Defining parameters
| Level: | \( N \) | \(=\) | \( 539 = 7^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 539.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 16 \) | ||
| Sturm bound: | \(224\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(539))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 176 | 102 | 74 |
| Cusp forms | 160 | 102 | 58 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(48\) | \(28\) | \(20\) | \(44\) | \(28\) | \(16\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(40\) | \(20\) | \(20\) | \(36\) | \(20\) | \(16\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(40\) | \(24\) | \(16\) | \(36\) | \(24\) | \(12\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(48\) | \(30\) | \(18\) | \(44\) | \(30\) | \(14\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(96\) | \(58\) | \(38\) | \(88\) | \(58\) | \(30\) | \(8\) | \(0\) | \(8\) | ||||
| Minus space | \(-\) | \(80\) | \(44\) | \(36\) | \(72\) | \(44\) | \(28\) | \(8\) | \(0\) | \(8\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(539))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(539))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(539)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 2}\)