Properties

Label 2-539-1.1-c1-0-8
Degree $2$
Conductor $539$
Sign $1$
Analytic cond. $4.30393$
Root an. cond. $2.07459$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.14·2-s + 2.15·3-s − 0.679·4-s − 3.87·5-s − 2.47·6-s + 3.07·8-s + 1.63·9-s + 4.45·10-s + 11-s − 1.46·12-s + 4.09·13-s − 8.34·15-s − 2.17·16-s − 0.824·17-s − 1.87·18-s + 4.50·19-s + 2.63·20-s − 1.14·22-s + 4.86·23-s + 6.62·24-s + 10.0·25-s − 4.70·26-s − 2.93·27-s + 7.79·29-s + 9.58·30-s + 3.82·31-s − 3.65·32-s + ⋯
L(s)  = 1  − 0.812·2-s + 1.24·3-s − 0.339·4-s − 1.73·5-s − 1.00·6-s + 1.08·8-s + 0.545·9-s + 1.40·10-s + 0.301·11-s − 0.422·12-s + 1.13·13-s − 2.15·15-s − 0.544·16-s − 0.200·17-s − 0.442·18-s + 1.03·19-s + 0.589·20-s − 0.244·22-s + 1.01·23-s + 1.35·24-s + 2.00·25-s − 0.923·26-s − 0.565·27-s + 1.44·29-s + 1.75·30-s + 0.687·31-s − 0.646·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(539\)    =    \(7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(4.30393\)
Root analytic conductor: \(2.07459\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 539,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9949832666\)
\(L(\frac12)\) \(\approx\) \(0.9949832666\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 - T \)
good2 \( 1 + 1.14T + 2T^{2} \)
3 \( 1 - 2.15T + 3T^{2} \)
5 \( 1 + 3.87T + 5T^{2} \)
13 \( 1 - 4.09T + 13T^{2} \)
17 \( 1 + 0.824T + 17T^{2} \)
19 \( 1 - 4.50T + 19T^{2} \)
23 \( 1 - 4.86T + 23T^{2} \)
29 \( 1 - 7.79T + 29T^{2} \)
31 \( 1 - 3.82T + 31T^{2} \)
37 \( 1 - 8.11T + 37T^{2} \)
41 \( 1 + 11.2T + 41T^{2} \)
43 \( 1 + 1.86T + 43T^{2} \)
47 \( 1 - 7.69T + 47T^{2} \)
53 \( 1 + 3.93T + 53T^{2} \)
59 \( 1 + 9.45T + 59T^{2} \)
61 \( 1 + 8.40T + 61T^{2} \)
67 \( 1 - 9.45T + 67T^{2} \)
71 \( 1 - 13.4T + 71T^{2} \)
73 \( 1 - 6.19T + 73T^{2} \)
79 \( 1 - 0.868T + 79T^{2} \)
83 \( 1 - 8.19T + 83T^{2} \)
89 \( 1 + 3.87T + 89T^{2} \)
97 \( 1 + 2.10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.77040432389710391620973397573, −9.580932193587416235084721030743, −8.821369704240671949748170844847, −8.227042858684009862477163536500, −7.78028242034006832696373651864, −6.76668549939965936196760312910, −4.80502535312923754094096816275, −3.85828791254360964695939080971, −3.07584986966519302430491849397, −1.01383440042592199891709032449, 1.01383440042592199891709032449, 3.07584986966519302430491849397, 3.85828791254360964695939080971, 4.80502535312923754094096816275, 6.76668549939965936196760312910, 7.78028242034006832696373651864, 8.227042858684009862477163536500, 8.821369704240671949748170844847, 9.580932193587416235084721030743, 10.77040432389710391620973397573

Graph of the $Z$-function along the critical line