Properties

Label 5328.2.e.g
Level $5328$
Weight $2$
Character orbit 5328.e
Analytic conductor $42.544$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2591,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 16 q^{13} + 24 q^{37} - 16 q^{49} + 48 q^{61} + 48 q^{73} + 56 q^{85} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2591.1 0 0 0 3.82584i 0 3.07296i 0 0 0
2591.2 0 0 0 3.82584i 0 3.07296i 0 0 0
2591.3 0 0 0 2.87880i 0 1.02706i 0 0 0
2591.4 0 0 0 2.87880i 0 1.02706i 0 0 0
2591.5 0 0 0 2.18234i 0 1.23564i 0 0 0
2591.6 0 0 0 2.18234i 0 1.23564i 0 0 0
2591.7 0 0 0 1.16614i 0 4.00867i 0 0 0
2591.8 0 0 0 1.16614i 0 4.00867i 0 0 0
2591.9 0 0 0 0.827995i 0 4.12813i 0 0 0
2591.10 0 0 0 0.827995i 0 4.12813i 0 0 0
2591.11 0 0 0 0.517060i 0 0.929718i 0 0 0
2591.12 0 0 0 0.517060i 0 0.929718i 0 0 0
2591.13 0 0 0 0.517060i 0 0.929718i 0 0 0
2591.14 0 0 0 0.517060i 0 0.929718i 0 0 0
2591.15 0 0 0 0.827995i 0 4.12813i 0 0 0
2591.16 0 0 0 0.827995i 0 4.12813i 0 0 0
2591.17 0 0 0 1.16614i 0 4.00867i 0 0 0
2591.18 0 0 0 1.16614i 0 4.00867i 0 0 0
2591.19 0 0 0 2.18234i 0 1.23564i 0 0 0
2591.20 0 0 0 2.18234i 0 1.23564i 0 0 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2591.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5328.2.e.g 24
3.b odd 2 1 inner 5328.2.e.g 24
4.b odd 2 1 inner 5328.2.e.g 24
12.b even 2 1 inner 5328.2.e.g 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5328.2.e.g 24 1.a even 1 1 trivial
5328.2.e.g 24 3.b odd 2 1 inner
5328.2.e.g 24 4.b odd 2 1 inner
5328.2.e.g 24 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5328, [\chi])\):

\( T_{5}^{12} + 30T_{5}^{10} + 296T_{5}^{8} + 1152T_{5}^{6} + 1684T_{5}^{4} + 912T_{5}^{2} + 144 \) Copy content Toggle raw display
\( T_{11}^{12} - 78T_{11}^{10} + 2097T_{11}^{8} - 23544T_{11}^{6} + 103680T_{11}^{4} - 147744T_{11}^{2} + 46656 \) Copy content Toggle raw display