Properties

Label 5929.2.a.bv.1.8
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-2,0,18,0,0,0,6,22,0,0,0,0,0,8,42,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 26x^{8} + 245x^{6} - 1038x^{4} + 1884x^{2} - 968 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 539)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-2.15293\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.14898 q^{2} +2.15293 q^{3} -0.679834 q^{4} -3.87589 q^{5} +2.47369 q^{6} -3.07909 q^{8} +1.63513 q^{9} -4.45334 q^{10} -1.46364 q^{12} -4.09860 q^{13} -8.34453 q^{15} -2.17816 q^{16} +0.824752 q^{17} +1.87873 q^{18} -4.50196 q^{19} +2.63496 q^{20} +4.86320 q^{23} -6.62907 q^{24} +10.0225 q^{25} -4.70923 q^{26} -2.93849 q^{27} -7.79629 q^{29} -9.58774 q^{30} +3.82646 q^{31} +3.65551 q^{32} +0.947627 q^{34} -1.11161 q^{36} +8.11646 q^{37} -5.17268 q^{38} -8.82401 q^{39} +11.9342 q^{40} +11.2329 q^{41} +1.86134 q^{43} -6.33756 q^{45} +5.58774 q^{46} +7.69973 q^{47} -4.68943 q^{48} +11.5157 q^{50} +1.77564 q^{51} +2.78637 q^{52} -3.93495 q^{53} -3.37627 q^{54} -9.69242 q^{57} -8.95782 q^{58} -9.45193 q^{59} +5.67290 q^{60} +8.40447 q^{61} +4.39655 q^{62} +8.55644 q^{64} +15.8857 q^{65} +9.45914 q^{67} -0.560694 q^{68} +10.4701 q^{69} +13.4591 q^{71} -5.03470 q^{72} -6.19352 q^{73} +9.32569 q^{74} +21.5778 q^{75} +3.06058 q^{76} -10.1387 q^{78} -0.868405 q^{79} +8.44230 q^{80} -11.2317 q^{81} +12.9064 q^{82} -8.19720 q^{83} -3.19665 q^{85} +2.13866 q^{86} -16.7849 q^{87} -3.87589 q^{89} -7.28176 q^{90} -3.30617 q^{92} +8.23813 q^{93} +8.84687 q^{94} +17.4491 q^{95} +7.87007 q^{96} -2.10351 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} + 18 q^{4} + 6 q^{8} + 22 q^{9} + 8 q^{15} + 42 q^{16} - 6 q^{18} + 4 q^{23} + 18 q^{25} - 12 q^{29} + 4 q^{30} + 30 q^{32} - 2 q^{36} + 40 q^{37} + 16 q^{39} + 8 q^{43} - 44 q^{46} + 62 q^{50}+ \cdots + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14898 0.812455 0.406227 0.913772i \(-0.366844\pi\)
0.406227 + 0.913772i \(0.366844\pi\)
\(3\) 2.15293 1.24300 0.621499 0.783415i \(-0.286524\pi\)
0.621499 + 0.783415i \(0.286524\pi\)
\(4\) −0.679834 −0.339917
\(5\) −3.87589 −1.73335 −0.866675 0.498873i \(-0.833747\pi\)
−0.866675 + 0.498873i \(0.833747\pi\)
\(6\) 2.47369 1.00988
\(7\) 0 0
\(8\) −3.07909 −1.08862
\(9\) 1.63513 0.545042
\(10\) −4.45334 −1.40827
\(11\) 0 0
\(12\) −1.46364 −0.422516
\(13\) −4.09860 −1.13675 −0.568373 0.822771i \(-0.692427\pi\)
−0.568373 + 0.822771i \(0.692427\pi\)
\(14\) 0 0
\(15\) −8.34453 −2.15455
\(16\) −2.17816 −0.544539
\(17\) 0.824752 0.200032 0.100016 0.994986i \(-0.468111\pi\)
0.100016 + 0.994986i \(0.468111\pi\)
\(18\) 1.87873 0.442822
\(19\) −4.50196 −1.03282 −0.516410 0.856342i \(-0.672732\pi\)
−0.516410 + 0.856342i \(0.672732\pi\)
\(20\) 2.63496 0.589195
\(21\) 0 0
\(22\) 0 0
\(23\) 4.86320 1.01405 0.507023 0.861932i \(-0.330746\pi\)
0.507023 + 0.861932i \(0.330746\pi\)
\(24\) −6.62907 −1.35315
\(25\) 10.0225 2.00450
\(26\) −4.70923 −0.923555
\(27\) −2.93849 −0.565512
\(28\) 0 0
\(29\) −7.79629 −1.44774 −0.723868 0.689939i \(-0.757637\pi\)
−0.723868 + 0.689939i \(0.757637\pi\)
\(30\) −9.58774 −1.75047
\(31\) 3.82646 0.687253 0.343627 0.939106i \(-0.388345\pi\)
0.343627 + 0.939106i \(0.388345\pi\)
\(32\) 3.65551 0.646208
\(33\) 0 0
\(34\) 0.947627 0.162517
\(35\) 0 0
\(36\) −1.11161 −0.185269
\(37\) 8.11646 1.33434 0.667169 0.744907i \(-0.267506\pi\)
0.667169 + 0.744907i \(0.267506\pi\)
\(38\) −5.17268 −0.839120
\(39\) −8.82401 −1.41297
\(40\) 11.9342 1.88696
\(41\) 11.2329 1.75428 0.877142 0.480232i \(-0.159447\pi\)
0.877142 + 0.480232i \(0.159447\pi\)
\(42\) 0 0
\(43\) 1.86134 0.283852 0.141926 0.989877i \(-0.454670\pi\)
0.141926 + 0.989877i \(0.454670\pi\)
\(44\) 0 0
\(45\) −6.33756 −0.944748
\(46\) 5.58774 0.823867
\(47\) 7.69973 1.12312 0.561561 0.827436i \(-0.310201\pi\)
0.561561 + 0.827436i \(0.310201\pi\)
\(48\) −4.68943 −0.676861
\(49\) 0 0
\(50\) 11.5157 1.62857
\(51\) 1.77564 0.248639
\(52\) 2.78637 0.386399
\(53\) −3.93495 −0.540507 −0.270253 0.962789i \(-0.587107\pi\)
−0.270253 + 0.962789i \(0.587107\pi\)
\(54\) −3.37627 −0.459453
\(55\) 0 0
\(56\) 0 0
\(57\) −9.69242 −1.28379
\(58\) −8.95782 −1.17622
\(59\) −9.45193 −1.23054 −0.615268 0.788318i \(-0.710952\pi\)
−0.615268 + 0.788318i \(0.710952\pi\)
\(60\) 5.67290 0.732368
\(61\) 8.40447 1.07608 0.538041 0.842919i \(-0.319165\pi\)
0.538041 + 0.842919i \(0.319165\pi\)
\(62\) 4.39655 0.558362
\(63\) 0 0
\(64\) 8.55644 1.06955
\(65\) 15.8857 1.97038
\(66\) 0 0
\(67\) 9.45914 1.15562 0.577809 0.816172i \(-0.303908\pi\)
0.577809 + 0.816172i \(0.303908\pi\)
\(68\) −0.560694 −0.0679942
\(69\) 10.4701 1.26046
\(70\) 0 0
\(71\) 13.4591 1.59731 0.798653 0.601792i \(-0.205546\pi\)
0.798653 + 0.601792i \(0.205546\pi\)
\(72\) −5.03470 −0.593345
\(73\) −6.19352 −0.724897 −0.362448 0.932004i \(-0.618059\pi\)
−0.362448 + 0.932004i \(0.618059\pi\)
\(74\) 9.32569 1.08409
\(75\) 21.5778 2.49159
\(76\) 3.06058 0.351073
\(77\) 0 0
\(78\) −10.1387 −1.14798
\(79\) −0.868405 −0.0977032 −0.0488516 0.998806i \(-0.515556\pi\)
−0.0488516 + 0.998806i \(0.515556\pi\)
\(80\) 8.44230 0.943878
\(81\) −11.2317 −1.24797
\(82\) 12.9064 1.42528
\(83\) −8.19720 −0.899759 −0.449880 0.893089i \(-0.648533\pi\)
−0.449880 + 0.893089i \(0.648533\pi\)
\(84\) 0 0
\(85\) −3.19665 −0.346725
\(86\) 2.13866 0.230617
\(87\) −16.7849 −1.79953
\(88\) 0 0
\(89\) −3.87589 −0.410843 −0.205422 0.978674i \(-0.565857\pi\)
−0.205422 + 0.978674i \(0.565857\pi\)
\(90\) −7.28176 −0.767565
\(91\) 0 0
\(92\) −3.30617 −0.344692
\(93\) 8.23813 0.854254
\(94\) 8.84687 0.912485
\(95\) 17.4491 1.79024
\(96\) 7.87007 0.803235
\(97\) −2.10351 −0.213579 −0.106790 0.994282i \(-0.534057\pi\)
−0.106790 + 0.994282i \(0.534057\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −6.81364 −0.681364
\(101\) 12.8092 1.27456 0.637281 0.770632i \(-0.280059\pi\)
0.637281 + 0.770632i \(0.280059\pi\)
\(102\) 2.04018 0.202008
\(103\) 2.23897 0.220612 0.110306 0.993898i \(-0.464817\pi\)
0.110306 + 0.993898i \(0.464817\pi\)
\(104\) 12.6199 1.23749
\(105\) 0 0
\(106\) −4.52120 −0.439137
\(107\) 7.60300 0.735010 0.367505 0.930022i \(-0.380212\pi\)
0.367505 + 0.930022i \(0.380212\pi\)
\(108\) 1.99768 0.192227
\(109\) −7.56337 −0.724440 −0.362220 0.932093i \(-0.617981\pi\)
−0.362220 + 0.932093i \(0.617981\pi\)
\(110\) 0 0
\(111\) 17.4742 1.65858
\(112\) 0 0
\(113\) −3.17816 −0.298976 −0.149488 0.988764i \(-0.547763\pi\)
−0.149488 + 0.988764i \(0.547763\pi\)
\(114\) −11.1364 −1.04302
\(115\) −18.8492 −1.75770
\(116\) 5.30019 0.492110
\(117\) −6.70172 −0.619574
\(118\) −10.8601 −0.999755
\(119\) 0 0
\(120\) 25.6936 2.34549
\(121\) 0 0
\(122\) 9.65660 0.874268
\(123\) 24.1837 2.18057
\(124\) −2.60136 −0.233609
\(125\) −19.4667 −1.74115
\(126\) 0 0
\(127\) −5.72640 −0.508136 −0.254068 0.967186i \(-0.581769\pi\)
−0.254068 + 0.967186i \(0.581769\pi\)
\(128\) 2.52020 0.222757
\(129\) 4.00735 0.352828
\(130\) 18.2524 1.60084
\(131\) 0.0240271 0.00209926 0.00104963 0.999999i \(-0.499666\pi\)
0.00104963 + 0.999999i \(0.499666\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.8684 0.938887
\(135\) 11.3892 0.980230
\(136\) −2.53948 −0.217759
\(137\) 3.83915 0.328001 0.164000 0.986460i \(-0.447560\pi\)
0.164000 + 0.986460i \(0.447560\pi\)
\(138\) 12.0300 1.02406
\(139\) −3.59639 −0.305042 −0.152521 0.988300i \(-0.548739\pi\)
−0.152521 + 0.988300i \(0.548739\pi\)
\(140\) 0 0
\(141\) 16.5770 1.39604
\(142\) 15.4643 1.29774
\(143\) 0 0
\(144\) −3.56156 −0.296797
\(145\) 30.2176 2.50943
\(146\) −7.11626 −0.588946
\(147\) 0 0
\(148\) −5.51784 −0.453564
\(149\) 12.5456 1.02777 0.513886 0.857858i \(-0.328205\pi\)
0.513886 + 0.857858i \(0.328205\pi\)
\(150\) 24.7926 2.02431
\(151\) 0.591093 0.0481025 0.0240512 0.999711i \(-0.492344\pi\)
0.0240512 + 0.999711i \(0.492344\pi\)
\(152\) 13.8619 1.12435
\(153\) 1.34857 0.109026
\(154\) 0 0
\(155\) −14.8309 −1.19125
\(156\) 5.99886 0.480293
\(157\) −15.2795 −1.21943 −0.609717 0.792619i \(-0.708717\pi\)
−0.609717 + 0.792619i \(0.708717\pi\)
\(158\) −0.997784 −0.0793795
\(159\) −8.47169 −0.671848
\(160\) −14.1683 −1.12011
\(161\) 0 0
\(162\) −12.9051 −1.01392
\(163\) −2.30282 −0.180370 −0.0901852 0.995925i \(-0.528746\pi\)
−0.0901852 + 0.995925i \(0.528746\pi\)
\(164\) −7.63650 −0.596311
\(165\) 0 0
\(166\) −9.41845 −0.731014
\(167\) 4.60081 0.356021 0.178011 0.984029i \(-0.443034\pi\)
0.178011 + 0.984029i \(0.443034\pi\)
\(168\) 0 0
\(169\) 3.79851 0.292193
\(170\) −3.67290 −0.281698
\(171\) −7.36126 −0.562930
\(172\) −1.26540 −0.0964862
\(173\) −18.0515 −1.37243 −0.686215 0.727399i \(-0.740729\pi\)
−0.686215 + 0.727399i \(0.740729\pi\)
\(174\) −19.2856 −1.46204
\(175\) 0 0
\(176\) 0 0
\(177\) −20.3494 −1.52955
\(178\) −4.45334 −0.333792
\(179\) 15.5109 1.15934 0.579670 0.814851i \(-0.303182\pi\)
0.579670 + 0.814851i \(0.303182\pi\)
\(180\) 4.30849 0.321136
\(181\) 6.64371 0.493823 0.246912 0.969038i \(-0.420584\pi\)
0.246912 + 0.969038i \(0.420584\pi\)
\(182\) 0 0
\(183\) 18.0943 1.33757
\(184\) −14.9742 −1.10391
\(185\) −31.4585 −2.31287
\(186\) 9.46548 0.694043
\(187\) 0 0
\(188\) −5.23454 −0.381768
\(189\) 0 0
\(190\) 20.0487 1.45449
\(191\) 4.94524 0.357825 0.178912 0.983865i \(-0.442742\pi\)
0.178912 + 0.983865i \(0.442742\pi\)
\(192\) 18.4214 1.32945
\(193\) −5.37008 −0.386547 −0.193273 0.981145i \(-0.561910\pi\)
−0.193273 + 0.981145i \(0.561910\pi\)
\(194\) −2.41690 −0.173523
\(195\) 34.2009 2.44918
\(196\) 0 0
\(197\) 22.0487 1.57091 0.785454 0.618921i \(-0.212430\pi\)
0.785454 + 0.618921i \(0.212430\pi\)
\(198\) 0 0
\(199\) 12.4218 0.880558 0.440279 0.897861i \(-0.354879\pi\)
0.440279 + 0.897861i \(0.354879\pi\)
\(200\) −30.8602 −2.18215
\(201\) 20.3649 1.43643
\(202\) 14.7176 1.03552
\(203\) 0 0
\(204\) −1.20714 −0.0845165
\(205\) −43.5374 −3.04079
\(206\) 2.57254 0.179237
\(207\) 7.95194 0.552698
\(208\) 8.92739 0.619003
\(209\) 0 0
\(210\) 0 0
\(211\) 26.7445 1.84117 0.920584 0.390545i \(-0.127713\pi\)
0.920584 + 0.390545i \(0.127713\pi\)
\(212\) 2.67511 0.183727
\(213\) 28.9766 1.98545
\(214\) 8.73573 0.597162
\(215\) −7.21436 −0.492015
\(216\) 9.04786 0.615629
\(217\) 0 0
\(218\) −8.69020 −0.588575
\(219\) −13.3342 −0.901045
\(220\) 0 0
\(221\) −3.38033 −0.227385
\(222\) 20.0776 1.34752
\(223\) 1.79215 0.120011 0.0600055 0.998198i \(-0.480888\pi\)
0.0600055 + 0.998198i \(0.480888\pi\)
\(224\) 0 0
\(225\) 16.3881 1.09254
\(226\) −3.65166 −0.242904
\(227\) −17.6173 −1.16930 −0.584649 0.811286i \(-0.698768\pi\)
−0.584649 + 0.811286i \(0.698768\pi\)
\(228\) 6.58923 0.436383
\(229\) 5.25609 0.347332 0.173666 0.984805i \(-0.444439\pi\)
0.173666 + 0.984805i \(0.444439\pi\)
\(230\) −21.6575 −1.42805
\(231\) 0 0
\(232\) 24.0055 1.57604
\(233\) 13.7069 0.897967 0.448984 0.893540i \(-0.351786\pi\)
0.448984 + 0.893540i \(0.351786\pi\)
\(234\) −7.70018 −0.503376
\(235\) −29.8433 −1.94676
\(236\) 6.42574 0.418280
\(237\) −1.86962 −0.121445
\(238\) 0 0
\(239\) −8.17883 −0.529045 −0.264522 0.964380i \(-0.585214\pi\)
−0.264522 + 0.964380i \(0.585214\pi\)
\(240\) 18.1757 1.17324
\(241\) 11.3061 0.728290 0.364145 0.931342i \(-0.381361\pi\)
0.364145 + 0.931342i \(0.381361\pi\)
\(242\) 0 0
\(243\) −15.3657 −0.985713
\(244\) −5.71364 −0.365778
\(245\) 0 0
\(246\) 27.7867 1.77161
\(247\) 18.4517 1.17405
\(248\) −11.7820 −0.748159
\(249\) −17.6480 −1.11840
\(250\) −22.3669 −1.41461
\(251\) −19.9903 −1.26178 −0.630889 0.775873i \(-0.717309\pi\)
−0.630889 + 0.775873i \(0.717309\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −6.57954 −0.412837
\(255\) −6.88217 −0.430978
\(256\) −14.2172 −0.888575
\(257\) −6.13629 −0.382771 −0.191386 0.981515i \(-0.561298\pi\)
−0.191386 + 0.981515i \(0.561298\pi\)
\(258\) 4.60439 0.286657
\(259\) 0 0
\(260\) −10.7996 −0.669766
\(261\) −12.7479 −0.789076
\(262\) 0.0276068 0.00170555
\(263\) 22.3223 1.37645 0.688227 0.725495i \(-0.258389\pi\)
0.688227 + 0.725495i \(0.258389\pi\)
\(264\) 0 0
\(265\) 15.2514 0.936888
\(266\) 0 0
\(267\) −8.34453 −0.510677
\(268\) −6.43064 −0.392814
\(269\) 3.43592 0.209492 0.104746 0.994499i \(-0.466597\pi\)
0.104746 + 0.994499i \(0.466597\pi\)
\(270\) 13.0861 0.796393
\(271\) −17.8410 −1.08376 −0.541880 0.840456i \(-0.682287\pi\)
−0.541880 + 0.840456i \(0.682287\pi\)
\(272\) −1.79644 −0.108925
\(273\) 0 0
\(274\) 4.41112 0.266486
\(275\) 0 0
\(276\) −7.11796 −0.428451
\(277\) −16.9426 −1.01798 −0.508990 0.860772i \(-0.669981\pi\)
−0.508990 + 0.860772i \(0.669981\pi\)
\(278\) −4.13220 −0.247833
\(279\) 6.25675 0.374582
\(280\) 0 0
\(281\) −24.2080 −1.44413 −0.722066 0.691825i \(-0.756807\pi\)
−0.722066 + 0.691825i \(0.756807\pi\)
\(282\) 19.0467 1.13422
\(283\) 2.24541 0.133475 0.0667377 0.997771i \(-0.478741\pi\)
0.0667377 + 0.997771i \(0.478741\pi\)
\(284\) −9.14998 −0.542951
\(285\) 37.5667 2.22526
\(286\) 0 0
\(287\) 0 0
\(288\) 5.97721 0.352211
\(289\) −16.3198 −0.959987
\(290\) 34.7195 2.03880
\(291\) −4.52872 −0.265478
\(292\) 4.21057 0.246405
\(293\) 0.635515 0.0371272 0.0185636 0.999828i \(-0.494091\pi\)
0.0185636 + 0.999828i \(0.494091\pi\)
\(294\) 0 0
\(295\) 36.6346 2.13295
\(296\) −24.9913 −1.45259
\(297\) 0 0
\(298\) 14.4147 0.835019
\(299\) −19.9323 −1.15271
\(300\) −14.6693 −0.846934
\(301\) 0 0
\(302\) 0.679157 0.0390811
\(303\) 27.5773 1.58428
\(304\) 9.80597 0.562411
\(305\) −32.5748 −1.86523
\(306\) 1.54949 0.0885784
\(307\) 17.7490 1.01299 0.506493 0.862244i \(-0.330941\pi\)
0.506493 + 0.862244i \(0.330941\pi\)
\(308\) 0 0
\(309\) 4.82034 0.274220
\(310\) −17.0405 −0.967837
\(311\) 11.2429 0.637525 0.318763 0.947835i \(-0.396733\pi\)
0.318763 + 0.947835i \(0.396733\pi\)
\(312\) 27.1699 1.53819
\(313\) −4.25546 −0.240533 −0.120266 0.992742i \(-0.538375\pi\)
−0.120266 + 0.992742i \(0.538375\pi\)
\(314\) −17.5559 −0.990736
\(315\) 0 0
\(316\) 0.590371 0.0332110
\(317\) 21.2336 1.19260 0.596299 0.802763i \(-0.296637\pi\)
0.596299 + 0.802763i \(0.296637\pi\)
\(318\) −9.73384 −0.545847
\(319\) 0 0
\(320\) −33.1638 −1.85391
\(321\) 16.3688 0.913615
\(322\) 0 0
\(323\) −3.71300 −0.206597
\(324\) 7.63572 0.424207
\(325\) −41.0783 −2.27861
\(326\) −2.64590 −0.146543
\(327\) −16.2834 −0.900477
\(328\) −34.5871 −1.90975
\(329\) 0 0
\(330\) 0 0
\(331\) 23.4568 1.28930 0.644652 0.764476i \(-0.277002\pi\)
0.644652 + 0.764476i \(0.277002\pi\)
\(332\) 5.57273 0.305843
\(333\) 13.2714 0.727270
\(334\) 5.28626 0.289251
\(335\) −36.6626 −2.00309
\(336\) 0 0
\(337\) 34.7640 1.89372 0.946859 0.321650i \(-0.104238\pi\)
0.946859 + 0.321650i \(0.104238\pi\)
\(338\) 4.36443 0.237394
\(339\) −6.84236 −0.371626
\(340\) 2.17319 0.117858
\(341\) 0 0
\(342\) −8.45798 −0.457355
\(343\) 0 0
\(344\) −5.73124 −0.309008
\(345\) −40.5811 −2.18481
\(346\) −20.7409 −1.11504
\(347\) 0.689571 0.0370181 0.0185090 0.999829i \(-0.494108\pi\)
0.0185090 + 0.999829i \(0.494108\pi\)
\(348\) 11.4109 0.611691
\(349\) −19.9995 −1.07055 −0.535275 0.844678i \(-0.679792\pi\)
−0.535275 + 0.844678i \(0.679792\pi\)
\(350\) 0 0
\(351\) 12.0437 0.642844
\(352\) 0 0
\(353\) 3.57359 0.190203 0.0951014 0.995468i \(-0.469682\pi\)
0.0951014 + 0.995468i \(0.469682\pi\)
\(354\) −23.3811 −1.24269
\(355\) −52.1661 −2.76869
\(356\) 2.63496 0.139653
\(357\) 0 0
\(358\) 17.8218 0.941911
\(359\) 31.6809 1.67205 0.836026 0.548690i \(-0.184873\pi\)
0.836026 + 0.548690i \(0.184873\pi\)
\(360\) 19.5139 1.02847
\(361\) 1.26762 0.0667169
\(362\) 7.63352 0.401209
\(363\) 0 0
\(364\) 0 0
\(365\) 24.0054 1.25650
\(366\) 20.7900 1.08671
\(367\) −17.6491 −0.921277 −0.460638 0.887588i \(-0.652380\pi\)
−0.460638 + 0.887588i \(0.652380\pi\)
\(368\) −10.5928 −0.552189
\(369\) 18.3672 0.956158
\(370\) −36.1453 −1.87911
\(371\) 0 0
\(372\) −5.60056 −0.290375
\(373\) 24.0524 1.24539 0.622694 0.782465i \(-0.286038\pi\)
0.622694 + 0.782465i \(0.286038\pi\)
\(374\) 0 0
\(375\) −41.9105 −2.16425
\(376\) −23.7082 −1.22265
\(377\) 31.9539 1.64571
\(378\) 0 0
\(379\) 5.73645 0.294662 0.147331 0.989087i \(-0.452932\pi\)
0.147331 + 0.989087i \(0.452932\pi\)
\(380\) −11.8625 −0.608532
\(381\) −12.3286 −0.631611
\(382\) 5.68200 0.290717
\(383\) −9.45929 −0.483347 −0.241674 0.970358i \(-0.577696\pi\)
−0.241674 + 0.970358i \(0.577696\pi\)
\(384\) 5.42583 0.276886
\(385\) 0 0
\(386\) −6.17014 −0.314052
\(387\) 3.04353 0.154711
\(388\) 1.43004 0.0725992
\(389\) 16.3482 0.828887 0.414443 0.910075i \(-0.363976\pi\)
0.414443 + 0.910075i \(0.363976\pi\)
\(390\) 39.2963 1.98985
\(391\) 4.01093 0.202841
\(392\) 0 0
\(393\) 0.0517288 0.00260937
\(394\) 25.3337 1.27629
\(395\) 3.36584 0.169354
\(396\) 0 0
\(397\) 31.2208 1.56693 0.783464 0.621437i \(-0.213451\pi\)
0.783464 + 0.621437i \(0.213451\pi\)
\(398\) 14.2725 0.715414
\(399\) 0 0
\(400\) −21.8306 −1.09153
\(401\) 13.6480 0.681550 0.340775 0.940145i \(-0.389311\pi\)
0.340775 + 0.940145i \(0.389311\pi\)
\(402\) 23.3990 1.16703
\(403\) −15.6831 −0.781233
\(404\) −8.70812 −0.433245
\(405\) 43.5330 2.16317
\(406\) 0 0
\(407\) 0 0
\(408\) −5.46734 −0.270674
\(409\) −13.6468 −0.674790 −0.337395 0.941363i \(-0.609546\pi\)
−0.337395 + 0.941363i \(0.609546\pi\)
\(410\) −50.0239 −2.47050
\(411\) 8.26543 0.407704
\(412\) −1.52212 −0.0749897
\(413\) 0 0
\(414\) 9.13666 0.449042
\(415\) 31.7714 1.55960
\(416\) −14.9825 −0.734575
\(417\) −7.74279 −0.379166
\(418\) 0 0
\(419\) 13.1381 0.641840 0.320920 0.947106i \(-0.396008\pi\)
0.320920 + 0.947106i \(0.396008\pi\)
\(420\) 0 0
\(421\) 10.6056 0.516883 0.258441 0.966027i \(-0.416791\pi\)
0.258441 + 0.966027i \(0.416791\pi\)
\(422\) 30.7290 1.49587
\(423\) 12.5900 0.612148
\(424\) 12.1161 0.588408
\(425\) 8.26608 0.400964
\(426\) 33.2937 1.61309
\(427\) 0 0
\(428\) −5.16878 −0.249842
\(429\) 0 0
\(430\) −8.28919 −0.399740
\(431\) 29.5575 1.42373 0.711867 0.702315i \(-0.247850\pi\)
0.711867 + 0.702315i \(0.247850\pi\)
\(432\) 6.40048 0.307943
\(433\) 32.7665 1.57466 0.787329 0.616534i \(-0.211464\pi\)
0.787329 + 0.616534i \(0.211464\pi\)
\(434\) 0 0
\(435\) 65.0564 3.11922
\(436\) 5.14184 0.246249
\(437\) −21.8939 −1.04733
\(438\) −15.3208 −0.732058
\(439\) 38.5068 1.83783 0.918914 0.394459i \(-0.129068\pi\)
0.918914 + 0.394459i \(0.129068\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.88394 −0.184740
\(443\) 31.2823 1.48627 0.743134 0.669142i \(-0.233338\pi\)
0.743134 + 0.669142i \(0.233338\pi\)
\(444\) −11.8796 −0.563779
\(445\) 15.0225 0.712135
\(446\) 2.05915 0.0975035
\(447\) 27.0098 1.27752
\(448\) 0 0
\(449\) −8.82808 −0.416623 −0.208311 0.978063i \(-0.566797\pi\)
−0.208311 + 0.978063i \(0.566797\pi\)
\(450\) 18.8296 0.887638
\(451\) 0 0
\(452\) 2.16062 0.101627
\(453\) 1.27259 0.0597913
\(454\) −20.2420 −0.950002
\(455\) 0 0
\(456\) 29.8438 1.39756
\(457\) 19.1378 0.895228 0.447614 0.894227i \(-0.352274\pi\)
0.447614 + 0.894227i \(0.352274\pi\)
\(458\) 6.03917 0.282192
\(459\) −2.42352 −0.113120
\(460\) 12.8143 0.597472
\(461\) −20.9755 −0.976926 −0.488463 0.872584i \(-0.662442\pi\)
−0.488463 + 0.872584i \(0.662442\pi\)
\(462\) 0 0
\(463\) −32.4558 −1.50835 −0.754174 0.656674i \(-0.771963\pi\)
−0.754174 + 0.656674i \(0.771963\pi\)
\(464\) 16.9816 0.788349
\(465\) −31.9301 −1.48072
\(466\) 15.7490 0.729558
\(467\) −4.99179 −0.230993 −0.115496 0.993308i \(-0.536846\pi\)
−0.115496 + 0.993308i \(0.536846\pi\)
\(468\) 4.55606 0.210604
\(469\) 0 0
\(470\) −34.2895 −1.58166
\(471\) −32.8957 −1.51575
\(472\) 29.1033 1.33959
\(473\) 0 0
\(474\) −2.14816 −0.0986685
\(475\) −45.1209 −2.07029
\(476\) 0 0
\(477\) −6.43414 −0.294599
\(478\) −9.39736 −0.429825
\(479\) 20.8655 0.953368 0.476684 0.879075i \(-0.341839\pi\)
0.476684 + 0.879075i \(0.341839\pi\)
\(480\) −30.5035 −1.39229
\(481\) −33.2661 −1.51680
\(482\) 12.9905 0.591703
\(483\) 0 0
\(484\) 0 0
\(485\) 8.15297 0.370207
\(486\) −17.6550 −0.800847
\(487\) −23.9012 −1.08307 −0.541533 0.840680i \(-0.682156\pi\)
−0.541533 + 0.840680i \(0.682156\pi\)
\(488\) −25.8781 −1.17145
\(489\) −4.95781 −0.224200
\(490\) 0 0
\(491\) −19.3897 −0.875044 −0.437522 0.899208i \(-0.644144\pi\)
−0.437522 + 0.899208i \(0.644144\pi\)
\(492\) −16.4409 −0.741212
\(493\) −6.43001 −0.289593
\(494\) 21.2007 0.953866
\(495\) 0 0
\(496\) −8.33464 −0.374237
\(497\) 0 0
\(498\) −20.2773 −0.908648
\(499\) −0.100167 −0.00448408 −0.00224204 0.999997i \(-0.500714\pi\)
−0.00224204 + 0.999997i \(0.500714\pi\)
\(500\) 13.2341 0.591848
\(501\) 9.90523 0.442533
\(502\) −22.9686 −1.02514
\(503\) −14.2263 −0.634317 −0.317159 0.948372i \(-0.602729\pi\)
−0.317159 + 0.948372i \(0.602729\pi\)
\(504\) 0 0
\(505\) −49.6470 −2.20926
\(506\) 0 0
\(507\) 8.17794 0.363195
\(508\) 3.89300 0.172724
\(509\) 8.67585 0.384550 0.192275 0.981341i \(-0.438413\pi\)
0.192275 + 0.981341i \(0.438413\pi\)
\(510\) −7.90750 −0.350150
\(511\) 0 0
\(512\) −21.3758 −0.944684
\(513\) 13.2289 0.584072
\(514\) −7.05050 −0.310984
\(515\) −8.67798 −0.382397
\(516\) −2.72433 −0.119932
\(517\) 0 0
\(518\) 0 0
\(519\) −38.8637 −1.70593
\(520\) −48.9135 −2.14500
\(521\) −11.0313 −0.483288 −0.241644 0.970365i \(-0.577687\pi\)
−0.241644 + 0.970365i \(0.577687\pi\)
\(522\) −14.6472 −0.641089
\(523\) 11.4402 0.500243 0.250122 0.968214i \(-0.419529\pi\)
0.250122 + 0.968214i \(0.419529\pi\)
\(524\) −0.0163344 −0.000713573 0
\(525\) 0 0
\(526\) 25.6480 1.11831
\(527\) 3.15588 0.137472
\(528\) 0 0
\(529\) 0.650700 0.0282913
\(530\) 17.5237 0.761179
\(531\) −15.4551 −0.670694
\(532\) 0 0
\(533\) −46.0391 −1.99418
\(534\) −9.58774 −0.414902
\(535\) −29.4684 −1.27403
\(536\) −29.1255 −1.25803
\(537\) 33.3940 1.44106
\(538\) 3.94782 0.170203
\(539\) 0 0
\(540\) −7.74279 −0.333197
\(541\) −1.20512 −0.0518122 −0.0259061 0.999664i \(-0.508247\pi\)
−0.0259061 + 0.999664i \(0.508247\pi\)
\(542\) −20.4990 −0.880507
\(543\) 14.3035 0.613821
\(544\) 3.01488 0.129262
\(545\) 29.3148 1.25571
\(546\) 0 0
\(547\) −5.64802 −0.241492 −0.120746 0.992683i \(-0.538529\pi\)
−0.120746 + 0.992683i \(0.538529\pi\)
\(548\) −2.60998 −0.111493
\(549\) 13.7424 0.586509
\(550\) 0 0
\(551\) 35.0986 1.49525
\(552\) −32.2385 −1.37216
\(553\) 0 0
\(554\) −19.4667 −0.827063
\(555\) −67.7281 −2.87490
\(556\) 2.44495 0.103689
\(557\) 6.89754 0.292258 0.146129 0.989266i \(-0.453319\pi\)
0.146129 + 0.989266i \(0.453319\pi\)
\(558\) 7.18891 0.304331
\(559\) −7.62890 −0.322668
\(560\) 0 0
\(561\) 0 0
\(562\) −27.8147 −1.17329
\(563\) −1.52144 −0.0641211 −0.0320605 0.999486i \(-0.510207\pi\)
−0.0320605 + 0.999486i \(0.510207\pi\)
\(564\) −11.2696 −0.474536
\(565\) 12.3182 0.518230
\(566\) 2.57994 0.108443
\(567\) 0 0
\(568\) −41.4419 −1.73886
\(569\) −28.5468 −1.19674 −0.598372 0.801219i \(-0.704185\pi\)
−0.598372 + 0.801219i \(0.704185\pi\)
\(570\) 43.1636 1.80792
\(571\) −37.5519 −1.57150 −0.785749 0.618545i \(-0.787722\pi\)
−0.785749 + 0.618545i \(0.787722\pi\)
\(572\) 0 0
\(573\) 10.6468 0.444775
\(574\) 0 0
\(575\) 48.7415 2.03266
\(576\) 13.9908 0.582952
\(577\) 12.5401 0.522051 0.261025 0.965332i \(-0.415939\pi\)
0.261025 + 0.965332i \(0.415939\pi\)
\(578\) −18.7512 −0.779946
\(579\) −11.5614 −0.480477
\(580\) −20.5429 −0.852999
\(581\) 0 0
\(582\) −5.20343 −0.215689
\(583\) 0 0
\(584\) 19.0704 0.789139
\(585\) 25.9751 1.07394
\(586\) 0.730198 0.0301642
\(587\) −33.6526 −1.38899 −0.694496 0.719496i \(-0.744373\pi\)
−0.694496 + 0.719496i \(0.744373\pi\)
\(588\) 0 0
\(589\) −17.2266 −0.709809
\(590\) 42.0926 1.73293
\(591\) 47.4695 1.95263
\(592\) −17.6789 −0.726600
\(593\) 24.4214 1.00287 0.501434 0.865196i \(-0.332806\pi\)
0.501434 + 0.865196i \(0.332806\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.52890 −0.349357
\(597\) 26.7433 1.09453
\(598\) −22.9019 −0.936529
\(599\) 5.56936 0.227558 0.113779 0.993506i \(-0.463704\pi\)
0.113779 + 0.993506i \(0.463704\pi\)
\(600\) −66.4400 −2.71240
\(601\) 10.8079 0.440864 0.220432 0.975402i \(-0.429253\pi\)
0.220432 + 0.975402i \(0.429253\pi\)
\(602\) 0 0
\(603\) 15.4669 0.629860
\(604\) −0.401845 −0.0163509
\(605\) 0 0
\(606\) 31.6859 1.28715
\(607\) 10.5106 0.426611 0.213305 0.976986i \(-0.431577\pi\)
0.213305 + 0.976986i \(0.431577\pi\)
\(608\) −16.4569 −0.667417
\(609\) 0 0
\(610\) −37.4279 −1.51541
\(611\) −31.5581 −1.27670
\(612\) −0.916805 −0.0370597
\(613\) 23.4044 0.945293 0.472647 0.881252i \(-0.343299\pi\)
0.472647 + 0.881252i \(0.343299\pi\)
\(614\) 20.3933 0.823006
\(615\) −93.7332 −3.77969
\(616\) 0 0
\(617\) −27.4432 −1.10482 −0.552410 0.833572i \(-0.686292\pi\)
−0.552410 + 0.833572i \(0.686292\pi\)
\(618\) 5.53850 0.222791
\(619\) 8.37072 0.336448 0.168224 0.985749i \(-0.446197\pi\)
0.168224 + 0.985749i \(0.446197\pi\)
\(620\) 10.0826 0.404926
\(621\) −14.2904 −0.573455
\(622\) 12.9179 0.517961
\(623\) 0 0
\(624\) 19.2201 0.769419
\(625\) 25.3382 1.01353
\(626\) −4.88946 −0.195422
\(627\) 0 0
\(628\) 10.3875 0.414507
\(629\) 6.69406 0.266910
\(630\) 0 0
\(631\) −40.8816 −1.62747 −0.813736 0.581235i \(-0.802570\pi\)
−0.813736 + 0.581235i \(0.802570\pi\)
\(632\) 2.67390 0.106362
\(633\) 57.5792 2.28857
\(634\) 24.3971 0.968932
\(635\) 22.1949 0.880777
\(636\) 5.75934 0.228373
\(637\) 0 0
\(638\) 0 0
\(639\) 22.0074 0.870598
\(640\) −9.76803 −0.386115
\(641\) −28.8987 −1.14143 −0.570714 0.821149i \(-0.693334\pi\)
−0.570714 + 0.821149i \(0.693334\pi\)
\(642\) 18.8075 0.742271
\(643\) −44.9484 −1.77259 −0.886296 0.463120i \(-0.846730\pi\)
−0.886296 + 0.463120i \(0.846730\pi\)
\(644\) 0 0
\(645\) −15.5320 −0.611574
\(646\) −4.26618 −0.167850
\(647\) 1.45440 0.0571784 0.0285892 0.999591i \(-0.490899\pi\)
0.0285892 + 0.999591i \(0.490899\pi\)
\(648\) 34.5835 1.35857
\(649\) 0 0
\(650\) −47.1983 −1.85127
\(651\) 0 0
\(652\) 1.56553 0.0613110
\(653\) 4.89313 0.191483 0.0957415 0.995406i \(-0.469478\pi\)
0.0957415 + 0.995406i \(0.469478\pi\)
\(654\) −18.7094 −0.731597
\(655\) −0.0931263 −0.00363875
\(656\) −24.4670 −0.955276
\(657\) −10.1272 −0.395099
\(658\) 0 0
\(659\) −14.2035 −0.553291 −0.276646 0.960972i \(-0.589223\pi\)
−0.276646 + 0.960972i \(0.589223\pi\)
\(660\) 0 0
\(661\) −33.4970 −1.30288 −0.651442 0.758698i \(-0.725836\pi\)
−0.651442 + 0.758698i \(0.725836\pi\)
\(662\) 26.9515 1.04750
\(663\) −7.27762 −0.282639
\(664\) 25.2399 0.979498
\(665\) 0 0
\(666\) 15.2487 0.590874
\(667\) −37.9149 −1.46807
\(668\) −3.12778 −0.121018
\(669\) 3.85837 0.149173
\(670\) −42.1247 −1.62742
\(671\) 0 0
\(672\) 0 0
\(673\) 50.4763 1.94572 0.972859 0.231398i \(-0.0743300\pi\)
0.972859 + 0.231398i \(0.0743300\pi\)
\(674\) 39.9433 1.53856
\(675\) −29.4510 −1.13357
\(676\) −2.58236 −0.0993214
\(677\) 41.4961 1.59482 0.797412 0.603436i \(-0.206202\pi\)
0.797412 + 0.603436i \(0.206202\pi\)
\(678\) −7.86177 −0.301930
\(679\) 0 0
\(680\) 9.84275 0.377452
\(681\) −37.9288 −1.45343
\(682\) 0 0
\(683\) −0.914566 −0.0349949 −0.0174975 0.999847i \(-0.505570\pi\)
−0.0174975 + 0.999847i \(0.505570\pi\)
\(684\) 5.00444 0.191349
\(685\) −14.8801 −0.568540
\(686\) 0 0
\(687\) 11.3160 0.431733
\(688\) −4.05430 −0.154569
\(689\) 16.1278 0.614419
\(690\) −46.6271 −1.77506
\(691\) −33.6540 −1.28026 −0.640130 0.768267i \(-0.721119\pi\)
−0.640130 + 0.768267i \(0.721119\pi\)
\(692\) 12.2720 0.466512
\(693\) 0 0
\(694\) 0.792306 0.0300755
\(695\) 13.9392 0.528744
\(696\) 51.6822 1.95901
\(697\) 9.26435 0.350912
\(698\) −22.9791 −0.869773
\(699\) 29.5100 1.11617
\(700\) 0 0
\(701\) 19.9539 0.753649 0.376825 0.926285i \(-0.377016\pi\)
0.376825 + 0.926285i \(0.377016\pi\)
\(702\) 13.8380 0.522281
\(703\) −36.5400 −1.37813
\(704\) 0 0
\(705\) −64.2507 −2.41982
\(706\) 4.10600 0.154531
\(707\) 0 0
\(708\) 13.8342 0.519921
\(709\) 17.9062 0.672481 0.336240 0.941776i \(-0.390845\pi\)
0.336240 + 0.941776i \(0.390845\pi\)
\(710\) −59.9381 −2.24944
\(711\) −1.41995 −0.0532523
\(712\) 11.9342 0.447253
\(713\) 18.6089 0.696907
\(714\) 0 0
\(715\) 0 0
\(716\) −10.5448 −0.394079
\(717\) −17.6085 −0.657601
\(718\) 36.4008 1.35847
\(719\) −2.99817 −0.111813 −0.0559064 0.998436i \(-0.517805\pi\)
−0.0559064 + 0.998436i \(0.517805\pi\)
\(720\) 13.8042 0.514453
\(721\) 0 0
\(722\) 1.45648 0.0542044
\(723\) 24.3413 0.905263
\(724\) −4.51662 −0.167859
\(725\) −78.1384 −2.90199
\(726\) 0 0
\(727\) −29.4088 −1.09071 −0.545355 0.838205i \(-0.683605\pi\)
−0.545355 + 0.838205i \(0.683605\pi\)
\(728\) 0 0
\(729\) 0.613791 0.0227330
\(730\) 27.5818 1.02085
\(731\) 1.53515 0.0567794
\(732\) −12.3011 −0.454662
\(733\) 1.39138 0.0513918 0.0256959 0.999670i \(-0.491820\pi\)
0.0256959 + 0.999670i \(0.491820\pi\)
\(734\) −20.2786 −0.748496
\(735\) 0 0
\(736\) 17.7775 0.655286
\(737\) 0 0
\(738\) 21.1036 0.776835
\(739\) −9.54756 −0.351213 −0.175606 0.984460i \(-0.556189\pi\)
−0.175606 + 0.984460i \(0.556189\pi\)
\(740\) 21.3866 0.786185
\(741\) 39.7253 1.45935
\(742\) 0 0
\(743\) 15.7641 0.578328 0.289164 0.957280i \(-0.406623\pi\)
0.289164 + 0.957280i \(0.406623\pi\)
\(744\) −25.3659 −0.929960
\(745\) −48.6252 −1.78149
\(746\) 27.6359 1.01182
\(747\) −13.4034 −0.490406
\(748\) 0 0
\(749\) 0 0
\(750\) −48.1545 −1.75836
\(751\) −43.1559 −1.57478 −0.787391 0.616455i \(-0.788568\pi\)
−0.787391 + 0.616455i \(0.788568\pi\)
\(752\) −16.7712 −0.611584
\(753\) −43.0378 −1.56839
\(754\) 36.7145 1.33706
\(755\) −2.29101 −0.0833785
\(756\) 0 0
\(757\) −36.7539 −1.33584 −0.667922 0.744231i \(-0.732816\pi\)
−0.667922 + 0.744231i \(0.732816\pi\)
\(758\) 6.59109 0.239399
\(759\) 0 0
\(760\) −53.7273 −1.94889
\(761\) −34.6094 −1.25459 −0.627296 0.778781i \(-0.715838\pi\)
−0.627296 + 0.778781i \(0.715838\pi\)
\(762\) −14.1653 −0.513156
\(763\) 0 0
\(764\) −3.36194 −0.121631
\(765\) −5.22692 −0.188980
\(766\) −10.8686 −0.392698
\(767\) 38.7397 1.39881
\(768\) −30.6087 −1.10450
\(769\) 28.4872 1.02728 0.513638 0.858007i \(-0.328297\pi\)
0.513638 + 0.858007i \(0.328297\pi\)
\(770\) 0 0
\(771\) −13.2110 −0.475783
\(772\) 3.65076 0.131394
\(773\) 11.5635 0.415910 0.207955 0.978138i \(-0.433319\pi\)
0.207955 + 0.978138i \(0.433319\pi\)
\(774\) 3.49697 0.125696
\(775\) 38.3508 1.37760
\(776\) 6.47689 0.232507
\(777\) 0 0
\(778\) 18.7838 0.673433
\(779\) −50.5700 −1.81186
\(780\) −23.2509 −0.832517
\(781\) 0 0
\(782\) 4.60850 0.164800
\(783\) 22.9093 0.818711
\(784\) 0 0
\(785\) 59.2215 2.11371
\(786\) 0.0594355 0.00212000
\(787\) 4.02977 0.143646 0.0718229 0.997417i \(-0.477118\pi\)
0.0718229 + 0.997417i \(0.477118\pi\)
\(788\) −14.9895 −0.533978
\(789\) 48.0585 1.71093
\(790\) 3.86730 0.137592
\(791\) 0 0
\(792\) 0 0
\(793\) −34.4465 −1.22323
\(794\) 35.8722 1.27306
\(795\) 32.8353 1.16455
\(796\) −8.44476 −0.299317
\(797\) 5.65757 0.200401 0.100201 0.994967i \(-0.468052\pi\)
0.100201 + 0.994967i \(0.468052\pi\)
\(798\) 0 0
\(799\) 6.35036 0.224660
\(800\) 36.6374 1.29533
\(801\) −6.33756 −0.223927
\(802\) 15.6814 0.553729
\(803\) 0 0
\(804\) −13.8448 −0.488267
\(805\) 0 0
\(806\) −18.0197 −0.634717
\(807\) 7.39732 0.260398
\(808\) −39.4406 −1.38752
\(809\) −17.2095 −0.605052 −0.302526 0.953141i \(-0.597830\pi\)
−0.302526 + 0.953141i \(0.597830\pi\)
\(810\) 50.0187 1.75748
\(811\) 33.3821 1.17221 0.586103 0.810237i \(-0.300662\pi\)
0.586103 + 0.810237i \(0.300662\pi\)
\(812\) 0 0
\(813\) −38.4104 −1.34711
\(814\) 0 0
\(815\) 8.92546 0.312645
\(816\) −3.86762 −0.135394
\(817\) −8.37969 −0.293168
\(818\) −15.6799 −0.548236
\(819\) 0 0
\(820\) 29.5982 1.03362
\(821\) −0.263189 −0.00918537 −0.00459269 0.999989i \(-0.501462\pi\)
−0.00459269 + 0.999989i \(0.501462\pi\)
\(822\) 9.49686 0.331241
\(823\) 14.8315 0.516995 0.258497 0.966012i \(-0.416773\pi\)
0.258497 + 0.966012i \(0.416773\pi\)
\(824\) −6.89397 −0.240163
\(825\) 0 0
\(826\) 0 0
\(827\) −38.1437 −1.32639 −0.663194 0.748448i \(-0.730799\pi\)
−0.663194 + 0.748448i \(0.730799\pi\)
\(828\) −5.40600 −0.187871
\(829\) −10.4064 −0.361429 −0.180715 0.983536i \(-0.557841\pi\)
−0.180715 + 0.983536i \(0.557841\pi\)
\(830\) 36.5049 1.26710
\(831\) −36.4762 −1.26535
\(832\) −35.0694 −1.21581
\(833\) 0 0
\(834\) −8.89635 −0.308055
\(835\) −17.8322 −0.617109
\(836\) 0 0
\(837\) −11.2440 −0.388650
\(838\) 15.0955 0.521466
\(839\) 35.4338 1.22331 0.611655 0.791125i \(-0.290504\pi\)
0.611655 + 0.791125i \(0.290504\pi\)
\(840\) 0 0
\(841\) 31.7822 1.09594
\(842\) 12.1856 0.419944
\(843\) −52.1183 −1.79505
\(844\) −18.1818 −0.625844
\(845\) −14.7226 −0.506473
\(846\) 14.4657 0.497343
\(847\) 0 0
\(848\) 8.57094 0.294327
\(849\) 4.83421 0.165910
\(850\) 9.49760 0.325765
\(851\) 39.4720 1.35308
\(852\) −19.6993 −0.674887
\(853\) −10.5950 −0.362765 −0.181382 0.983413i \(-0.558057\pi\)
−0.181382 + 0.983413i \(0.558057\pi\)
\(854\) 0 0
\(855\) 28.5314 0.975755
\(856\) −23.4103 −0.800148
\(857\) 42.4041 1.44850 0.724248 0.689540i \(-0.242187\pi\)
0.724248 + 0.689540i \(0.242187\pi\)
\(858\) 0 0
\(859\) 7.47204 0.254943 0.127471 0.991842i \(-0.459314\pi\)
0.127471 + 0.991842i \(0.459314\pi\)
\(860\) 4.90457 0.167244
\(861\) 0 0
\(862\) 33.9611 1.15672
\(863\) 30.5892 1.04127 0.520635 0.853779i \(-0.325695\pi\)
0.520635 + 0.853779i \(0.325695\pi\)
\(864\) −10.7417 −0.365438
\(865\) 69.9656 2.37890
\(866\) 37.6482 1.27934
\(867\) −35.1354 −1.19326
\(868\) 0 0
\(869\) 0 0
\(870\) 74.7488 2.53422
\(871\) −38.7692 −1.31364
\(872\) 23.2883 0.788641
\(873\) −3.43950 −0.116410
\(874\) −25.1558 −0.850907
\(875\) 0 0
\(876\) 9.06507 0.306280
\(877\) −51.7674 −1.74806 −0.874030 0.485872i \(-0.838502\pi\)
−0.874030 + 0.485872i \(0.838502\pi\)
\(878\) 44.2437 1.49315
\(879\) 1.36822 0.0461490
\(880\) 0 0
\(881\) 41.8750 1.41081 0.705403 0.708807i \(-0.250766\pi\)
0.705403 + 0.708807i \(0.250766\pi\)
\(882\) 0 0
\(883\) −38.7098 −1.30269 −0.651344 0.758782i \(-0.725795\pi\)
−0.651344 + 0.758782i \(0.725795\pi\)
\(884\) 2.29806 0.0772921
\(885\) 78.8719 2.65125
\(886\) 35.9429 1.20753
\(887\) 44.1008 1.48076 0.740380 0.672188i \(-0.234645\pi\)
0.740380 + 0.672188i \(0.234645\pi\)
\(888\) −53.8046 −1.80556
\(889\) 0 0
\(890\) 17.2606 0.578578
\(891\) 0 0
\(892\) −1.21836 −0.0407938
\(893\) −34.6639 −1.15998
\(894\) 31.0338 1.03793
\(895\) −60.1185 −2.00954
\(896\) 0 0
\(897\) −42.9129 −1.43282
\(898\) −10.1433 −0.338487
\(899\) −29.8322 −0.994961
\(900\) −11.1412 −0.371372
\(901\) −3.24536 −0.108118
\(902\) 0 0
\(903\) 0 0
\(904\) 9.78583 0.325472
\(905\) −25.7503 −0.855968
\(906\) 1.46218 0.0485777
\(907\) −37.5463 −1.24670 −0.623351 0.781942i \(-0.714229\pi\)
−0.623351 + 0.781942i \(0.714229\pi\)
\(908\) 11.9768 0.397464
\(909\) 20.9446 0.694689
\(910\) 0 0
\(911\) 11.2965 0.374269 0.187134 0.982334i \(-0.440080\pi\)
0.187134 + 0.982334i \(0.440080\pi\)
\(912\) 21.1116 0.699075
\(913\) 0 0
\(914\) 21.9890 0.727333
\(915\) −70.1313 −2.31847
\(916\) −3.57327 −0.118064
\(917\) 0 0
\(918\) −2.78459 −0.0919051
\(919\) 7.68871 0.253627 0.126814 0.991927i \(-0.459525\pi\)
0.126814 + 0.991927i \(0.459525\pi\)
\(920\) 58.0384 1.91347
\(921\) 38.2123 1.25914
\(922\) −24.1005 −0.793709
\(923\) −55.1636 −1.81573
\(924\) 0 0
\(925\) 81.3473 2.67468
\(926\) −37.2912 −1.22546
\(927\) 3.66099 0.120243
\(928\) −28.4994 −0.935539
\(929\) 39.5573 1.29783 0.648916 0.760860i \(-0.275223\pi\)
0.648916 + 0.760860i \(0.275223\pi\)
\(930\) −36.6872 −1.20302
\(931\) 0 0
\(932\) −9.31840 −0.305234
\(933\) 24.2052 0.792442
\(934\) −5.73550 −0.187671
\(935\) 0 0
\(936\) 20.6352 0.674482
\(937\) 52.4348 1.71297 0.856485 0.516173i \(-0.172644\pi\)
0.856485 + 0.516173i \(0.172644\pi\)
\(938\) 0 0
\(939\) −9.16172 −0.298981
\(940\) 20.2885 0.661737
\(941\) −49.1101 −1.60094 −0.800472 0.599370i \(-0.795418\pi\)
−0.800472 + 0.599370i \(0.795418\pi\)
\(942\) −37.7967 −1.23148
\(943\) 54.6278 1.77893
\(944\) 20.5878 0.670076
\(945\) 0 0
\(946\) 0 0
\(947\) −3.82953 −0.124443 −0.0622216 0.998062i \(-0.519819\pi\)
−0.0622216 + 0.998062i \(0.519819\pi\)
\(948\) 1.27103 0.0412812
\(949\) 25.3848 0.824024
\(950\) −51.8433 −1.68202
\(951\) 45.7145 1.48240
\(952\) 0 0
\(953\) 45.7248 1.48117 0.740585 0.671963i \(-0.234548\pi\)
0.740585 + 0.671963i \(0.234548\pi\)
\(954\) −7.39272 −0.239348
\(955\) −19.1672 −0.620236
\(956\) 5.56025 0.179831
\(957\) 0 0
\(958\) 23.9741 0.774568
\(959\) 0 0
\(960\) −71.3995 −2.30441
\(961\) −16.3582 −0.527683
\(962\) −38.2223 −1.23233
\(963\) 12.4319 0.400611
\(964\) −7.68628 −0.247558
\(965\) 20.8138 0.670021
\(966\) 0 0
\(967\) −40.7847 −1.31155 −0.655773 0.754958i \(-0.727657\pi\)
−0.655773 + 0.754958i \(0.727657\pi\)
\(968\) 0 0
\(969\) −7.99384 −0.256799
\(970\) 9.36764 0.300777
\(971\) 47.1520 1.51318 0.756589 0.653890i \(-0.226864\pi\)
0.756589 + 0.653890i \(0.226864\pi\)
\(972\) 10.4462 0.335061
\(973\) 0 0
\(974\) −27.4621 −0.879942
\(975\) −88.4388 −2.83231
\(976\) −18.3063 −0.585969
\(977\) −25.3516 −0.811068 −0.405534 0.914080i \(-0.632914\pi\)
−0.405534 + 0.914080i \(0.632914\pi\)
\(978\) −5.69645 −0.182152
\(979\) 0 0
\(980\) 0 0
\(981\) −12.3671 −0.394850
\(982\) −22.2784 −0.710934
\(983\) 61.6984 1.96787 0.983936 0.178520i \(-0.0571308\pi\)
0.983936 + 0.178520i \(0.0571308\pi\)
\(984\) −74.4637 −2.37382
\(985\) −85.4584 −2.72293
\(986\) −7.38798 −0.235281
\(987\) 0 0
\(988\) −12.5441 −0.399081
\(989\) 9.05209 0.287840
\(990\) 0 0
\(991\) 43.8014 1.39140 0.695698 0.718334i \(-0.255095\pi\)
0.695698 + 0.718334i \(0.255095\pi\)
\(992\) 13.9877 0.444109
\(993\) 50.5010 1.60260
\(994\) 0 0
\(995\) −48.1455 −1.52632
\(996\) 11.9977 0.380163
\(997\) 29.6657 0.939522 0.469761 0.882794i \(-0.344340\pi\)
0.469761 + 0.882794i \(0.344340\pi\)
\(998\) −0.115090 −0.00364311
\(999\) −23.8501 −0.754584
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.bv.1.8 10
7.6 odd 2 inner 5929.2.a.bv.1.7 10
11.10 odd 2 539.2.a.l.1.4 yes 10
33.32 even 2 4851.2.a.cg.1.8 10
44.43 even 2 8624.2.a.df.1.3 10
77.10 even 6 539.2.e.o.177.8 20
77.32 odd 6 539.2.e.o.177.7 20
77.54 even 6 539.2.e.o.67.8 20
77.65 odd 6 539.2.e.o.67.7 20
77.76 even 2 539.2.a.l.1.3 10
231.230 odd 2 4851.2.a.cg.1.7 10
308.307 odd 2 8624.2.a.df.1.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.a.l.1.3 10 77.76 even 2
539.2.a.l.1.4 yes 10 11.10 odd 2
539.2.e.o.67.7 20 77.65 odd 6
539.2.e.o.67.8 20 77.54 even 6
539.2.e.o.177.7 20 77.32 odd 6
539.2.e.o.177.8 20 77.10 even 6
4851.2.a.cg.1.7 10 231.230 odd 2
4851.2.a.cg.1.8 10 33.32 even 2
5929.2.a.bv.1.7 10 7.6 odd 2 inner
5929.2.a.bv.1.8 10 1.1 even 1 trivial
8624.2.a.df.1.3 10 44.43 even 2
8624.2.a.df.1.8 10 308.307 odd 2