Properties

Label 539.2.a.l.1.4
Level $539$
Weight $2$
Character 539.1
Self dual yes
Analytic conductor $4.304$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 239787623 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [539,2,Mod(1,539)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("539.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(539, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 26x^{8} + 245x^{6} - 1038x^{4} + 1884x^{2} - 968 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.15293\) of defining polynomial
Character \(\chi\) \(=\) 539.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.14898 q^{2} +2.15293 q^{3} -0.679834 q^{4} -3.87589 q^{5} -2.47369 q^{6} +3.07909 q^{8} +1.63513 q^{9} +4.45334 q^{10} +1.00000 q^{11} -1.46364 q^{12} +4.09860 q^{13} -8.34453 q^{15} -2.17816 q^{16} -0.824752 q^{17} -1.87873 q^{18} +4.50196 q^{19} +2.63496 q^{20} -1.14898 q^{22} +4.86320 q^{23} +6.62907 q^{24} +10.0225 q^{25} -4.70923 q^{26} -2.93849 q^{27} +7.79629 q^{29} +9.58774 q^{30} +3.82646 q^{31} -3.65551 q^{32} +2.15293 q^{33} +0.947627 q^{34} -1.11161 q^{36} +8.11646 q^{37} -5.17268 q^{38} +8.82401 q^{39} -11.9342 q^{40} -11.2329 q^{41} -1.86134 q^{43} -0.679834 q^{44} -6.33756 q^{45} -5.58774 q^{46} +7.69973 q^{47} -4.68943 q^{48} -11.5157 q^{50} -1.77564 q^{51} -2.78637 q^{52} -3.93495 q^{53} +3.37627 q^{54} -3.87589 q^{55} +9.69242 q^{57} -8.95782 q^{58} -9.45193 q^{59} +5.67290 q^{60} -8.40447 q^{61} -4.39655 q^{62} +8.55644 q^{64} -15.8857 q^{65} -2.47369 q^{66} +9.45914 q^{67} +0.560694 q^{68} +10.4701 q^{69} +13.4591 q^{71} +5.03470 q^{72} +6.19352 q^{73} -9.32569 q^{74} +21.5778 q^{75} -3.06058 q^{76} -10.1387 q^{78} +0.868405 q^{79} +8.44230 q^{80} -11.2317 q^{81} +12.9064 q^{82} +8.19720 q^{83} +3.19665 q^{85} +2.13866 q^{86} +16.7849 q^{87} +3.07909 q^{88} -3.87589 q^{89} +7.28176 q^{90} -3.30617 q^{92} +8.23813 q^{93} -8.84687 q^{94} -17.4491 q^{95} -7.87007 q^{96} -2.10351 q^{97} +1.63513 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} + 18 q^{4} - 6 q^{8} + 22 q^{9} + 10 q^{11} + 8 q^{15} + 42 q^{16} + 6 q^{18} + 2 q^{22} + 4 q^{23} + 18 q^{25} + 12 q^{29} - 4 q^{30} - 30 q^{32} - 2 q^{36} + 40 q^{37} - 16 q^{39} - 8 q^{43}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14898 −0.812455 −0.406227 0.913772i \(-0.633156\pi\)
−0.406227 + 0.913772i \(0.633156\pi\)
\(3\) 2.15293 1.24300 0.621499 0.783415i \(-0.286524\pi\)
0.621499 + 0.783415i \(0.286524\pi\)
\(4\) −0.679834 −0.339917
\(5\) −3.87589 −1.73335 −0.866675 0.498873i \(-0.833747\pi\)
−0.866675 + 0.498873i \(0.833747\pi\)
\(6\) −2.47369 −1.00988
\(7\) 0 0
\(8\) 3.07909 1.08862
\(9\) 1.63513 0.545042
\(10\) 4.45334 1.40827
\(11\) 1.00000 0.301511
\(12\) −1.46364 −0.422516
\(13\) 4.09860 1.13675 0.568373 0.822771i \(-0.307573\pi\)
0.568373 + 0.822771i \(0.307573\pi\)
\(14\) 0 0
\(15\) −8.34453 −2.15455
\(16\) −2.17816 −0.544539
\(17\) −0.824752 −0.200032 −0.100016 0.994986i \(-0.531889\pi\)
−0.100016 + 0.994986i \(0.531889\pi\)
\(18\) −1.87873 −0.442822
\(19\) 4.50196 1.03282 0.516410 0.856342i \(-0.327268\pi\)
0.516410 + 0.856342i \(0.327268\pi\)
\(20\) 2.63496 0.589195
\(21\) 0 0
\(22\) −1.14898 −0.244964
\(23\) 4.86320 1.01405 0.507023 0.861932i \(-0.330746\pi\)
0.507023 + 0.861932i \(0.330746\pi\)
\(24\) 6.62907 1.35315
\(25\) 10.0225 2.00450
\(26\) −4.70923 −0.923555
\(27\) −2.93849 −0.565512
\(28\) 0 0
\(29\) 7.79629 1.44774 0.723868 0.689939i \(-0.242363\pi\)
0.723868 + 0.689939i \(0.242363\pi\)
\(30\) 9.58774 1.75047
\(31\) 3.82646 0.687253 0.343627 0.939106i \(-0.388345\pi\)
0.343627 + 0.939106i \(0.388345\pi\)
\(32\) −3.65551 −0.646208
\(33\) 2.15293 0.374778
\(34\) 0.947627 0.162517
\(35\) 0 0
\(36\) −1.11161 −0.185269
\(37\) 8.11646 1.33434 0.667169 0.744907i \(-0.267506\pi\)
0.667169 + 0.744907i \(0.267506\pi\)
\(38\) −5.17268 −0.839120
\(39\) 8.82401 1.41297
\(40\) −11.9342 −1.88696
\(41\) −11.2329 −1.75428 −0.877142 0.480232i \(-0.840553\pi\)
−0.877142 + 0.480232i \(0.840553\pi\)
\(42\) 0 0
\(43\) −1.86134 −0.283852 −0.141926 0.989877i \(-0.545330\pi\)
−0.141926 + 0.989877i \(0.545330\pi\)
\(44\) −0.679834 −0.102489
\(45\) −6.33756 −0.944748
\(46\) −5.58774 −0.823867
\(47\) 7.69973 1.12312 0.561561 0.827436i \(-0.310201\pi\)
0.561561 + 0.827436i \(0.310201\pi\)
\(48\) −4.68943 −0.676861
\(49\) 0 0
\(50\) −11.5157 −1.62857
\(51\) −1.77564 −0.248639
\(52\) −2.78637 −0.386399
\(53\) −3.93495 −0.540507 −0.270253 0.962789i \(-0.587107\pi\)
−0.270253 + 0.962789i \(0.587107\pi\)
\(54\) 3.37627 0.459453
\(55\) −3.87589 −0.522625
\(56\) 0 0
\(57\) 9.69242 1.28379
\(58\) −8.95782 −1.17622
\(59\) −9.45193 −1.23054 −0.615268 0.788318i \(-0.710952\pi\)
−0.615268 + 0.788318i \(0.710952\pi\)
\(60\) 5.67290 0.732368
\(61\) −8.40447 −1.07608 −0.538041 0.842919i \(-0.680835\pi\)
−0.538041 + 0.842919i \(0.680835\pi\)
\(62\) −4.39655 −0.558362
\(63\) 0 0
\(64\) 8.55644 1.06955
\(65\) −15.8857 −1.97038
\(66\) −2.47369 −0.304490
\(67\) 9.45914 1.15562 0.577809 0.816172i \(-0.303908\pi\)
0.577809 + 0.816172i \(0.303908\pi\)
\(68\) 0.560694 0.0679942
\(69\) 10.4701 1.26046
\(70\) 0 0
\(71\) 13.4591 1.59731 0.798653 0.601792i \(-0.205546\pi\)
0.798653 + 0.601792i \(0.205546\pi\)
\(72\) 5.03470 0.593345
\(73\) 6.19352 0.724897 0.362448 0.932004i \(-0.381941\pi\)
0.362448 + 0.932004i \(0.381941\pi\)
\(74\) −9.32569 −1.08409
\(75\) 21.5778 2.49159
\(76\) −3.06058 −0.351073
\(77\) 0 0
\(78\) −10.1387 −1.14798
\(79\) 0.868405 0.0977032 0.0488516 0.998806i \(-0.484444\pi\)
0.0488516 + 0.998806i \(0.484444\pi\)
\(80\) 8.44230 0.943878
\(81\) −11.2317 −1.24797
\(82\) 12.9064 1.42528
\(83\) 8.19720 0.899759 0.449880 0.893089i \(-0.351467\pi\)
0.449880 + 0.893089i \(0.351467\pi\)
\(84\) 0 0
\(85\) 3.19665 0.346725
\(86\) 2.13866 0.230617
\(87\) 16.7849 1.79953
\(88\) 3.07909 0.328232
\(89\) −3.87589 −0.410843 −0.205422 0.978674i \(-0.565857\pi\)
−0.205422 + 0.978674i \(0.565857\pi\)
\(90\) 7.28176 0.767565
\(91\) 0 0
\(92\) −3.30617 −0.344692
\(93\) 8.23813 0.854254
\(94\) −8.84687 −0.912485
\(95\) −17.4491 −1.79024
\(96\) −7.87007 −0.803235
\(97\) −2.10351 −0.213579 −0.106790 0.994282i \(-0.534057\pi\)
−0.106790 + 0.994282i \(0.534057\pi\)
\(98\) 0 0
\(99\) 1.63513 0.164336
\(100\) −6.81364 −0.681364
\(101\) −12.8092 −1.27456 −0.637281 0.770632i \(-0.719941\pi\)
−0.637281 + 0.770632i \(0.719941\pi\)
\(102\) 2.04018 0.202008
\(103\) 2.23897 0.220612 0.110306 0.993898i \(-0.464817\pi\)
0.110306 + 0.993898i \(0.464817\pi\)
\(104\) 12.6199 1.23749
\(105\) 0 0
\(106\) 4.52120 0.439137
\(107\) −7.60300 −0.735010 −0.367505 0.930022i \(-0.619788\pi\)
−0.367505 + 0.930022i \(0.619788\pi\)
\(108\) 1.99768 0.192227
\(109\) 7.56337 0.724440 0.362220 0.932093i \(-0.382019\pi\)
0.362220 + 0.932093i \(0.382019\pi\)
\(110\) 4.45334 0.424609
\(111\) 17.4742 1.65858
\(112\) 0 0
\(113\) −3.17816 −0.298976 −0.149488 0.988764i \(-0.547763\pi\)
−0.149488 + 0.988764i \(0.547763\pi\)
\(114\) −11.1364 −1.04302
\(115\) −18.8492 −1.75770
\(116\) −5.30019 −0.492110
\(117\) 6.70172 0.619574
\(118\) 10.8601 0.999755
\(119\) 0 0
\(120\) −25.6936 −2.34549
\(121\) 1.00000 0.0909091
\(122\) 9.65660 0.874268
\(123\) −24.1837 −2.18057
\(124\) −2.60136 −0.233609
\(125\) −19.4667 −1.74115
\(126\) 0 0
\(127\) 5.72640 0.508136 0.254068 0.967186i \(-0.418231\pi\)
0.254068 + 0.967186i \(0.418231\pi\)
\(128\) −2.52020 −0.222757
\(129\) −4.00735 −0.352828
\(130\) 18.2524 1.60084
\(131\) −0.0240271 −0.00209926 −0.00104963 0.999999i \(-0.500334\pi\)
−0.00104963 + 0.999999i \(0.500334\pi\)
\(132\) −1.46364 −0.127393
\(133\) 0 0
\(134\) −10.8684 −0.938887
\(135\) 11.3892 0.980230
\(136\) −2.53948 −0.217759
\(137\) 3.83915 0.328001 0.164000 0.986460i \(-0.447560\pi\)
0.164000 + 0.986460i \(0.447560\pi\)
\(138\) −12.0300 −1.02406
\(139\) 3.59639 0.305042 0.152521 0.988300i \(-0.451261\pi\)
0.152521 + 0.988300i \(0.451261\pi\)
\(140\) 0 0
\(141\) 16.5770 1.39604
\(142\) −15.4643 −1.29774
\(143\) 4.09860 0.342742
\(144\) −3.56156 −0.296797
\(145\) −30.2176 −2.50943
\(146\) −7.11626 −0.588946
\(147\) 0 0
\(148\) −5.51784 −0.453564
\(149\) −12.5456 −1.02777 −0.513886 0.857858i \(-0.671795\pi\)
−0.513886 + 0.857858i \(0.671795\pi\)
\(150\) −24.7926 −2.02431
\(151\) −0.591093 −0.0481025 −0.0240512 0.999711i \(-0.507656\pi\)
−0.0240512 + 0.999711i \(0.507656\pi\)
\(152\) 13.8619 1.12435
\(153\) −1.34857 −0.109026
\(154\) 0 0
\(155\) −14.8309 −1.19125
\(156\) −5.99886 −0.480293
\(157\) −15.2795 −1.21943 −0.609717 0.792619i \(-0.708717\pi\)
−0.609717 + 0.792619i \(0.708717\pi\)
\(158\) −0.997784 −0.0793795
\(159\) −8.47169 −0.671848
\(160\) 14.1683 1.12011
\(161\) 0 0
\(162\) 12.9051 1.01392
\(163\) −2.30282 −0.180370 −0.0901852 0.995925i \(-0.528746\pi\)
−0.0901852 + 0.995925i \(0.528746\pi\)
\(164\) 7.63650 0.596311
\(165\) −8.34453 −0.649621
\(166\) −9.41845 −0.731014
\(167\) −4.60081 −0.356021 −0.178011 0.984029i \(-0.556966\pi\)
−0.178011 + 0.984029i \(0.556966\pi\)
\(168\) 0 0
\(169\) 3.79851 0.292193
\(170\) −3.67290 −0.281698
\(171\) 7.36126 0.562930
\(172\) 1.26540 0.0964862
\(173\) 18.0515 1.37243 0.686215 0.727399i \(-0.259271\pi\)
0.686215 + 0.727399i \(0.259271\pi\)
\(174\) −19.2856 −1.46204
\(175\) 0 0
\(176\) −2.17816 −0.164185
\(177\) −20.3494 −1.52955
\(178\) 4.45334 0.333792
\(179\) 15.5109 1.15934 0.579670 0.814851i \(-0.303182\pi\)
0.579670 + 0.814851i \(0.303182\pi\)
\(180\) 4.30849 0.321136
\(181\) 6.64371 0.493823 0.246912 0.969038i \(-0.420584\pi\)
0.246912 + 0.969038i \(0.420584\pi\)
\(182\) 0 0
\(183\) −18.0943 −1.33757
\(184\) 14.9742 1.10391
\(185\) −31.4585 −2.31287
\(186\) −9.46548 −0.694043
\(187\) −0.824752 −0.0603118
\(188\) −5.23454 −0.381768
\(189\) 0 0
\(190\) 20.0487 1.45449
\(191\) 4.94524 0.357825 0.178912 0.983865i \(-0.442742\pi\)
0.178912 + 0.983865i \(0.442742\pi\)
\(192\) 18.4214 1.32945
\(193\) 5.37008 0.386547 0.193273 0.981145i \(-0.438090\pi\)
0.193273 + 0.981145i \(0.438090\pi\)
\(194\) 2.41690 0.173523
\(195\) −34.2009 −2.44918
\(196\) 0 0
\(197\) −22.0487 −1.57091 −0.785454 0.618921i \(-0.787570\pi\)
−0.785454 + 0.618921i \(0.787570\pi\)
\(198\) −1.87873 −0.133516
\(199\) 12.4218 0.880558 0.440279 0.897861i \(-0.354879\pi\)
0.440279 + 0.897861i \(0.354879\pi\)
\(200\) 30.8602 2.18215
\(201\) 20.3649 1.43643
\(202\) 14.7176 1.03552
\(203\) 0 0
\(204\) 1.20714 0.0845165
\(205\) 43.5374 3.04079
\(206\) −2.57254 −0.179237
\(207\) 7.95194 0.552698
\(208\) −8.92739 −0.619003
\(209\) 4.50196 0.311407
\(210\) 0 0
\(211\) −26.7445 −1.84117 −0.920584 0.390545i \(-0.872287\pi\)
−0.920584 + 0.390545i \(0.872287\pi\)
\(212\) 2.67511 0.183727
\(213\) 28.9766 1.98545
\(214\) 8.73573 0.597162
\(215\) 7.21436 0.492015
\(216\) −9.04786 −0.615629
\(217\) 0 0
\(218\) −8.69020 −0.588575
\(219\) 13.3342 0.901045
\(220\) 2.63496 0.177649
\(221\) −3.38033 −0.227385
\(222\) −20.0776 −1.34752
\(223\) 1.79215 0.120011 0.0600055 0.998198i \(-0.480888\pi\)
0.0600055 + 0.998198i \(0.480888\pi\)
\(224\) 0 0
\(225\) 16.3881 1.09254
\(226\) 3.65166 0.242904
\(227\) 17.6173 1.16930 0.584649 0.811286i \(-0.301232\pi\)
0.584649 + 0.811286i \(0.301232\pi\)
\(228\) −6.58923 −0.436383
\(229\) 5.25609 0.347332 0.173666 0.984805i \(-0.444439\pi\)
0.173666 + 0.984805i \(0.444439\pi\)
\(230\) 21.6575 1.42805
\(231\) 0 0
\(232\) 24.0055 1.57604
\(233\) −13.7069 −0.897967 −0.448984 0.893540i \(-0.648214\pi\)
−0.448984 + 0.893540i \(0.648214\pi\)
\(234\) −7.70018 −0.503376
\(235\) −29.8433 −1.94676
\(236\) 6.42574 0.418280
\(237\) 1.86962 0.121445
\(238\) 0 0
\(239\) 8.17883 0.529045 0.264522 0.964380i \(-0.414786\pi\)
0.264522 + 0.964380i \(0.414786\pi\)
\(240\) 18.1757 1.17324
\(241\) −11.3061 −0.728290 −0.364145 0.931342i \(-0.618639\pi\)
−0.364145 + 0.931342i \(0.618639\pi\)
\(242\) −1.14898 −0.0738595
\(243\) −15.3657 −0.985713
\(244\) 5.71364 0.365778
\(245\) 0 0
\(246\) 27.7867 1.77161
\(247\) 18.4517 1.17405
\(248\) 11.7820 0.748159
\(249\) 17.6480 1.11840
\(250\) 22.3669 1.41461
\(251\) −19.9903 −1.26178 −0.630889 0.775873i \(-0.717309\pi\)
−0.630889 + 0.775873i \(0.717309\pi\)
\(252\) 0 0
\(253\) 4.86320 0.305747
\(254\) −6.57954 −0.412837
\(255\) 6.88217 0.430978
\(256\) −14.2172 −0.888575
\(257\) −6.13629 −0.382771 −0.191386 0.981515i \(-0.561298\pi\)
−0.191386 + 0.981515i \(0.561298\pi\)
\(258\) 4.60439 0.286657
\(259\) 0 0
\(260\) 10.7996 0.669766
\(261\) 12.7479 0.789076
\(262\) 0.0276068 0.00170555
\(263\) −22.3223 −1.37645 −0.688227 0.725495i \(-0.741611\pi\)
−0.688227 + 0.725495i \(0.741611\pi\)
\(264\) 6.62907 0.407991
\(265\) 15.2514 0.936888
\(266\) 0 0
\(267\) −8.34453 −0.510677
\(268\) −6.43064 −0.392814
\(269\) 3.43592 0.209492 0.104746 0.994499i \(-0.466597\pi\)
0.104746 + 0.994499i \(0.466597\pi\)
\(270\) −13.0861 −0.796393
\(271\) 17.8410 1.08376 0.541880 0.840456i \(-0.317713\pi\)
0.541880 + 0.840456i \(0.317713\pi\)
\(272\) 1.79644 0.108925
\(273\) 0 0
\(274\) −4.41112 −0.266486
\(275\) 10.0225 0.604380
\(276\) −7.11796 −0.428451
\(277\) 16.9426 1.01798 0.508990 0.860772i \(-0.330019\pi\)
0.508990 + 0.860772i \(0.330019\pi\)
\(278\) −4.13220 −0.247833
\(279\) 6.25675 0.374582
\(280\) 0 0
\(281\) 24.2080 1.44413 0.722066 0.691825i \(-0.243193\pi\)
0.722066 + 0.691825i \(0.243193\pi\)
\(282\) −19.0467 −1.13422
\(283\) −2.24541 −0.133475 −0.0667377 0.997771i \(-0.521259\pi\)
−0.0667377 + 0.997771i \(0.521259\pi\)
\(284\) −9.14998 −0.542951
\(285\) −37.5667 −2.22526
\(286\) −4.70923 −0.278462
\(287\) 0 0
\(288\) −5.97721 −0.352211
\(289\) −16.3198 −0.959987
\(290\) 34.7195 2.03880
\(291\) −4.52872 −0.265478
\(292\) −4.21057 −0.246405
\(293\) −0.635515 −0.0371272 −0.0185636 0.999828i \(-0.505909\pi\)
−0.0185636 + 0.999828i \(0.505909\pi\)
\(294\) 0 0
\(295\) 36.6346 2.13295
\(296\) 24.9913 1.45259
\(297\) −2.93849 −0.170508
\(298\) 14.4147 0.835019
\(299\) 19.9323 1.15271
\(300\) −14.6693 −0.846934
\(301\) 0 0
\(302\) 0.679157 0.0390811
\(303\) −27.5773 −1.58428
\(304\) −9.80597 −0.562411
\(305\) 32.5748 1.86523
\(306\) 1.54949 0.0885784
\(307\) −17.7490 −1.01299 −0.506493 0.862244i \(-0.669059\pi\)
−0.506493 + 0.862244i \(0.669059\pi\)
\(308\) 0 0
\(309\) 4.82034 0.274220
\(310\) 17.0405 0.967837
\(311\) 11.2429 0.637525 0.318763 0.947835i \(-0.396733\pi\)
0.318763 + 0.947835i \(0.396733\pi\)
\(312\) 27.1699 1.53819
\(313\) −4.25546 −0.240533 −0.120266 0.992742i \(-0.538375\pi\)
−0.120266 + 0.992742i \(0.538375\pi\)
\(314\) 17.5559 0.990736
\(315\) 0 0
\(316\) −0.590371 −0.0332110
\(317\) 21.2336 1.19260 0.596299 0.802763i \(-0.296637\pi\)
0.596299 + 0.802763i \(0.296637\pi\)
\(318\) 9.73384 0.545847
\(319\) 7.79629 0.436509
\(320\) −33.1638 −1.85391
\(321\) −16.3688 −0.913615
\(322\) 0 0
\(323\) −3.71300 −0.206597
\(324\) 7.63572 0.424207
\(325\) 41.0783 2.27861
\(326\) 2.64590 0.146543
\(327\) 16.2834 0.900477
\(328\) −34.5871 −1.90975
\(329\) 0 0
\(330\) 9.58774 0.527788
\(331\) 23.4568 1.28930 0.644652 0.764476i \(-0.277002\pi\)
0.644652 + 0.764476i \(0.277002\pi\)
\(332\) −5.57273 −0.305843
\(333\) 13.2714 0.727270
\(334\) 5.28626 0.289251
\(335\) −36.6626 −2.00309
\(336\) 0 0
\(337\) −34.7640 −1.89372 −0.946859 0.321650i \(-0.895762\pi\)
−0.946859 + 0.321650i \(0.895762\pi\)
\(338\) −4.36443 −0.237394
\(339\) −6.84236 −0.371626
\(340\) −2.17319 −0.117858
\(341\) 3.82646 0.207215
\(342\) −8.45798 −0.457355
\(343\) 0 0
\(344\) −5.73124 −0.309008
\(345\) −40.5811 −2.18481
\(346\) −20.7409 −1.11504
\(347\) −0.689571 −0.0370181 −0.0185090 0.999829i \(-0.505892\pi\)
−0.0185090 + 0.999829i \(0.505892\pi\)
\(348\) −11.4109 −0.611691
\(349\) 19.9995 1.07055 0.535275 0.844678i \(-0.320208\pi\)
0.535275 + 0.844678i \(0.320208\pi\)
\(350\) 0 0
\(351\) −12.0437 −0.642844
\(352\) −3.65551 −0.194839
\(353\) 3.57359 0.190203 0.0951014 0.995468i \(-0.469682\pi\)
0.0951014 + 0.995468i \(0.469682\pi\)
\(354\) 23.3811 1.24269
\(355\) −52.1661 −2.76869
\(356\) 2.63496 0.139653
\(357\) 0 0
\(358\) −17.8218 −0.941911
\(359\) −31.6809 −1.67205 −0.836026 0.548690i \(-0.815127\pi\)
−0.836026 + 0.548690i \(0.815127\pi\)
\(360\) −19.5139 −1.02847
\(361\) 1.26762 0.0667169
\(362\) −7.63352 −0.401209
\(363\) 2.15293 0.113000
\(364\) 0 0
\(365\) −24.0054 −1.25650
\(366\) 20.7900 1.08671
\(367\) −17.6491 −0.921277 −0.460638 0.887588i \(-0.652380\pi\)
−0.460638 + 0.887588i \(0.652380\pi\)
\(368\) −10.5928 −0.552189
\(369\) −18.3672 −0.956158
\(370\) 36.1453 1.87911
\(371\) 0 0
\(372\) −5.60056 −0.290375
\(373\) −24.0524 −1.24539 −0.622694 0.782465i \(-0.713962\pi\)
−0.622694 + 0.782465i \(0.713962\pi\)
\(374\) 0.947627 0.0490006
\(375\) −41.9105 −2.16425
\(376\) 23.7082 1.22265
\(377\) 31.9539 1.64571
\(378\) 0 0
\(379\) 5.73645 0.294662 0.147331 0.989087i \(-0.452932\pi\)
0.147331 + 0.989087i \(0.452932\pi\)
\(380\) 11.8625 0.608532
\(381\) 12.3286 0.631611
\(382\) −5.68200 −0.290717
\(383\) −9.45929 −0.483347 −0.241674 0.970358i \(-0.577696\pi\)
−0.241674 + 0.970358i \(0.577696\pi\)
\(384\) −5.42583 −0.276886
\(385\) 0 0
\(386\) −6.17014 −0.314052
\(387\) −3.04353 −0.154711
\(388\) 1.43004 0.0725992
\(389\) 16.3482 0.828887 0.414443 0.910075i \(-0.363976\pi\)
0.414443 + 0.910075i \(0.363976\pi\)
\(390\) 39.2963 1.98985
\(391\) −4.01093 −0.202841
\(392\) 0 0
\(393\) −0.0517288 −0.00260937
\(394\) 25.3337 1.27629
\(395\) −3.36584 −0.169354
\(396\) −1.11161 −0.0558607
\(397\) 31.2208 1.56693 0.783464 0.621437i \(-0.213451\pi\)
0.783464 + 0.621437i \(0.213451\pi\)
\(398\) −14.2725 −0.715414
\(399\) 0 0
\(400\) −21.8306 −1.09153
\(401\) 13.6480 0.681550 0.340775 0.940145i \(-0.389311\pi\)
0.340775 + 0.940145i \(0.389311\pi\)
\(402\) −23.3990 −1.16703
\(403\) 15.6831 0.781233
\(404\) 8.70812 0.433245
\(405\) 43.5330 2.16317
\(406\) 0 0
\(407\) 8.11646 0.402318
\(408\) −5.46734 −0.270674
\(409\) 13.6468 0.674790 0.337395 0.941363i \(-0.390454\pi\)
0.337395 + 0.941363i \(0.390454\pi\)
\(410\) −50.0239 −2.47050
\(411\) 8.26543 0.407704
\(412\) −1.52212 −0.0749897
\(413\) 0 0
\(414\) −9.13666 −0.449042
\(415\) −31.7714 −1.55960
\(416\) −14.9825 −0.734575
\(417\) 7.74279 0.379166
\(418\) −5.17268 −0.253004
\(419\) 13.1381 0.641840 0.320920 0.947106i \(-0.396008\pi\)
0.320920 + 0.947106i \(0.396008\pi\)
\(420\) 0 0
\(421\) 10.6056 0.516883 0.258441 0.966027i \(-0.416791\pi\)
0.258441 + 0.966027i \(0.416791\pi\)
\(422\) 30.7290 1.49587
\(423\) 12.5900 0.612148
\(424\) −12.1161 −0.588408
\(425\) −8.26608 −0.400964
\(426\) −33.2937 −1.61309
\(427\) 0 0
\(428\) 5.16878 0.249842
\(429\) 8.82401 0.426027
\(430\) −8.28919 −0.399740
\(431\) −29.5575 −1.42373 −0.711867 0.702315i \(-0.752150\pi\)
−0.711867 + 0.702315i \(0.752150\pi\)
\(432\) 6.40048 0.307943
\(433\) 32.7665 1.57466 0.787329 0.616534i \(-0.211464\pi\)
0.787329 + 0.616534i \(0.211464\pi\)
\(434\) 0 0
\(435\) −65.0564 −3.11922
\(436\) −5.14184 −0.246249
\(437\) 21.8939 1.04733
\(438\) −15.3208 −0.732058
\(439\) −38.5068 −1.83783 −0.918914 0.394459i \(-0.870932\pi\)
−0.918914 + 0.394459i \(0.870932\pi\)
\(440\) −11.9342 −0.568941
\(441\) 0 0
\(442\) 3.88394 0.184740
\(443\) 31.2823 1.48627 0.743134 0.669142i \(-0.233338\pi\)
0.743134 + 0.669142i \(0.233338\pi\)
\(444\) −11.8796 −0.563779
\(445\) 15.0225 0.712135
\(446\) −2.05915 −0.0975035
\(447\) −27.0098 −1.27752
\(448\) 0 0
\(449\) −8.82808 −0.416623 −0.208311 0.978063i \(-0.566797\pi\)
−0.208311 + 0.978063i \(0.566797\pi\)
\(450\) −18.8296 −0.887638
\(451\) −11.2329 −0.528936
\(452\) 2.16062 0.101627
\(453\) −1.27259 −0.0597913
\(454\) −20.2420 −0.950002
\(455\) 0 0
\(456\) 29.8438 1.39756
\(457\) −19.1378 −0.895228 −0.447614 0.894227i \(-0.647726\pi\)
−0.447614 + 0.894227i \(0.647726\pi\)
\(458\) −6.03917 −0.282192
\(459\) 2.42352 0.113120
\(460\) 12.8143 0.597472
\(461\) 20.9755 0.976926 0.488463 0.872584i \(-0.337558\pi\)
0.488463 + 0.872584i \(0.337558\pi\)
\(462\) 0 0
\(463\) −32.4558 −1.50835 −0.754174 0.656674i \(-0.771963\pi\)
−0.754174 + 0.656674i \(0.771963\pi\)
\(464\) −16.9816 −0.788349
\(465\) −31.9301 −1.48072
\(466\) 15.7490 0.729558
\(467\) −4.99179 −0.230993 −0.115496 0.993308i \(-0.536846\pi\)
−0.115496 + 0.993308i \(0.536846\pi\)
\(468\) −4.55606 −0.210604
\(469\) 0 0
\(470\) 34.2895 1.58166
\(471\) −32.8957 −1.51575
\(472\) −29.1033 −1.33959
\(473\) −1.86134 −0.0855847
\(474\) −2.14816 −0.0986685
\(475\) 45.1209 2.07029
\(476\) 0 0
\(477\) −6.43414 −0.294599
\(478\) −9.39736 −0.429825
\(479\) −20.8655 −0.953368 −0.476684 0.879075i \(-0.658161\pi\)
−0.476684 + 0.879075i \(0.658161\pi\)
\(480\) 30.5035 1.39229
\(481\) 33.2661 1.51680
\(482\) 12.9905 0.591703
\(483\) 0 0
\(484\) −0.679834 −0.0309015
\(485\) 8.15297 0.370207
\(486\) 17.6550 0.800847
\(487\) −23.9012 −1.08307 −0.541533 0.840680i \(-0.682156\pi\)
−0.541533 + 0.840680i \(0.682156\pi\)
\(488\) −25.8781 −1.17145
\(489\) −4.95781 −0.224200
\(490\) 0 0
\(491\) 19.3897 0.875044 0.437522 0.899208i \(-0.355856\pi\)
0.437522 + 0.899208i \(0.355856\pi\)
\(492\) 16.4409 0.741212
\(493\) −6.43001 −0.289593
\(494\) −21.2007 −0.953866
\(495\) −6.33756 −0.284852
\(496\) −8.33464 −0.374237
\(497\) 0 0
\(498\) −20.2773 −0.908648
\(499\) −0.100167 −0.00448408 −0.00224204 0.999997i \(-0.500714\pi\)
−0.00224204 + 0.999997i \(0.500714\pi\)
\(500\) 13.2341 0.591848
\(501\) −9.90523 −0.442533
\(502\) 22.9686 1.02514
\(503\) 14.2263 0.634317 0.317159 0.948372i \(-0.397271\pi\)
0.317159 + 0.948372i \(0.397271\pi\)
\(504\) 0 0
\(505\) 49.6470 2.20926
\(506\) −5.58774 −0.248405
\(507\) 8.17794 0.363195
\(508\) −3.89300 −0.172724
\(509\) 8.67585 0.384550 0.192275 0.981341i \(-0.438413\pi\)
0.192275 + 0.981341i \(0.438413\pi\)
\(510\) −7.90750 −0.350150
\(511\) 0 0
\(512\) 21.3758 0.944684
\(513\) −13.2289 −0.584072
\(514\) 7.05050 0.310984
\(515\) −8.67798 −0.382397
\(516\) 2.72433 0.119932
\(517\) 7.69973 0.338634
\(518\) 0 0
\(519\) 38.8637 1.70593
\(520\) −48.9135 −2.14500
\(521\) −11.0313 −0.483288 −0.241644 0.970365i \(-0.577687\pi\)
−0.241644 + 0.970365i \(0.577687\pi\)
\(522\) −14.6472 −0.641089
\(523\) −11.4402 −0.500243 −0.250122 0.968214i \(-0.580471\pi\)
−0.250122 + 0.968214i \(0.580471\pi\)
\(524\) 0.0163344 0.000713573 0
\(525\) 0 0
\(526\) 25.6480 1.11831
\(527\) −3.15588 −0.137472
\(528\) −4.68943 −0.204081
\(529\) 0.650700 0.0282913
\(530\) −17.5237 −0.761179
\(531\) −15.4551 −0.670694
\(532\) 0 0
\(533\) −46.0391 −1.99418
\(534\) 9.58774 0.414902
\(535\) 29.4684 1.27403
\(536\) 29.1255 1.25803
\(537\) 33.3940 1.44106
\(538\) −3.94782 −0.170203
\(539\) 0 0
\(540\) −7.74279 −0.333197
\(541\) 1.20512 0.0518122 0.0259061 0.999664i \(-0.491753\pi\)
0.0259061 + 0.999664i \(0.491753\pi\)
\(542\) −20.4990 −0.880507
\(543\) 14.3035 0.613821
\(544\) 3.01488 0.129262
\(545\) −29.3148 −1.25571
\(546\) 0 0
\(547\) 5.64802 0.241492 0.120746 0.992683i \(-0.461471\pi\)
0.120746 + 0.992683i \(0.461471\pi\)
\(548\) −2.60998 −0.111493
\(549\) −13.7424 −0.586509
\(550\) −11.5157 −0.491032
\(551\) 35.0986 1.49525
\(552\) 32.2385 1.37216
\(553\) 0 0
\(554\) −19.4667 −0.827063
\(555\) −67.7281 −2.87490
\(556\) −2.44495 −0.103689
\(557\) −6.89754 −0.292258 −0.146129 0.989266i \(-0.546681\pi\)
−0.146129 + 0.989266i \(0.546681\pi\)
\(558\) −7.18891 −0.304331
\(559\) −7.62890 −0.322668
\(560\) 0 0
\(561\) −1.77564 −0.0749674
\(562\) −27.8147 −1.17329
\(563\) 1.52144 0.0641211 0.0320605 0.999486i \(-0.489793\pi\)
0.0320605 + 0.999486i \(0.489793\pi\)
\(564\) −11.2696 −0.474536
\(565\) 12.3182 0.518230
\(566\) 2.57994 0.108443
\(567\) 0 0
\(568\) 41.4419 1.73886
\(569\) 28.5468 1.19674 0.598372 0.801219i \(-0.295815\pi\)
0.598372 + 0.801219i \(0.295815\pi\)
\(570\) 43.1636 1.80792
\(571\) 37.5519 1.57150 0.785749 0.618545i \(-0.212278\pi\)
0.785749 + 0.618545i \(0.212278\pi\)
\(572\) −2.78637 −0.116504
\(573\) 10.6468 0.444775
\(574\) 0 0
\(575\) 48.7415 2.03266
\(576\) 13.9908 0.582952
\(577\) 12.5401 0.522051 0.261025 0.965332i \(-0.415939\pi\)
0.261025 + 0.965332i \(0.415939\pi\)
\(578\) 18.7512 0.779946
\(579\) 11.5614 0.480477
\(580\) 20.5429 0.852999
\(581\) 0 0
\(582\) 5.20343 0.215689
\(583\) −3.93495 −0.162969
\(584\) 19.0704 0.789139
\(585\) −25.9751 −1.07394
\(586\) 0.730198 0.0301642
\(587\) −33.6526 −1.38899 −0.694496 0.719496i \(-0.744373\pi\)
−0.694496 + 0.719496i \(0.744373\pi\)
\(588\) 0 0
\(589\) 17.2266 0.709809
\(590\) −42.0926 −1.73293
\(591\) −47.4695 −1.95263
\(592\) −17.6789 −0.726600
\(593\) −24.4214 −1.00287 −0.501434 0.865196i \(-0.667194\pi\)
−0.501434 + 0.865196i \(0.667194\pi\)
\(594\) 3.37627 0.138530
\(595\) 0 0
\(596\) 8.52890 0.349357
\(597\) 26.7433 1.09453
\(598\) −22.9019 −0.936529
\(599\) 5.56936 0.227558 0.113779 0.993506i \(-0.463704\pi\)
0.113779 + 0.993506i \(0.463704\pi\)
\(600\) 66.4400 2.71240
\(601\) −10.8079 −0.440864 −0.220432 0.975402i \(-0.570747\pi\)
−0.220432 + 0.975402i \(0.570747\pi\)
\(602\) 0 0
\(603\) 15.4669 0.629860
\(604\) 0.401845 0.0163509
\(605\) −3.87589 −0.157577
\(606\) 31.6859 1.28715
\(607\) −10.5106 −0.426611 −0.213305 0.976986i \(-0.568423\pi\)
−0.213305 + 0.976986i \(0.568423\pi\)
\(608\) −16.4569 −0.667417
\(609\) 0 0
\(610\) −37.4279 −1.51541
\(611\) 31.5581 1.27670
\(612\) 0.916805 0.0370597
\(613\) −23.4044 −0.945293 −0.472647 0.881252i \(-0.656701\pi\)
−0.472647 + 0.881252i \(0.656701\pi\)
\(614\) 20.3933 0.823006
\(615\) 93.7332 3.77969
\(616\) 0 0
\(617\) −27.4432 −1.10482 −0.552410 0.833572i \(-0.686292\pi\)
−0.552410 + 0.833572i \(0.686292\pi\)
\(618\) −5.53850 −0.222791
\(619\) 8.37072 0.336448 0.168224 0.985749i \(-0.446197\pi\)
0.168224 + 0.985749i \(0.446197\pi\)
\(620\) 10.0826 0.404926
\(621\) −14.2904 −0.573455
\(622\) −12.9179 −0.517961
\(623\) 0 0
\(624\) −19.2201 −0.769419
\(625\) 25.3382 1.01353
\(626\) 4.88946 0.195422
\(627\) 9.69242 0.387078
\(628\) 10.3875 0.414507
\(629\) −6.69406 −0.266910
\(630\) 0 0
\(631\) −40.8816 −1.62747 −0.813736 0.581235i \(-0.802570\pi\)
−0.813736 + 0.581235i \(0.802570\pi\)
\(632\) 2.67390 0.106362
\(633\) −57.5792 −2.28857
\(634\) −24.3971 −0.968932
\(635\) −22.1949 −0.880777
\(636\) 5.75934 0.228373
\(637\) 0 0
\(638\) −8.95782 −0.354644
\(639\) 22.0074 0.870598
\(640\) 9.76803 0.386115
\(641\) −28.8987 −1.14143 −0.570714 0.821149i \(-0.693334\pi\)
−0.570714 + 0.821149i \(0.693334\pi\)
\(642\) 18.8075 0.742271
\(643\) −44.9484 −1.77259 −0.886296 0.463120i \(-0.846730\pi\)
−0.886296 + 0.463120i \(0.846730\pi\)
\(644\) 0 0
\(645\) 15.5320 0.611574
\(646\) 4.26618 0.167850
\(647\) 1.45440 0.0571784 0.0285892 0.999591i \(-0.490899\pi\)
0.0285892 + 0.999591i \(0.490899\pi\)
\(648\) −34.5835 −1.35857
\(649\) −9.45193 −0.371021
\(650\) −47.1983 −1.85127
\(651\) 0 0
\(652\) 1.56553 0.0613110
\(653\) 4.89313 0.191483 0.0957415 0.995406i \(-0.469478\pi\)
0.0957415 + 0.995406i \(0.469478\pi\)
\(654\) −18.7094 −0.731597
\(655\) 0.0931263 0.00363875
\(656\) 24.4670 0.955276
\(657\) 10.1272 0.395099
\(658\) 0 0
\(659\) 14.2035 0.553291 0.276646 0.960972i \(-0.410777\pi\)
0.276646 + 0.960972i \(0.410777\pi\)
\(660\) 5.67290 0.220817
\(661\) −33.4970 −1.30288 −0.651442 0.758698i \(-0.725836\pi\)
−0.651442 + 0.758698i \(0.725836\pi\)
\(662\) −26.9515 −1.04750
\(663\) −7.27762 −0.282639
\(664\) 25.2399 0.979498
\(665\) 0 0
\(666\) −15.2487 −0.590874
\(667\) 37.9149 1.46807
\(668\) 3.12778 0.121018
\(669\) 3.85837 0.149173
\(670\) 42.1247 1.62742
\(671\) −8.40447 −0.324451
\(672\) 0 0
\(673\) −50.4763 −1.94572 −0.972859 0.231398i \(-0.925670\pi\)
−0.972859 + 0.231398i \(0.925670\pi\)
\(674\) 39.9433 1.53856
\(675\) −29.4510 −1.13357
\(676\) −2.58236 −0.0993214
\(677\) −41.4961 −1.59482 −0.797412 0.603436i \(-0.793798\pi\)
−0.797412 + 0.603436i \(0.793798\pi\)
\(678\) 7.86177 0.301930
\(679\) 0 0
\(680\) 9.84275 0.377452
\(681\) 37.9288 1.45343
\(682\) −4.39655 −0.168353
\(683\) −0.914566 −0.0349949 −0.0174975 0.999847i \(-0.505570\pi\)
−0.0174975 + 0.999847i \(0.505570\pi\)
\(684\) −5.00444 −0.191349
\(685\) −14.8801 −0.568540
\(686\) 0 0
\(687\) 11.3160 0.431733
\(688\) 4.05430 0.154569
\(689\) −16.1278 −0.614419
\(690\) 46.6271 1.77506
\(691\) −33.6540 −1.28026 −0.640130 0.768267i \(-0.721119\pi\)
−0.640130 + 0.768267i \(0.721119\pi\)
\(692\) −12.2720 −0.466512
\(693\) 0 0
\(694\) 0.792306 0.0300755
\(695\) −13.9392 −0.528744
\(696\) 51.6822 1.95901
\(697\) 9.26435 0.350912
\(698\) −22.9791 −0.869773
\(699\) −29.5100 −1.11617
\(700\) 0 0
\(701\) −19.9539 −0.753649 −0.376825 0.926285i \(-0.622984\pi\)
−0.376825 + 0.926285i \(0.622984\pi\)
\(702\) 13.8380 0.522281
\(703\) 36.5400 1.37813
\(704\) 8.55644 0.322483
\(705\) −64.2507 −2.41982
\(706\) −4.10600 −0.154531
\(707\) 0 0
\(708\) 13.8342 0.519921
\(709\) 17.9062 0.672481 0.336240 0.941776i \(-0.390845\pi\)
0.336240 + 0.941776i \(0.390845\pi\)
\(710\) 59.9381 2.24944
\(711\) 1.41995 0.0532523
\(712\) −11.9342 −0.447253
\(713\) 18.6089 0.696907
\(714\) 0 0
\(715\) −15.8857 −0.594092
\(716\) −10.5448 −0.394079
\(717\) 17.6085 0.657601
\(718\) 36.4008 1.35847
\(719\) −2.99817 −0.111813 −0.0559064 0.998436i \(-0.517805\pi\)
−0.0559064 + 0.998436i \(0.517805\pi\)
\(720\) 13.8042 0.514453
\(721\) 0 0
\(722\) −1.45648 −0.0542044
\(723\) −24.3413 −0.905263
\(724\) −4.51662 −0.167859
\(725\) 78.1384 2.90199
\(726\) −2.47369 −0.0918072
\(727\) −29.4088 −1.09071 −0.545355 0.838205i \(-0.683605\pi\)
−0.545355 + 0.838205i \(0.683605\pi\)
\(728\) 0 0
\(729\) 0.613791 0.0227330
\(730\) 27.5818 1.02085
\(731\) 1.53515 0.0567794
\(732\) 12.3011 0.454662
\(733\) −1.39138 −0.0513918 −0.0256959 0.999670i \(-0.508180\pi\)
−0.0256959 + 0.999670i \(0.508180\pi\)
\(734\) 20.2786 0.748496
\(735\) 0 0
\(736\) −17.7775 −0.655286
\(737\) 9.45914 0.348432
\(738\) 21.1036 0.776835
\(739\) 9.54756 0.351213 0.175606 0.984460i \(-0.443811\pi\)
0.175606 + 0.984460i \(0.443811\pi\)
\(740\) 21.3866 0.786185
\(741\) 39.7253 1.45935
\(742\) 0 0
\(743\) −15.7641 −0.578328 −0.289164 0.957280i \(-0.593377\pi\)
−0.289164 + 0.957280i \(0.593377\pi\)
\(744\) 25.3659 0.929960
\(745\) 48.6252 1.78149
\(746\) 27.6359 1.01182
\(747\) 13.4034 0.490406
\(748\) 0.560694 0.0205010
\(749\) 0 0
\(750\) 48.1545 1.75836
\(751\) −43.1559 −1.57478 −0.787391 0.616455i \(-0.788568\pi\)
−0.787391 + 0.616455i \(0.788568\pi\)
\(752\) −16.7712 −0.611584
\(753\) −43.0378 −1.56839
\(754\) −36.7145 −1.33706
\(755\) 2.29101 0.0833785
\(756\) 0 0
\(757\) −36.7539 −1.33584 −0.667922 0.744231i \(-0.732816\pi\)
−0.667922 + 0.744231i \(0.732816\pi\)
\(758\) −6.59109 −0.239399
\(759\) 10.4701 0.380042
\(760\) −53.7273 −1.94889
\(761\) 34.6094 1.25459 0.627296 0.778781i \(-0.284162\pi\)
0.627296 + 0.778781i \(0.284162\pi\)
\(762\) −14.1653 −0.513156
\(763\) 0 0
\(764\) −3.36194 −0.121631
\(765\) 5.22692 0.188980
\(766\) 10.8686 0.392698
\(767\) −38.7397 −1.39881
\(768\) −30.6087 −1.10450
\(769\) −28.4872 −1.02728 −0.513638 0.858007i \(-0.671703\pi\)
−0.513638 + 0.858007i \(0.671703\pi\)
\(770\) 0 0
\(771\) −13.2110 −0.475783
\(772\) −3.65076 −0.131394
\(773\) 11.5635 0.415910 0.207955 0.978138i \(-0.433319\pi\)
0.207955 + 0.978138i \(0.433319\pi\)
\(774\) 3.49697 0.125696
\(775\) 38.3508 1.37760
\(776\) −6.47689 −0.232507
\(777\) 0 0
\(778\) −18.7838 −0.673433
\(779\) −50.5700 −1.81186
\(780\) 23.2509 0.832517
\(781\) 13.4591 0.481606
\(782\) 4.60850 0.164800
\(783\) −22.9093 −0.818711
\(784\) 0 0
\(785\) 59.2215 2.11371
\(786\) 0.0594355 0.00212000
\(787\) −4.02977 −0.143646 −0.0718229 0.997417i \(-0.522882\pi\)
−0.0718229 + 0.997417i \(0.522882\pi\)
\(788\) 14.9895 0.533978
\(789\) −48.0585 −1.71093
\(790\) 3.86730 0.137592
\(791\) 0 0
\(792\) 5.03470 0.178900
\(793\) −34.4465 −1.22323
\(794\) −35.8722 −1.27306
\(795\) 32.8353 1.16455
\(796\) −8.44476 −0.299317
\(797\) 5.65757 0.200401 0.100201 0.994967i \(-0.468052\pi\)
0.100201 + 0.994967i \(0.468052\pi\)
\(798\) 0 0
\(799\) −6.35036 −0.224660
\(800\) −36.6374 −1.29533
\(801\) −6.33756 −0.223927
\(802\) −15.6814 −0.553729
\(803\) 6.19352 0.218565
\(804\) −13.8448 −0.488267
\(805\) 0 0
\(806\) −18.0197 −0.634717
\(807\) 7.39732 0.260398
\(808\) −39.4406 −1.38752
\(809\) 17.2095 0.605052 0.302526 0.953141i \(-0.402170\pi\)
0.302526 + 0.953141i \(0.402170\pi\)
\(810\) −50.0187 −1.75748
\(811\) −33.3821 −1.17221 −0.586103 0.810237i \(-0.699338\pi\)
−0.586103 + 0.810237i \(0.699338\pi\)
\(812\) 0 0
\(813\) 38.4104 1.34711
\(814\) −9.32569 −0.326865
\(815\) 8.92546 0.312645
\(816\) 3.86762 0.135394
\(817\) −8.37969 −0.293168
\(818\) −15.6799 −0.548236
\(819\) 0 0
\(820\) −29.5982 −1.03362
\(821\) 0.263189 0.00918537 0.00459269 0.999989i \(-0.498538\pi\)
0.00459269 + 0.999989i \(0.498538\pi\)
\(822\) −9.49686 −0.331241
\(823\) 14.8315 0.516995 0.258497 0.966012i \(-0.416773\pi\)
0.258497 + 0.966012i \(0.416773\pi\)
\(824\) 6.89397 0.240163
\(825\) 21.5778 0.751243
\(826\) 0 0
\(827\) 38.1437 1.32639 0.663194 0.748448i \(-0.269201\pi\)
0.663194 + 0.748448i \(0.269201\pi\)
\(828\) −5.40600 −0.187871
\(829\) −10.4064 −0.361429 −0.180715 0.983536i \(-0.557841\pi\)
−0.180715 + 0.983536i \(0.557841\pi\)
\(830\) 36.5049 1.26710
\(831\) 36.4762 1.26535
\(832\) 35.0694 1.21581
\(833\) 0 0
\(834\) −8.89635 −0.308055
\(835\) 17.8322 0.617109
\(836\) −3.06058 −0.105852
\(837\) −11.2440 −0.388650
\(838\) −15.0955 −0.521466
\(839\) 35.4338 1.22331 0.611655 0.791125i \(-0.290504\pi\)
0.611655 + 0.791125i \(0.290504\pi\)
\(840\) 0 0
\(841\) 31.7822 1.09594
\(842\) −12.1856 −0.419944
\(843\) 52.1183 1.79505
\(844\) 18.1818 0.625844
\(845\) −14.7226 −0.506473
\(846\) −14.4657 −0.497343
\(847\) 0 0
\(848\) 8.57094 0.294327
\(849\) −4.83421 −0.165910
\(850\) 9.49760 0.325765
\(851\) 39.4720 1.35308
\(852\) −19.6993 −0.674887
\(853\) 10.5950 0.362765 0.181382 0.983413i \(-0.441943\pi\)
0.181382 + 0.983413i \(0.441943\pi\)
\(854\) 0 0
\(855\) −28.5314 −0.975755
\(856\) −23.4103 −0.800148
\(857\) −42.4041 −1.44850 −0.724248 0.689540i \(-0.757813\pi\)
−0.724248 + 0.689540i \(0.757813\pi\)
\(858\) −10.1387 −0.346128
\(859\) 7.47204 0.254943 0.127471 0.991842i \(-0.459314\pi\)
0.127471 + 0.991842i \(0.459314\pi\)
\(860\) −4.90457 −0.167244
\(861\) 0 0
\(862\) 33.9611 1.15672
\(863\) 30.5892 1.04127 0.520635 0.853779i \(-0.325695\pi\)
0.520635 + 0.853779i \(0.325695\pi\)
\(864\) 10.7417 0.365438
\(865\) −69.9656 −2.37890
\(866\) −37.6482 −1.27934
\(867\) −35.1354 −1.19326
\(868\) 0 0
\(869\) 0.868405 0.0294586
\(870\) 74.7488 2.53422
\(871\) 38.7692 1.31364
\(872\) 23.2883 0.788641
\(873\) −3.43950 −0.116410
\(874\) −25.1558 −0.850907
\(875\) 0 0
\(876\) −9.06507 −0.306280
\(877\) 51.7674 1.74806 0.874030 0.485872i \(-0.161498\pi\)
0.874030 + 0.485872i \(0.161498\pi\)
\(878\) 44.2437 1.49315
\(879\) −1.36822 −0.0461490
\(880\) 8.44230 0.284590
\(881\) 41.8750 1.41081 0.705403 0.708807i \(-0.250766\pi\)
0.705403 + 0.708807i \(0.250766\pi\)
\(882\) 0 0
\(883\) −38.7098 −1.30269 −0.651344 0.758782i \(-0.725795\pi\)
−0.651344 + 0.758782i \(0.725795\pi\)
\(884\) 2.29806 0.0772921
\(885\) 78.8719 2.65125
\(886\) −35.9429 −1.20753
\(887\) −44.1008 −1.48076 −0.740380 0.672188i \(-0.765355\pi\)
−0.740380 + 0.672188i \(0.765355\pi\)
\(888\) 53.8046 1.80556
\(889\) 0 0
\(890\) −17.2606 −0.578578
\(891\) −11.2317 −0.376277
\(892\) −1.21836 −0.0407938
\(893\) 34.6639 1.15998
\(894\) 31.0338 1.03793
\(895\) −60.1185 −2.00954
\(896\) 0 0
\(897\) 42.9129 1.43282
\(898\) 10.1433 0.338487
\(899\) 29.8322 0.994961
\(900\) −11.1412 −0.371372
\(901\) 3.24536 0.108118
\(902\) 12.9064 0.429737
\(903\) 0 0
\(904\) −9.78583 −0.325472
\(905\) −25.7503 −0.855968
\(906\) 1.46218 0.0485777
\(907\) −37.5463 −1.24670 −0.623351 0.781942i \(-0.714229\pi\)
−0.623351 + 0.781942i \(0.714229\pi\)
\(908\) −11.9768 −0.397464
\(909\) −20.9446 −0.694689
\(910\) 0 0
\(911\) 11.2965 0.374269 0.187134 0.982334i \(-0.440080\pi\)
0.187134 + 0.982334i \(0.440080\pi\)
\(912\) −21.1116 −0.699075
\(913\) 8.19720 0.271288
\(914\) 21.9890 0.727333
\(915\) 70.1313 2.31847
\(916\) −3.57327 −0.118064
\(917\) 0 0
\(918\) −2.78459 −0.0919051
\(919\) −7.68871 −0.253627 −0.126814 0.991927i \(-0.540475\pi\)
−0.126814 + 0.991927i \(0.540475\pi\)
\(920\) −58.0384 −1.91347
\(921\) −38.2123 −1.25914
\(922\) −24.1005 −0.793709
\(923\) 55.1636 1.81573
\(924\) 0 0
\(925\) 81.3473 2.67468
\(926\) 37.2912 1.22546
\(927\) 3.66099 0.120243
\(928\) −28.4994 −0.935539
\(929\) 39.5573 1.29783 0.648916 0.760860i \(-0.275223\pi\)
0.648916 + 0.760860i \(0.275223\pi\)
\(930\) 36.6872 1.20302
\(931\) 0 0
\(932\) 9.31840 0.305234
\(933\) 24.2052 0.792442
\(934\) 5.73550 0.187671
\(935\) 3.19665 0.104541
\(936\) 20.6352 0.674482
\(937\) −52.4348 −1.71297 −0.856485 0.516173i \(-0.827356\pi\)
−0.856485 + 0.516173i \(0.827356\pi\)
\(938\) 0 0
\(939\) −9.16172 −0.298981
\(940\) 20.2885 0.661737
\(941\) 49.1101 1.60094 0.800472 0.599370i \(-0.204582\pi\)
0.800472 + 0.599370i \(0.204582\pi\)
\(942\) 37.7967 1.23148
\(943\) −54.6278 −1.77893
\(944\) 20.5878 0.670076
\(945\) 0 0
\(946\) 2.13866 0.0695337
\(947\) −3.82953 −0.124443 −0.0622216 0.998062i \(-0.519819\pi\)
−0.0622216 + 0.998062i \(0.519819\pi\)
\(948\) −1.27103 −0.0412812
\(949\) 25.3848 0.824024
\(950\) −51.8433 −1.68202
\(951\) 45.7145 1.48240
\(952\) 0 0
\(953\) −45.7248 −1.48117 −0.740585 0.671963i \(-0.765452\pi\)
−0.740585 + 0.671963i \(0.765452\pi\)
\(954\) 7.39272 0.239348
\(955\) −19.1672 −0.620236
\(956\) −5.56025 −0.179831
\(957\) 16.7849 0.542579
\(958\) 23.9741 0.774568
\(959\) 0 0
\(960\) −71.3995 −2.30441
\(961\) −16.3582 −0.527683
\(962\) −38.2223 −1.23233
\(963\) −12.4319 −0.400611
\(964\) 7.68628 0.247558
\(965\) −20.8138 −0.670021
\(966\) 0 0
\(967\) 40.7847 1.31155 0.655773 0.754958i \(-0.272343\pi\)
0.655773 + 0.754958i \(0.272343\pi\)
\(968\) 3.07909 0.0989657
\(969\) −7.99384 −0.256799
\(970\) −9.36764 −0.300777
\(971\) 47.1520 1.51318 0.756589 0.653890i \(-0.226864\pi\)
0.756589 + 0.653890i \(0.226864\pi\)
\(972\) 10.4462 0.335061
\(973\) 0 0
\(974\) 27.4621 0.879942
\(975\) 88.4388 2.83231
\(976\) 18.3063 0.585969
\(977\) −25.3516 −0.811068 −0.405534 0.914080i \(-0.632914\pi\)
−0.405534 + 0.914080i \(0.632914\pi\)
\(978\) 5.69645 0.182152
\(979\) −3.87589 −0.123874
\(980\) 0 0
\(981\) 12.3671 0.394850
\(982\) −22.2784 −0.710934
\(983\) 61.6984 1.96787 0.983936 0.178520i \(-0.0571308\pi\)
0.983936 + 0.178520i \(0.0571308\pi\)
\(984\) −74.4637 −2.37382
\(985\) 85.4584 2.72293
\(986\) 7.38798 0.235281
\(987\) 0 0
\(988\) −12.5441 −0.399081
\(989\) −9.05209 −0.287840
\(990\) 7.28176 0.231430
\(991\) 43.8014 1.39140 0.695698 0.718334i \(-0.255095\pi\)
0.695698 + 0.718334i \(0.255095\pi\)
\(992\) −13.9877 −0.444109
\(993\) 50.5010 1.60260
\(994\) 0 0
\(995\) −48.1455 −1.52632
\(996\) −11.9977 −0.380163
\(997\) −29.6657 −0.939522 −0.469761 0.882794i \(-0.655660\pi\)
−0.469761 + 0.882794i \(0.655660\pi\)
\(998\) 0.115090 0.00364311
\(999\) −23.8501 −0.754584
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.a.l.1.4 yes 10
3.2 odd 2 4851.2.a.cg.1.8 10
4.3 odd 2 8624.2.a.df.1.3 10
7.2 even 3 539.2.e.o.67.7 20
7.3 odd 6 539.2.e.o.177.8 20
7.4 even 3 539.2.e.o.177.7 20
7.5 odd 6 539.2.e.o.67.8 20
7.6 odd 2 inner 539.2.a.l.1.3 10
11.10 odd 2 5929.2.a.bv.1.8 10
21.20 even 2 4851.2.a.cg.1.7 10
28.27 even 2 8624.2.a.df.1.8 10
77.76 even 2 5929.2.a.bv.1.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.a.l.1.3 10 7.6 odd 2 inner
539.2.a.l.1.4 yes 10 1.1 even 1 trivial
539.2.e.o.67.7 20 7.2 even 3
539.2.e.o.67.8 20 7.5 odd 6
539.2.e.o.177.7 20 7.4 even 3
539.2.e.o.177.8 20 7.3 odd 6
4851.2.a.cg.1.7 10 21.20 even 2
4851.2.a.cg.1.8 10 3.2 odd 2
5929.2.a.bv.1.7 10 77.76 even 2
5929.2.a.bv.1.8 10 11.10 odd 2
8624.2.a.df.1.3 10 4.3 odd 2
8624.2.a.df.1.8 10 28.27 even 2