Properties

Label 5328.2.e.g.2591.9
Level $5328$
Weight $2$
Character 5328.2591
Analytic conductor $42.544$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2591,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.9
Character \(\chi\) \(=\) 5328.2591
Dual form 5328.2.e.g.2591.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.827995i q^{5} -4.12813i q^{7} +5.90923 q^{11} -1.64385 q^{13} +6.56445i q^{17} -2.04102i q^{19} +6.81174 q^{23} +4.31442 q^{25} +9.84801i q^{29} +10.7545i q^{31} -3.41807 q^{35} +1.00000 q^{37} +3.00378i q^{41} +11.5653i q^{43} -4.55822 q^{47} -10.0414 q^{49} -3.86226i q^{53} -4.89282i q^{55} +3.85411 q^{59} +5.74368 q^{61} +1.36110i q^{65} +10.1661i q^{67} +2.03339 q^{71} +0.419197 q^{73} -24.3941i q^{77} +0.532846i q^{79} -3.34689 q^{83} +5.43533 q^{85} -4.38205i q^{89} +6.78602i q^{91} -1.68996 q^{95} -3.65391 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 16 q^{13} + 24 q^{37} - 16 q^{49} + 48 q^{61} + 48 q^{73} + 56 q^{85} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5328\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 0.827995i − 0.370291i −0.982711 0.185145i \(-0.940724\pi\)
0.982711 0.185145i \(-0.0592756\pi\)
\(6\) 0 0
\(7\) − 4.12813i − 1.56029i −0.625602 0.780143i \(-0.715146\pi\)
0.625602 0.780143i \(-0.284854\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.90923 1.78170 0.890851 0.454297i \(-0.150109\pi\)
0.890851 + 0.454297i \(0.150109\pi\)
\(12\) 0 0
\(13\) −1.64385 −0.455922 −0.227961 0.973670i \(-0.573206\pi\)
−0.227961 + 0.973670i \(0.573206\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.56445i 1.59211i 0.605223 + 0.796056i \(0.293084\pi\)
−0.605223 + 0.796056i \(0.706916\pi\)
\(18\) 0 0
\(19\) − 2.04102i − 0.468243i −0.972207 0.234122i \(-0.924779\pi\)
0.972207 0.234122i \(-0.0752214\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.81174 1.42035 0.710173 0.704027i \(-0.248617\pi\)
0.710173 + 0.704027i \(0.248617\pi\)
\(24\) 0 0
\(25\) 4.31442 0.862885
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 9.84801i 1.82873i 0.404891 + 0.914365i \(0.367309\pi\)
−0.404891 + 0.914365i \(0.632691\pi\)
\(30\) 0 0
\(31\) 10.7545i 1.93157i 0.259337 + 0.965787i \(0.416496\pi\)
−0.259337 + 0.965787i \(0.583504\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.41807 −0.577759
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00378i 0.469111i 0.972103 + 0.234556i \(0.0753635\pi\)
−0.972103 + 0.234556i \(0.924636\pi\)
\(42\) 0 0
\(43\) 11.5653i 1.76369i 0.471536 + 0.881847i \(0.343700\pi\)
−0.471536 + 0.881847i \(0.656300\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.55822 −0.664884 −0.332442 0.943124i \(-0.607873\pi\)
−0.332442 + 0.943124i \(0.607873\pi\)
\(48\) 0 0
\(49\) −10.0414 −1.43449
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 3.86226i − 0.530522i −0.964177 0.265261i \(-0.914542\pi\)
0.964177 0.265261i \(-0.0854581\pi\)
\(54\) 0 0
\(55\) − 4.89282i − 0.659747i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.85411 0.501763 0.250881 0.968018i \(-0.419280\pi\)
0.250881 + 0.968018i \(0.419280\pi\)
\(60\) 0 0
\(61\) 5.74368 0.735403 0.367701 0.929944i \(-0.380145\pi\)
0.367701 + 0.929944i \(0.380145\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.36110i 0.168824i
\(66\) 0 0
\(67\) 10.1661i 1.24199i 0.783816 + 0.620993i \(0.213271\pi\)
−0.783816 + 0.620993i \(0.786729\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.03339 0.241319 0.120660 0.992694i \(-0.461499\pi\)
0.120660 + 0.992694i \(0.461499\pi\)
\(72\) 0 0
\(73\) 0.419197 0.0490633 0.0245316 0.999699i \(-0.492191\pi\)
0.0245316 + 0.999699i \(0.492191\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 24.3941i − 2.77996i
\(78\) 0 0
\(79\) 0.532846i 0.0599498i 0.999551 + 0.0299749i \(0.00954274\pi\)
−0.999551 + 0.0299749i \(0.990457\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.34689 −0.367369 −0.183684 0.982985i \(-0.558802\pi\)
−0.183684 + 0.982985i \(0.558802\pi\)
\(84\) 0 0
\(85\) 5.43533 0.589544
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 4.38205i − 0.464496i −0.972657 0.232248i \(-0.925392\pi\)
0.972657 0.232248i \(-0.0746081\pi\)
\(90\) 0 0
\(91\) 6.78602i 0.711368i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.68996 −0.173386
\(96\) 0 0
\(97\) −3.65391 −0.370998 −0.185499 0.982644i \(-0.559390\pi\)
−0.185499 + 0.982644i \(0.559390\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 14.5620i − 1.44898i −0.689286 0.724489i \(-0.742076\pi\)
0.689286 0.724489i \(-0.257924\pi\)
\(102\) 0 0
\(103\) 12.8417i 1.26533i 0.774427 + 0.632663i \(0.218038\pi\)
−0.774427 + 0.632663i \(0.781962\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.51926 0.920261 0.460131 0.887851i \(-0.347803\pi\)
0.460131 + 0.887851i \(0.347803\pi\)
\(108\) 0 0
\(109\) −3.84351 −0.368141 −0.184071 0.982913i \(-0.558927\pi\)
−0.184071 + 0.982913i \(0.558927\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 2.39788i − 0.225573i −0.993619 0.112787i \(-0.964022\pi\)
0.993619 0.112787i \(-0.0359777\pi\)
\(114\) 0 0
\(115\) − 5.64009i − 0.525941i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 27.0989 2.48415
\(120\) 0 0
\(121\) 23.9190 2.17446
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 7.71230i − 0.689809i
\(126\) 0 0
\(127\) − 8.91572i − 0.791142i −0.918435 0.395571i \(-0.870547\pi\)
0.918435 0.395571i \(-0.129453\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.0337 0.964018 0.482009 0.876166i \(-0.339907\pi\)
0.482009 + 0.876166i \(0.339907\pi\)
\(132\) 0 0
\(133\) −8.42561 −0.730593
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.2842i 1.47669i 0.674422 + 0.738347i \(0.264393\pi\)
−0.674422 + 0.738347i \(0.735607\pi\)
\(138\) 0 0
\(139\) 16.8099i 1.42580i 0.701265 + 0.712900i \(0.252619\pi\)
−0.701265 + 0.712900i \(0.747381\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.71389 −0.812317
\(144\) 0 0
\(145\) 8.15411 0.677162
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 4.89413i − 0.400943i −0.979700 0.200471i \(-0.935753\pi\)
0.979700 0.200471i \(-0.0642474\pi\)
\(150\) 0 0
\(151\) − 19.7755i − 1.60931i −0.593745 0.804653i \(-0.702351\pi\)
0.593745 0.804653i \(-0.297649\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.90471 0.715244
\(156\) 0 0
\(157\) −11.8079 −0.942370 −0.471185 0.882035i \(-0.656174\pi\)
−0.471185 + 0.882035i \(0.656174\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 28.1197i − 2.21614i
\(162\) 0 0
\(163\) 9.34325i 0.731820i 0.930650 + 0.365910i \(0.119242\pi\)
−0.930650 + 0.365910i \(0.880758\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.30062 −0.642322 −0.321161 0.947025i \(-0.604073\pi\)
−0.321161 + 0.947025i \(0.604073\pi\)
\(168\) 0 0
\(169\) −10.2978 −0.792135
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.5516i 0.802225i 0.916029 + 0.401112i \(0.131376\pi\)
−0.916029 + 0.401112i \(0.868624\pi\)
\(174\) 0 0
\(175\) − 17.8105i − 1.34635i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.21126 −0.613738 −0.306869 0.951752i \(-0.599281\pi\)
−0.306869 + 0.951752i \(0.599281\pi\)
\(180\) 0 0
\(181\) 22.1727 1.64809 0.824043 0.566527i \(-0.191713\pi\)
0.824043 + 0.566527i \(0.191713\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 0.827995i − 0.0608754i
\(186\) 0 0
\(187\) 38.7909i 2.83667i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.8143 −1.50607 −0.753034 0.657982i \(-0.771410\pi\)
−0.753034 + 0.657982i \(0.771410\pi\)
\(192\) 0 0
\(193\) −12.5618 −0.904215 −0.452108 0.891963i \(-0.649328\pi\)
−0.452108 + 0.891963i \(0.649328\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 13.7425i − 0.979116i −0.871971 0.489558i \(-0.837158\pi\)
0.871971 0.489558i \(-0.162842\pi\)
\(198\) 0 0
\(199\) − 19.5410i − 1.38522i −0.721310 0.692612i \(-0.756460\pi\)
0.721310 0.692612i \(-0.243540\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 40.6538 2.85334
\(204\) 0 0
\(205\) 2.48711 0.173708
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 12.0609i − 0.834269i
\(210\) 0 0
\(211\) − 18.0836i − 1.24493i −0.782649 0.622464i \(-0.786132\pi\)
0.782649 0.622464i \(-0.213868\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.57603 0.653080
\(216\) 0 0
\(217\) 44.3961 3.01381
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 10.7910i − 0.725879i
\(222\) 0 0
\(223\) 6.64384i 0.444904i 0.974944 + 0.222452i \(0.0714061\pi\)
−0.974944 + 0.222452i \(0.928594\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.06466 −0.468898 −0.234449 0.972128i \(-0.575329\pi\)
−0.234449 + 0.972128i \(0.575329\pi\)
\(228\) 0 0
\(229\) −14.0974 −0.931581 −0.465790 0.884895i \(-0.654230\pi\)
−0.465790 + 0.884895i \(0.654230\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 19.1196i − 1.25256i −0.779597 0.626282i \(-0.784576\pi\)
0.779597 0.626282i \(-0.215424\pi\)
\(234\) 0 0
\(235\) 3.77418i 0.246201i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.886993 0.0573748 0.0286874 0.999588i \(-0.490867\pi\)
0.0286874 + 0.999588i \(0.490867\pi\)
\(240\) 0 0
\(241\) −4.95612 −0.319251 −0.159626 0.987178i \(-0.551029\pi\)
−0.159626 + 0.987178i \(0.551029\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.31426i 0.531179i
\(246\) 0 0
\(247\) 3.35514i 0.213482i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.175153 −0.0110556 −0.00552778 0.999985i \(-0.501760\pi\)
−0.00552778 + 0.999985i \(0.501760\pi\)
\(252\) 0 0
\(253\) 40.2522 2.53063
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.5610i 1.71921i 0.510959 + 0.859605i \(0.329291\pi\)
−0.510959 + 0.859605i \(0.670709\pi\)
\(258\) 0 0
\(259\) − 4.12813i − 0.256509i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.2510 1.00208 0.501039 0.865424i \(-0.332951\pi\)
0.501039 + 0.865424i \(0.332951\pi\)
\(264\) 0 0
\(265\) −3.19793 −0.196447
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 19.6499i − 1.19807i −0.800722 0.599036i \(-0.795550\pi\)
0.800722 0.599036i \(-0.204450\pi\)
\(270\) 0 0
\(271\) 9.40618i 0.571385i 0.958321 + 0.285692i \(0.0922236\pi\)
−0.958321 + 0.285692i \(0.907776\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 25.4949 1.53740
\(276\) 0 0
\(277\) −0.463418 −0.0278441 −0.0139220 0.999903i \(-0.504432\pi\)
−0.0139220 + 0.999903i \(0.504432\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.42818i 0.502783i 0.967886 + 0.251391i \(0.0808881\pi\)
−0.967886 + 0.251391i \(0.919112\pi\)
\(282\) 0 0
\(283\) − 19.0241i − 1.13087i −0.824794 0.565433i \(-0.808709\pi\)
0.824794 0.565433i \(-0.191291\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.4000 0.731948
\(288\) 0 0
\(289\) −26.0920 −1.53482
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 10.1296i − 0.591779i −0.955222 0.295889i \(-0.904384\pi\)
0.955222 0.295889i \(-0.0956160\pi\)
\(294\) 0 0
\(295\) − 3.19119i − 0.185798i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.1975 −0.647567
\(300\) 0 0
\(301\) 47.7431 2.75187
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 4.75574i − 0.272313i
\(306\) 0 0
\(307\) − 0.806986i − 0.0460572i −0.999735 0.0230286i \(-0.992669\pi\)
0.999735 0.0230286i \(-0.00733087\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.06313 0.400514 0.200257 0.979743i \(-0.435822\pi\)
0.200257 + 0.979743i \(0.435822\pi\)
\(312\) 0 0
\(313\) −31.9085 −1.80358 −0.901788 0.432179i \(-0.857745\pi\)
−0.901788 + 0.432179i \(0.857745\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.4427i 0.586523i 0.956032 + 0.293261i \(0.0947406\pi\)
−0.956032 + 0.293261i \(0.905259\pi\)
\(318\) 0 0
\(319\) 58.1942i 3.25825i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.3982 0.745496
\(324\) 0 0
\(325\) −7.09227 −0.393408
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.8169i 1.03741i
\(330\) 0 0
\(331\) 9.49008i 0.521622i 0.965390 + 0.260811i \(0.0839900\pi\)
−0.965390 + 0.260811i \(0.916010\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.41748 0.459896
\(336\) 0 0
\(337\) 33.1042 1.80330 0.901650 0.432466i \(-0.142357\pi\)
0.901650 + 0.432466i \(0.142357\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 63.5511i 3.44149i
\(342\) 0 0
\(343\) 12.5554i 0.677930i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.8451 0.689564 0.344782 0.938683i \(-0.387953\pi\)
0.344782 + 0.938683i \(0.387953\pi\)
\(348\) 0 0
\(349\) −1.28109 −0.0685752 −0.0342876 0.999412i \(-0.510916\pi\)
−0.0342876 + 0.999412i \(0.510916\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 3.46649i − 0.184503i −0.995736 0.0922514i \(-0.970594\pi\)
0.995736 0.0922514i \(-0.0294064\pi\)
\(354\) 0 0
\(355\) − 1.68364i − 0.0893583i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.1684 0.800558 0.400279 0.916393i \(-0.368913\pi\)
0.400279 + 0.916393i \(0.368913\pi\)
\(360\) 0 0
\(361\) 14.8342 0.780748
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 0.347093i − 0.0181677i
\(366\) 0 0
\(367\) − 7.59145i − 0.396270i −0.980175 0.198135i \(-0.936511\pi\)
0.980175 0.198135i \(-0.0634885\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −15.9439 −0.827765
\(372\) 0 0
\(373\) −2.89739 −0.150021 −0.0750105 0.997183i \(-0.523899\pi\)
−0.0750105 + 0.997183i \(0.523899\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 16.1887i − 0.833758i
\(378\) 0 0
\(379\) − 0.117094i − 0.00601471i −0.999995 0.00300736i \(-0.999043\pi\)
0.999995 0.00300736i \(-0.000957273\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.3177 −0.578307 −0.289154 0.957283i \(-0.593374\pi\)
−0.289154 + 0.957283i \(0.593374\pi\)
\(384\) 0 0
\(385\) −20.1982 −1.02939
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 29.2798i − 1.48454i −0.670099 0.742272i \(-0.733748\pi\)
0.670099 0.742272i \(-0.266252\pi\)
\(390\) 0 0
\(391\) 44.7153i 2.26135i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.441194 0.0221989
\(396\) 0 0
\(397\) −28.0503 −1.40781 −0.703903 0.710296i \(-0.748561\pi\)
−0.703903 + 0.710296i \(0.748561\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 10.0208i − 0.500415i −0.968192 0.250207i \(-0.919501\pi\)
0.968192 0.250207i \(-0.0804988\pi\)
\(402\) 0 0
\(403\) − 17.6789i − 0.880647i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.90923 0.292910
\(408\) 0 0
\(409\) −28.9804 −1.43299 −0.716493 0.697594i \(-0.754254\pi\)
−0.716493 + 0.697594i \(0.754254\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 15.9103i − 0.782893i
\(414\) 0 0
\(415\) 2.77121i 0.136033i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 35.4762 1.73312 0.866562 0.499069i \(-0.166325\pi\)
0.866562 + 0.499069i \(0.166325\pi\)
\(420\) 0 0
\(421\) 26.6996 1.30126 0.650629 0.759395i \(-0.274505\pi\)
0.650629 + 0.759395i \(0.274505\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 28.3218i 1.37381i
\(426\) 0 0
\(427\) − 23.7106i − 1.14744i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.31642 0.256083 0.128041 0.991769i \(-0.459131\pi\)
0.128041 + 0.991769i \(0.459131\pi\)
\(432\) 0 0
\(433\) −32.3998 −1.55703 −0.778517 0.627623i \(-0.784028\pi\)
−0.778517 + 0.627623i \(0.784028\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 13.9029i − 0.665067i
\(438\) 0 0
\(439\) 29.1579i 1.39163i 0.718221 + 0.695815i \(0.244957\pi\)
−0.718221 + 0.695815i \(0.755043\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 27.5734 1.31005 0.655027 0.755606i \(-0.272657\pi\)
0.655027 + 0.755606i \(0.272657\pi\)
\(444\) 0 0
\(445\) −3.62832 −0.171999
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.7395i 0.554023i 0.960867 + 0.277012i \(0.0893441\pi\)
−0.960867 + 0.277012i \(0.910656\pi\)
\(450\) 0 0
\(451\) 17.7500i 0.835816i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.61879 0.263413
\(456\) 0 0
\(457\) −42.2259 −1.97524 −0.987622 0.156853i \(-0.949865\pi\)
−0.987622 + 0.156853i \(0.949865\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 30.1906i − 1.40612i −0.711132 0.703058i \(-0.751817\pi\)
0.711132 0.703058i \(-0.248183\pi\)
\(462\) 0 0
\(463\) 24.8349i 1.15418i 0.816682 + 0.577088i \(0.195811\pi\)
−0.816682 + 0.577088i \(0.804189\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −22.9297 −1.06106 −0.530530 0.847666i \(-0.678007\pi\)
−0.530530 + 0.847666i \(0.678007\pi\)
\(468\) 0 0
\(469\) 41.9670 1.93785
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 68.3422i 3.14238i
\(474\) 0 0
\(475\) − 8.80585i − 0.404040i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 23.5450 1.07580 0.537900 0.843009i \(-0.319218\pi\)
0.537900 + 0.843009i \(0.319218\pi\)
\(480\) 0 0
\(481\) −1.64385 −0.0749531
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.02542i 0.137377i
\(486\) 0 0
\(487\) 21.3742i 0.968556i 0.874914 + 0.484278i \(0.160918\pi\)
−0.874914 + 0.484278i \(0.839082\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −26.3900 −1.19097 −0.595483 0.803368i \(-0.703039\pi\)
−0.595483 + 0.803368i \(0.703039\pi\)
\(492\) 0 0
\(493\) −64.6468 −2.91154
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 8.39411i − 0.376527i
\(498\) 0 0
\(499\) − 13.8093i − 0.618190i −0.951031 0.309095i \(-0.899974\pi\)
0.951031 0.309095i \(-0.100026\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.13714 −0.0952905 −0.0476453 0.998864i \(-0.515172\pi\)
−0.0476453 + 0.998864i \(0.515172\pi\)
\(504\) 0 0
\(505\) −12.0573 −0.536543
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 36.1875i − 1.60398i −0.597335 0.801992i \(-0.703774\pi\)
0.597335 0.801992i \(-0.296226\pi\)
\(510\) 0 0
\(511\) − 1.73050i − 0.0765527i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.6328 0.468538
\(516\) 0 0
\(517\) −26.9356 −1.18463
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 40.3694i − 1.76861i −0.466906 0.884307i \(-0.654631\pi\)
0.466906 0.884307i \(-0.345369\pi\)
\(522\) 0 0
\(523\) − 12.8543i − 0.562078i −0.959696 0.281039i \(-0.909321\pi\)
0.959696 0.281039i \(-0.0906790\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −70.5977 −3.07528
\(528\) 0 0
\(529\) 23.3998 1.01738
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 4.93776i − 0.213878i
\(534\) 0 0
\(535\) − 7.88190i − 0.340764i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −59.3372 −2.55583
\(540\) 0 0
\(541\) 13.8111 0.593786 0.296893 0.954911i \(-0.404049\pi\)
0.296893 + 0.954911i \(0.404049\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.18240i 0.136319i
\(546\) 0 0
\(547\) − 24.6873i − 1.05555i −0.849383 0.527777i \(-0.823026\pi\)
0.849383 0.527777i \(-0.176974\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.1000 0.856290
\(552\) 0 0
\(553\) 2.19966 0.0935389
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 17.5725i − 0.744572i −0.928118 0.372286i \(-0.878574\pi\)
0.928118 0.372286i \(-0.121426\pi\)
\(558\) 0 0
\(559\) − 19.0116i − 0.804107i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.2356 0.768537 0.384269 0.923221i \(-0.374454\pi\)
0.384269 + 0.923221i \(0.374454\pi\)
\(564\) 0 0
\(565\) −1.98543 −0.0835277
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 12.1120i − 0.507762i −0.967235 0.253881i \(-0.918293\pi\)
0.967235 0.253881i \(-0.0817072\pi\)
\(570\) 0 0
\(571\) 17.5981i 0.736457i 0.929735 + 0.368229i \(0.120036\pi\)
−0.929735 + 0.368229i \(0.879964\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 29.3887 1.22559
\(576\) 0 0
\(577\) −1.55766 −0.0648463 −0.0324231 0.999474i \(-0.510322\pi\)
−0.0324231 + 0.999474i \(0.510322\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.8164i 0.573200i
\(582\) 0 0
\(583\) − 22.8230i − 0.945231i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.1792 −0.543962 −0.271981 0.962303i \(-0.587679\pi\)
−0.271981 + 0.962303i \(0.587679\pi\)
\(588\) 0 0
\(589\) 21.9503 0.904446
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.9023i 1.06368i 0.846845 + 0.531840i \(0.178499\pi\)
−0.846845 + 0.531840i \(0.821501\pi\)
\(594\) 0 0
\(595\) − 22.4377i − 0.919858i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.3946 −0.996737 −0.498368 0.866965i \(-0.666067\pi\)
−0.498368 + 0.866965i \(0.666067\pi\)
\(600\) 0 0
\(601\) 36.2586 1.47902 0.739509 0.673147i \(-0.235058\pi\)
0.739509 + 0.673147i \(0.235058\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 19.8049i − 0.805182i
\(606\) 0 0
\(607\) 22.8527i 0.927563i 0.885950 + 0.463781i \(0.153508\pi\)
−0.885950 + 0.463781i \(0.846492\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.49303 0.303135
\(612\) 0 0
\(613\) 11.2231 0.453296 0.226648 0.973977i \(-0.427223\pi\)
0.226648 + 0.973977i \(0.427223\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 12.7900i − 0.514908i −0.966291 0.257454i \(-0.917116\pi\)
0.966291 0.257454i \(-0.0828836\pi\)
\(618\) 0 0
\(619\) − 10.7660i − 0.432722i −0.976313 0.216361i \(-0.930581\pi\)
0.976313 0.216361i \(-0.0694188\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −18.0897 −0.724747
\(624\) 0 0
\(625\) 15.1864 0.607455
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.56445i 0.261742i
\(630\) 0 0
\(631\) − 13.6486i − 0.543344i −0.962390 0.271672i \(-0.912423\pi\)
0.962390 0.271672i \(-0.0875765\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.38217 −0.292953
\(636\) 0 0
\(637\) 16.5066 0.654016
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 5.96867i − 0.235748i −0.993029 0.117874i \(-0.962392\pi\)
0.993029 0.117874i \(-0.0376079\pi\)
\(642\) 0 0
\(643\) − 18.5413i − 0.731198i −0.930773 0.365599i \(-0.880864\pi\)
0.930773 0.365599i \(-0.119136\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.8794 0.624283 0.312142 0.950036i \(-0.398954\pi\)
0.312142 + 0.950036i \(0.398954\pi\)
\(648\) 0 0
\(649\) 22.7749 0.893991
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.2761i 0.402135i 0.979577 + 0.201067i \(0.0644410\pi\)
−0.979577 + 0.201067i \(0.935559\pi\)
\(654\) 0 0
\(655\) − 9.13584i − 0.356967i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.39542 0.210176 0.105088 0.994463i \(-0.466488\pi\)
0.105088 + 0.994463i \(0.466488\pi\)
\(660\) 0 0
\(661\) 26.1950 1.01887 0.509434 0.860510i \(-0.329855\pi\)
0.509434 + 0.860510i \(0.329855\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.97636i 0.270532i
\(666\) 0 0
\(667\) 67.0821i 2.59743i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 33.9407 1.31027
\(672\) 0 0
\(673\) 12.2457 0.472039 0.236019 0.971748i \(-0.424157\pi\)
0.236019 + 0.971748i \(0.424157\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 15.7060i − 0.603630i −0.953367 0.301815i \(-0.902408\pi\)
0.953367 0.301815i \(-0.0975925\pi\)
\(678\) 0 0
\(679\) 15.0838i 0.578863i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33.2828 1.27353 0.636765 0.771058i \(-0.280272\pi\)
0.636765 + 0.771058i \(0.280272\pi\)
\(684\) 0 0
\(685\) 14.3113 0.546806
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.34897i 0.241876i
\(690\) 0 0
\(691\) − 22.1731i − 0.843503i −0.906712 0.421751i \(-0.861416\pi\)
0.906712 0.421751i \(-0.138584\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.9185 0.527961
\(696\) 0 0
\(697\) −19.7181 −0.746878
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.5727i 0.852561i 0.904591 + 0.426280i \(0.140176\pi\)
−0.904591 + 0.426280i \(0.859824\pi\)
\(702\) 0 0
\(703\) − 2.04102i − 0.0769787i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −60.1140 −2.26082
\(708\) 0 0
\(709\) 3.73100 0.140121 0.0700604 0.997543i \(-0.477681\pi\)
0.0700604 + 0.997543i \(0.477681\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 73.2572i 2.74350i
\(714\) 0 0
\(715\) 8.04306i 0.300793i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −41.1923 −1.53621 −0.768106 0.640323i \(-0.778801\pi\)
−0.768106 + 0.640323i \(0.778801\pi\)
\(720\) 0 0
\(721\) 53.0120 1.97427
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 42.4885i 1.57798i
\(726\) 0 0
\(727\) − 25.8695i − 0.959445i −0.877420 0.479723i \(-0.840737\pi\)
0.877420 0.479723i \(-0.159263\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −75.9199 −2.80800
\(732\) 0 0
\(733\) 35.4736 1.31025 0.655124 0.755522i \(-0.272617\pi\)
0.655124 + 0.755522i \(0.272617\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 60.0739i 2.21285i
\(738\) 0 0
\(739\) 30.8916i 1.13637i 0.822902 + 0.568183i \(0.192353\pi\)
−0.822902 + 0.568183i \(0.807647\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.1706 −0.629928 −0.314964 0.949104i \(-0.601992\pi\)
−0.314964 + 0.949104i \(0.601992\pi\)
\(744\) 0 0
\(745\) −4.05232 −0.148465
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 39.2967i − 1.43587i
\(750\) 0 0
\(751\) − 40.8445i − 1.49044i −0.666820 0.745219i \(-0.732345\pi\)
0.666820 0.745219i \(-0.267655\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16.3740 −0.595911
\(756\) 0 0
\(757\) −37.5719 −1.36558 −0.682788 0.730617i \(-0.739233\pi\)
−0.682788 + 0.730617i \(0.739233\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.82990i 0.175084i 0.996161 + 0.0875419i \(0.0279012\pi\)
−0.996161 + 0.0875419i \(0.972099\pi\)
\(762\) 0 0
\(763\) 15.8665i 0.574405i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.33559 −0.228765
\(768\) 0 0
\(769\) 34.9687 1.26100 0.630502 0.776188i \(-0.282849\pi\)
0.630502 + 0.776188i \(0.282849\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 10.5329i − 0.378841i −0.981896 0.189420i \(-0.939339\pi\)
0.981896 0.189420i \(-0.0606609\pi\)
\(774\) 0 0
\(775\) 46.3997i 1.66673i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.13079 0.219658
\(780\) 0 0
\(781\) 12.0158 0.429959
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.77685i 0.348951i
\(786\) 0 0
\(787\) − 15.7275i − 0.560623i −0.959909 0.280312i \(-0.909562\pi\)
0.959909 0.280312i \(-0.0904378\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.89874 −0.351959
\(792\) 0 0
\(793\) −9.44174 −0.335286
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 46.8183i − 1.65839i −0.558959 0.829195i \(-0.688799\pi\)
0.558959 0.829195i \(-0.311201\pi\)
\(798\) 0 0
\(799\) − 29.9222i − 1.05857i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.47713 0.0874161
\(804\) 0 0
\(805\) −23.2830 −0.820618
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 47.3503i 1.66475i 0.554213 + 0.832375i \(0.313019\pi\)
−0.554213 + 0.832375i \(0.686981\pi\)
\(810\) 0 0
\(811\) − 37.0982i − 1.30269i −0.758780 0.651347i \(-0.774204\pi\)
0.758780 0.651347i \(-0.225796\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.73617 0.270986
\(816\) 0 0
\(817\) 23.6051 0.825838
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 52.7570i − 1.84123i −0.390471 0.920615i \(-0.627688\pi\)
0.390471 0.920615i \(-0.372312\pi\)
\(822\) 0 0
\(823\) − 21.2754i − 0.741613i −0.928710 0.370806i \(-0.879081\pi\)
0.928710 0.370806i \(-0.120919\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.6314 1.58676 0.793380 0.608726i \(-0.208319\pi\)
0.793380 + 0.608726i \(0.208319\pi\)
\(828\) 0 0
\(829\) −19.6501 −0.682477 −0.341239 0.939977i \(-0.610846\pi\)
−0.341239 + 0.939977i \(0.610846\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 65.9165i − 2.28387i
\(834\) 0 0
\(835\) 6.87288i 0.237846i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 31.1248 1.07455 0.537273 0.843408i \(-0.319455\pi\)
0.537273 + 0.843408i \(0.319455\pi\)
\(840\) 0 0
\(841\) −67.9833 −2.34425
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8.52649i 0.293320i
\(846\) 0 0
\(847\) − 98.7409i − 3.39278i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.81174 0.233503
\(852\) 0 0
\(853\) −55.2258 −1.89089 −0.945447 0.325775i \(-0.894375\pi\)
−0.945447 + 0.325775i \(0.894375\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 33.7374i − 1.15245i −0.817292 0.576224i \(-0.804526\pi\)
0.817292 0.576224i \(-0.195474\pi\)
\(858\) 0 0
\(859\) − 23.1124i − 0.788586i −0.918985 0.394293i \(-0.870990\pi\)
0.918985 0.394293i \(-0.129010\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −56.5722 −1.92574 −0.962871 0.269963i \(-0.912989\pi\)
−0.962871 + 0.269963i \(0.912989\pi\)
\(864\) 0 0
\(865\) 8.73669 0.297056
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.14871i 0.106813i
\(870\) 0 0
\(871\) − 16.7115i − 0.566249i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −31.8373 −1.07630
\(876\) 0 0
\(877\) 40.5492 1.36925 0.684624 0.728896i \(-0.259966\pi\)
0.684624 + 0.728896i \(0.259966\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.9339i 1.04219i 0.853499 + 0.521095i \(0.174476\pi\)
−0.853499 + 0.521095i \(0.825524\pi\)
\(882\) 0 0
\(883\) − 42.1028i − 1.41687i −0.705775 0.708437i \(-0.749401\pi\)
0.705775 0.708437i \(-0.250599\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −31.8465 −1.06930 −0.534650 0.845074i \(-0.679557\pi\)
−0.534650 + 0.845074i \(0.679557\pi\)
\(888\) 0 0
\(889\) −36.8052 −1.23441
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.30344i 0.311328i
\(894\) 0 0
\(895\) 6.79888i 0.227262i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −105.911 −3.53233
\(900\) 0 0
\(901\) 25.3536 0.844650
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 18.3589i − 0.610271i
\(906\) 0 0
\(907\) − 36.5757i − 1.21448i −0.794520 0.607238i \(-0.792277\pi\)
0.794520 0.607238i \(-0.207723\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 43.2345 1.43242 0.716212 0.697883i \(-0.245874\pi\)
0.716212 + 0.697883i \(0.245874\pi\)
\(912\) 0 0
\(913\) −19.7776 −0.654541
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 45.5485i − 1.50414i
\(918\) 0 0
\(919\) 19.2080i 0.633614i 0.948490 + 0.316807i \(0.102611\pi\)
−0.948490 + 0.316807i \(0.897389\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.34259 −0.110023
\(924\) 0 0
\(925\) 4.31442 0.141857
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 40.9760i − 1.34438i −0.740379 0.672189i \(-0.765354\pi\)
0.740379 0.672189i \(-0.234646\pi\)
\(930\) 0 0
\(931\) 20.4948i 0.671691i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 32.1186 1.05039
\(936\) 0 0
\(937\) −52.1956 −1.70516 −0.852578 0.522599i \(-0.824962\pi\)
−0.852578 + 0.522599i \(0.824962\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 14.9832i − 0.488438i −0.969720 0.244219i \(-0.921468\pi\)
0.969720 0.244219i \(-0.0785316\pi\)
\(942\) 0 0
\(943\) 20.4610i 0.666300i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 44.3569 1.44141 0.720703 0.693244i \(-0.243819\pi\)
0.720703 + 0.693244i \(0.243819\pi\)
\(948\) 0 0
\(949\) −0.689096 −0.0223690
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 8.74054i 0.283134i 0.989929 + 0.141567i \(0.0452140\pi\)
−0.989929 + 0.141567i \(0.954786\pi\)
\(954\) 0 0
\(955\) 17.2341i 0.557683i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 71.3516 2.30406
\(960\) 0 0
\(961\) −84.6603 −2.73098
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.4011i 0.334823i
\(966\) 0 0
\(967\) 44.4982i 1.43096i 0.698631 + 0.715482i \(0.253793\pi\)
−0.698631 + 0.715482i \(0.746207\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.1277 0.998936 0.499468 0.866332i \(-0.333529\pi\)
0.499468 + 0.866332i \(0.333529\pi\)
\(972\) 0 0
\(973\) 69.3936 2.22466
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29.3393i 0.938646i 0.883026 + 0.469323i \(0.155502\pi\)
−0.883026 + 0.469323i \(0.844498\pi\)
\(978\) 0 0
\(979\) − 25.8946i − 0.827594i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.77643 −0.120449 −0.0602247 0.998185i \(-0.519182\pi\)
−0.0602247 + 0.998185i \(0.519182\pi\)
\(984\) 0 0
\(985\) −11.3788 −0.362557
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 78.7799i 2.50506i
\(990\) 0 0
\(991\) − 6.04274i − 0.191954i −0.995384 0.0959770i \(-0.969402\pi\)
0.995384 0.0959770i \(-0.0305975\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −16.1798 −0.512936
\(996\) 0 0
\(997\) −8.19498 −0.259537 −0.129769 0.991544i \(-0.541423\pi\)
−0.129769 + 0.991544i \(0.541423\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5328.2.e.g.2591.9 24
3.2 odd 2 inner 5328.2.e.g.2591.15 yes 24
4.3 odd 2 inner 5328.2.e.g.2591.10 yes 24
12.11 even 2 inner 5328.2.e.g.2591.16 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5328.2.e.g.2591.9 24 1.1 even 1 trivial
5328.2.e.g.2591.10 yes 24 4.3 odd 2 inner
5328.2.e.g.2591.15 yes 24 3.2 odd 2 inner
5328.2.e.g.2591.16 yes 24 12.11 even 2 inner