot)\) n/a 928 8
539.4.v \(\chi_{539}(15, \cdot)\) n/a 3984 24
539.4.w \(\chi_{539}(10, \cdot)\) n/a 1992 12
539.4.z \(\chi_{539}(6, \cdot)\) n/a 3984 24
539.4.bc \(\chi_{539}(4, \cdot)\) n/a 7968 48
539.4.bf \(\chi_{539}(17, \cdot)\) n/a 7968 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(539))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(539)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 2}\)