Properties

Label 5328.2.e.g.2591.5
Level $5328$
Weight $2$
Character 5328.2591
Analytic conductor $42.544$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2591,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.5
Character \(\chi\) \(=\) 5328.2591
Dual form 5328.2.e.g.2591.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18234i q^{5} -1.23564i q^{7} +4.50980 q^{11} -3.37538 q^{13} +4.35211i q^{17} -0.552888i q^{19} -1.18481 q^{23} +0.237388 q^{25} -9.20998i q^{29} -4.52853i q^{31} -2.69659 q^{35} +1.00000 q^{37} -1.49330i q^{41} +4.20762i q^{43} +6.35326 q^{47} +5.47320 q^{49} -1.40320i q^{53} -9.84192i q^{55} -4.72905 q^{59} -1.08004 q^{61} +7.36622i q^{65} -13.7429i q^{67} -8.96501 q^{71} +9.82648 q^{73} -5.57249i q^{77} -12.0673i q^{79} +0.0657560 q^{83} +9.49778 q^{85} +6.63713i q^{89} +4.17075i q^{91} -1.20659 q^{95} +6.76853 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 16 q^{13} + 24 q^{37} - 16 q^{49} + 48 q^{61} + 48 q^{73} + 56 q^{85} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5328\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.18234i − 0.975973i −0.872851 0.487986i \(-0.837732\pi\)
0.872851 0.487986i \(-0.162268\pi\)
\(6\) 0 0
\(7\) − 1.23564i − 0.467028i −0.972353 0.233514i \(-0.924978\pi\)
0.972353 0.233514i \(-0.0750224\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.50980 1.35976 0.679878 0.733325i \(-0.262033\pi\)
0.679878 + 0.733325i \(0.262033\pi\)
\(12\) 0 0
\(13\) −3.37538 −0.936161 −0.468080 0.883686i \(-0.655054\pi\)
−0.468080 + 0.883686i \(0.655054\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.35211i 1.05554i 0.849387 + 0.527771i \(0.176972\pi\)
−0.849387 + 0.527771i \(0.823028\pi\)
\(18\) 0 0
\(19\) − 0.552888i − 0.126841i −0.997987 0.0634206i \(-0.979799\pi\)
0.997987 0.0634206i \(-0.0202009\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.18481 −0.247050 −0.123525 0.992341i \(-0.539420\pi\)
−0.123525 + 0.992341i \(0.539420\pi\)
\(24\) 0 0
\(25\) 0.237388 0.0474776
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 9.20998i − 1.71025i −0.518422 0.855125i \(-0.673480\pi\)
0.518422 0.855125i \(-0.326520\pi\)
\(30\) 0 0
\(31\) − 4.52853i − 0.813348i −0.913573 0.406674i \(-0.866688\pi\)
0.913573 0.406674i \(-0.133312\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.69659 −0.455806
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 1.49330i − 0.233214i −0.993178 0.116607i \(-0.962798\pi\)
0.993178 0.116607i \(-0.0372018\pi\)
\(42\) 0 0
\(43\) 4.20762i 0.641656i 0.947138 + 0.320828i \(0.103961\pi\)
−0.947138 + 0.320828i \(0.896039\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.35326 0.926718 0.463359 0.886171i \(-0.346644\pi\)
0.463359 + 0.886171i \(0.346644\pi\)
\(48\) 0 0
\(49\) 5.47320 0.781885
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 1.40320i − 0.192744i −0.995345 0.0963720i \(-0.969276\pi\)
0.995345 0.0963720i \(-0.0307238\pi\)
\(54\) 0 0
\(55\) − 9.84192i − 1.32708i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.72905 −0.615670 −0.307835 0.951440i \(-0.599605\pi\)
−0.307835 + 0.951440i \(0.599605\pi\)
\(60\) 0 0
\(61\) −1.08004 −0.138285 −0.0691423 0.997607i \(-0.522026\pi\)
−0.0691423 + 0.997607i \(0.522026\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.36622i 0.913667i
\(66\) 0 0
\(67\) − 13.7429i − 1.67896i −0.543392 0.839479i \(-0.682860\pi\)
0.543392 0.839479i \(-0.317140\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.96501 −1.06395 −0.531976 0.846760i \(-0.678550\pi\)
−0.531976 + 0.846760i \(0.678550\pi\)
\(72\) 0 0
\(73\) 9.82648 1.15010 0.575051 0.818117i \(-0.304982\pi\)
0.575051 + 0.818117i \(0.304982\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 5.57249i − 0.635044i
\(78\) 0 0
\(79\) − 12.0673i − 1.35768i −0.734288 0.678838i \(-0.762484\pi\)
0.734288 0.678838i \(-0.237516\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.0657560 0.00721766 0.00360883 0.999993i \(-0.498851\pi\)
0.00360883 + 0.999993i \(0.498851\pi\)
\(84\) 0 0
\(85\) 9.49778 1.03018
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.63713i 0.703534i 0.936088 + 0.351767i \(0.114419\pi\)
−0.936088 + 0.351767i \(0.885581\pi\)
\(90\) 0 0
\(91\) 4.17075i 0.437213i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.20659 −0.123793
\(96\) 0 0
\(97\) 6.76853 0.687240 0.343620 0.939109i \(-0.388347\pi\)
0.343620 + 0.939109i \(0.388347\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.46961i 0.345239i 0.984989 + 0.172620i \(0.0552231\pi\)
−0.984989 + 0.172620i \(0.944777\pi\)
\(102\) 0 0
\(103\) − 3.84578i − 0.378936i −0.981887 0.189468i \(-0.939324\pi\)
0.981887 0.189468i \(-0.0606763\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.2686 −1.76610 −0.883048 0.469282i \(-0.844513\pi\)
−0.883048 + 0.469282i \(0.844513\pi\)
\(108\) 0 0
\(109\) 11.5354 1.10490 0.552448 0.833547i \(-0.313694\pi\)
0.552448 + 0.833547i \(0.313694\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 10.6050i − 0.997637i −0.866707 0.498818i \(-0.833767\pi\)
0.866707 0.498818i \(-0.166233\pi\)
\(114\) 0 0
\(115\) 2.58566i 0.241114i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.37764 0.492967
\(120\) 0 0
\(121\) 9.33830 0.848937
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.4298i − 1.02231i
\(126\) 0 0
\(127\) 7.96434i 0.706721i 0.935487 + 0.353360i \(0.114961\pi\)
−0.935487 + 0.353360i \(0.885039\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.50748 −0.830672 −0.415336 0.909668i \(-0.636336\pi\)
−0.415336 + 0.909668i \(0.636336\pi\)
\(132\) 0 0
\(133\) −0.683170 −0.0592383
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.2628i 0.962248i 0.876652 + 0.481124i \(0.159771\pi\)
−0.876652 + 0.481124i \(0.840229\pi\)
\(138\) 0 0
\(139\) 1.52683i 0.129504i 0.997901 + 0.0647520i \(0.0206256\pi\)
−0.997901 + 0.0647520i \(0.979374\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −15.2223 −1.27295
\(144\) 0 0
\(145\) −20.0993 −1.66916
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 1.92572i − 0.157761i −0.996884 0.0788805i \(-0.974865\pi\)
0.996884 0.0788805i \(-0.0251346\pi\)
\(150\) 0 0
\(151\) − 6.54903i − 0.532953i −0.963841 0.266476i \(-0.914141\pi\)
0.963841 0.266476i \(-0.0858594\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.88280 −0.793805
\(156\) 0 0
\(157\) −0.892522 −0.0712310 −0.0356155 0.999366i \(-0.511339\pi\)
−0.0356155 + 0.999366i \(0.511339\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.46400i 0.115379i
\(162\) 0 0
\(163\) 3.19931i 0.250589i 0.992120 + 0.125295i \(0.0399876\pi\)
−0.992120 + 0.125295i \(0.960012\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.7181 −1.21630 −0.608150 0.793822i \(-0.708088\pi\)
−0.608150 + 0.793822i \(0.708088\pi\)
\(168\) 0 0
\(169\) −1.60684 −0.123603
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 24.0907i − 1.83158i −0.401656 0.915791i \(-0.631565\pi\)
0.401656 0.915791i \(-0.368435\pi\)
\(174\) 0 0
\(175\) − 0.293326i − 0.0221733i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.61397 −0.344864 −0.172432 0.985021i \(-0.555163\pi\)
−0.172432 + 0.985021i \(0.555163\pi\)
\(180\) 0 0
\(181\) −21.3152 −1.58435 −0.792174 0.610295i \(-0.791051\pi\)
−0.792174 + 0.610295i \(0.791051\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 2.18234i − 0.160449i
\(186\) 0 0
\(187\) 19.6271i 1.43528i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.99226 −0.650657 −0.325329 0.945601i \(-0.605475\pi\)
−0.325329 + 0.945601i \(0.605475\pi\)
\(192\) 0 0
\(193\) −14.9430 −1.07562 −0.537810 0.843066i \(-0.680748\pi\)
−0.537810 + 0.843066i \(0.680748\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.2496i 0.801499i 0.916188 + 0.400750i \(0.131250\pi\)
−0.916188 + 0.400750i \(0.868750\pi\)
\(198\) 0 0
\(199\) − 12.4353i − 0.881516i −0.897626 0.440758i \(-0.854710\pi\)
0.897626 0.440758i \(-0.145290\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.3802 −0.798734
\(204\) 0 0
\(205\) −3.25889 −0.227611
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 2.49341i − 0.172473i
\(210\) 0 0
\(211\) − 20.0333i − 1.37915i −0.724215 0.689574i \(-0.757798\pi\)
0.724215 0.689574i \(-0.242202\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.18246 0.626238
\(216\) 0 0
\(217\) −5.59563 −0.379856
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 14.6900i − 0.988156i
\(222\) 0 0
\(223\) 15.2697i 1.02253i 0.859422 + 0.511267i \(0.170824\pi\)
−0.859422 + 0.511267i \(0.829176\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.74081 0.513776 0.256888 0.966441i \(-0.417303\pi\)
0.256888 + 0.966441i \(0.417303\pi\)
\(228\) 0 0
\(229\) 26.3871 1.74371 0.871856 0.489763i \(-0.162917\pi\)
0.871856 + 0.489763i \(0.162917\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 0.807326i − 0.0528897i −0.999650 0.0264448i \(-0.991581\pi\)
0.999650 0.0264448i \(-0.00841863\pi\)
\(234\) 0 0
\(235\) − 13.8650i − 0.904452i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −25.6622 −1.65995 −0.829976 0.557799i \(-0.811646\pi\)
−0.829976 + 0.557799i \(0.811646\pi\)
\(240\) 0 0
\(241\) 11.4585 0.738109 0.369055 0.929408i \(-0.379682\pi\)
0.369055 + 0.929408i \(0.379682\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 11.9444i − 0.763098i
\(246\) 0 0
\(247\) 1.86620i 0.118744i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.1648 0.957192 0.478596 0.878035i \(-0.341146\pi\)
0.478596 + 0.878035i \(0.341146\pi\)
\(252\) 0 0
\(253\) −5.34326 −0.335928
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 4.64575i − 0.289794i −0.989447 0.144897i \(-0.953715\pi\)
0.989447 0.144897i \(-0.0462851\pi\)
\(258\) 0 0
\(259\) − 1.23564i − 0.0767789i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.38959 0.147349 0.0736743 0.997282i \(-0.476527\pi\)
0.0736743 + 0.997282i \(0.476527\pi\)
\(264\) 0 0
\(265\) −3.06225 −0.188113
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.55467i 0.582559i 0.956638 + 0.291279i \(0.0940809\pi\)
−0.956638 + 0.291279i \(0.905919\pi\)
\(270\) 0 0
\(271\) 5.66987i 0.344420i 0.985060 + 0.172210i \(0.0550907\pi\)
−0.985060 + 0.172210i \(0.944909\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.07057 0.0645579
\(276\) 0 0
\(277\) −2.32650 −0.139786 −0.0698928 0.997555i \(-0.522266\pi\)
−0.0698928 + 0.997555i \(0.522266\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 18.6773i − 1.11419i −0.830448 0.557096i \(-0.811915\pi\)
0.830448 0.557096i \(-0.188085\pi\)
\(282\) 0 0
\(283\) − 2.65304i − 0.157707i −0.996886 0.0788533i \(-0.974874\pi\)
0.996886 0.0788533i \(-0.0251259\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.84518 −0.108918
\(288\) 0 0
\(289\) −1.94084 −0.114167
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 18.1773i − 1.06193i −0.847394 0.530965i \(-0.821830\pi\)
0.847394 0.530965i \(-0.178170\pi\)
\(294\) 0 0
\(295\) 10.3204i 0.600877i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.99918 0.231278
\(300\) 0 0
\(301\) 5.19910 0.299671
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.35701i 0.134962i
\(306\) 0 0
\(307\) − 25.1776i − 1.43696i −0.695546 0.718482i \(-0.744837\pi\)
0.695546 0.718482i \(-0.255163\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.8346 −0.614375 −0.307188 0.951649i \(-0.599388\pi\)
−0.307188 + 0.951649i \(0.599388\pi\)
\(312\) 0 0
\(313\) −7.81994 −0.442009 −0.221005 0.975273i \(-0.570934\pi\)
−0.221005 + 0.975273i \(0.570934\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.7656i 0.885484i 0.896649 + 0.442742i \(0.145994\pi\)
−0.896649 + 0.442742i \(0.854006\pi\)
\(318\) 0 0
\(319\) − 41.5352i − 2.32552i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.40623 0.133886
\(324\) 0 0
\(325\) −0.801273 −0.0444466
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 7.85034i − 0.432803i
\(330\) 0 0
\(331\) − 35.0371i − 1.92581i −0.269833 0.962907i \(-0.586968\pi\)
0.269833 0.962907i \(-0.413032\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −29.9916 −1.63862
\(336\) 0 0
\(337\) 10.8682 0.592030 0.296015 0.955183i \(-0.404342\pi\)
0.296015 + 0.955183i \(0.404342\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 20.4228i − 1.10595i
\(342\) 0 0
\(343\) − 15.4124i − 0.832190i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.507924 0.0272668 0.0136334 0.999907i \(-0.495660\pi\)
0.0136334 + 0.999907i \(0.495660\pi\)
\(348\) 0 0
\(349\) 12.0237 0.643614 0.321807 0.946805i \(-0.395710\pi\)
0.321807 + 0.946805i \(0.395710\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 6.91684i − 0.368146i −0.982913 0.184073i \(-0.941072\pi\)
0.982913 0.184073i \(-0.0589284\pi\)
\(354\) 0 0
\(355\) 19.5647i 1.03839i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.93817 0.260626 0.130313 0.991473i \(-0.458402\pi\)
0.130313 + 0.991473i \(0.458402\pi\)
\(360\) 0 0
\(361\) 18.6943 0.983911
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 21.4447i − 1.12247i
\(366\) 0 0
\(367\) 33.8053i 1.76462i 0.470667 + 0.882311i \(0.344013\pi\)
−0.470667 + 0.882311i \(0.655987\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.73385 −0.0900168
\(372\) 0 0
\(373\) −3.48220 −0.180302 −0.0901508 0.995928i \(-0.528735\pi\)
−0.0901508 + 0.995928i \(0.528735\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 31.0871i 1.60107i
\(378\) 0 0
\(379\) 19.5201i 1.00268i 0.865250 + 0.501340i \(0.167159\pi\)
−0.865250 + 0.501340i \(0.832841\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −35.0875 −1.79289 −0.896444 0.443156i \(-0.853859\pi\)
−0.896444 + 0.443156i \(0.853859\pi\)
\(384\) 0 0
\(385\) −12.1611 −0.619785
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.00971i 0.152598i 0.997085 + 0.0762992i \(0.0243104\pi\)
−0.997085 + 0.0762992i \(0.975690\pi\)
\(390\) 0 0
\(391\) − 5.15642i − 0.260771i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −26.3349 −1.32506
\(396\) 0 0
\(397\) 14.5037 0.727921 0.363961 0.931414i \(-0.381424\pi\)
0.363961 + 0.931414i \(0.381424\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.68497i 0.0841433i 0.999115 + 0.0420716i \(0.0133958\pi\)
−0.999115 + 0.0420716i \(0.986604\pi\)
\(402\) 0 0
\(403\) 15.2855i 0.761424i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.50980 0.223543
\(408\) 0 0
\(409\) 17.5215 0.866384 0.433192 0.901302i \(-0.357387\pi\)
0.433192 + 0.901302i \(0.357387\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.84341i 0.287535i
\(414\) 0 0
\(415\) − 0.143502i − 0.00704424i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.9519 −0.730449 −0.365224 0.930920i \(-0.619008\pi\)
−0.365224 + 0.930920i \(0.619008\pi\)
\(420\) 0 0
\(421\) −30.4563 −1.48435 −0.742176 0.670205i \(-0.766206\pi\)
−0.742176 + 0.670205i \(0.766206\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.03314i 0.0501145i
\(426\) 0 0
\(427\) 1.33454i 0.0645827i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.0995 1.49801 0.749005 0.662564i \(-0.230532\pi\)
0.749005 + 0.662564i \(0.230532\pi\)
\(432\) 0 0
\(433\) 12.5962 0.605336 0.302668 0.953096i \(-0.402123\pi\)
0.302668 + 0.953096i \(0.402123\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.655067i 0.0313361i
\(438\) 0 0
\(439\) − 8.08647i − 0.385946i −0.981204 0.192973i \(-0.938187\pi\)
0.981204 0.192973i \(-0.0618130\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −38.3790 −1.82344 −0.911721 0.410809i \(-0.865246\pi\)
−0.911721 + 0.410809i \(0.865246\pi\)
\(444\) 0 0
\(445\) 14.4845 0.686630
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 0.0489300i − 0.00230915i −0.999999 0.00115457i \(-0.999632\pi\)
0.999999 0.00115457i \(-0.000367512\pi\)
\(450\) 0 0
\(451\) − 6.73448i − 0.317114i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 9.10199 0.426708
\(456\) 0 0
\(457\) 34.2024 1.59992 0.799960 0.600053i \(-0.204854\pi\)
0.799960 + 0.600053i \(0.204854\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 36.4899i − 1.69950i −0.527183 0.849752i \(-0.676752\pi\)
0.527183 0.849752i \(-0.323248\pi\)
\(462\) 0 0
\(463\) 28.9733i 1.34650i 0.739414 + 0.673251i \(0.235102\pi\)
−0.739414 + 0.673251i \(0.764898\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.0475 0.696315 0.348158 0.937436i \(-0.386807\pi\)
0.348158 + 0.937436i \(0.386807\pi\)
\(468\) 0 0
\(469\) −16.9812 −0.784120
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18.9755i 0.872495i
\(474\) 0 0
\(475\) − 0.131249i − 0.00602211i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.00280 0.137201 0.0686007 0.997644i \(-0.478147\pi\)
0.0686007 + 0.997644i \(0.478147\pi\)
\(480\) 0 0
\(481\) −3.37538 −0.153904
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 14.7712i − 0.670728i
\(486\) 0 0
\(487\) − 1.45189i − 0.0657914i −0.999459 0.0328957i \(-0.989527\pi\)
0.999459 0.0328957i \(-0.0104729\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.6514 0.706339 0.353169 0.935559i \(-0.385104\pi\)
0.353169 + 0.935559i \(0.385104\pi\)
\(492\) 0 0
\(493\) 40.0828 1.80524
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.0775i 0.496895i
\(498\) 0 0
\(499\) − 33.4544i − 1.49763i −0.662782 0.748813i \(-0.730624\pi\)
0.662782 0.748813i \(-0.269376\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.83589 0.260210 0.130105 0.991500i \(-0.458469\pi\)
0.130105 + 0.991500i \(0.458469\pi\)
\(504\) 0 0
\(505\) 7.57187 0.336944
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.1972i 0.496307i 0.968721 + 0.248153i \(0.0798237\pi\)
−0.968721 + 0.248153i \(0.920176\pi\)
\(510\) 0 0
\(511\) − 12.1420i − 0.537130i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.39280 −0.369831
\(516\) 0 0
\(517\) 28.6519 1.26011
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.4453i 0.808105i 0.914736 + 0.404053i \(0.132399\pi\)
−0.914736 + 0.404053i \(0.867601\pi\)
\(522\) 0 0
\(523\) − 16.1246i − 0.705080i −0.935797 0.352540i \(-0.885318\pi\)
0.935797 0.352540i \(-0.114682\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.7086 0.858522
\(528\) 0 0
\(529\) −21.5962 −0.938966
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.04045i 0.218326i
\(534\) 0 0
\(535\) 39.8684i 1.72366i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 24.6830 1.06317
\(540\) 0 0
\(541\) 32.5280 1.39849 0.699244 0.714883i \(-0.253520\pi\)
0.699244 + 0.714883i \(0.253520\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 25.1743i − 1.07835i
\(546\) 0 0
\(547\) − 8.67730i − 0.371015i −0.982643 0.185507i \(-0.940607\pi\)
0.982643 0.185507i \(-0.0593929\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.09208 −0.216930
\(552\) 0 0
\(553\) −14.9108 −0.634073
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.40358i 0.271328i 0.990755 + 0.135664i \(0.0433168\pi\)
−0.990755 + 0.135664i \(0.956683\pi\)
\(558\) 0 0
\(559\) − 14.2023i − 0.600693i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.18571 0.302841 0.151421 0.988469i \(-0.451615\pi\)
0.151421 + 0.988469i \(0.451615\pi\)
\(564\) 0 0
\(565\) −23.1438 −0.973666
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.2585i 0.430060i 0.976607 + 0.215030i \(0.0689850\pi\)
−0.976607 + 0.215030i \(0.931015\pi\)
\(570\) 0 0
\(571\) − 29.2821i − 1.22542i −0.790308 0.612709i \(-0.790080\pi\)
0.790308 0.612709i \(-0.209920\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.281260 −0.0117293
\(576\) 0 0
\(577\) −16.3893 −0.682296 −0.341148 0.940010i \(-0.610816\pi\)
−0.341148 + 0.940010i \(0.610816\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 0.0812508i − 0.00337085i
\(582\) 0 0
\(583\) − 6.32814i − 0.262085i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 37.6627 1.55450 0.777252 0.629189i \(-0.216613\pi\)
0.777252 + 0.629189i \(0.216613\pi\)
\(588\) 0 0
\(589\) −2.50377 −0.103166
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 38.5714i 1.58394i 0.610562 + 0.791969i \(0.290944\pi\)
−0.610562 + 0.791969i \(0.709056\pi\)
\(594\) 0 0
\(595\) − 11.7358i − 0.481122i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14.1033 −0.576247 −0.288123 0.957593i \(-0.593031\pi\)
−0.288123 + 0.957593i \(0.593031\pi\)
\(600\) 0 0
\(601\) −26.4866 −1.08041 −0.540205 0.841534i \(-0.681653\pi\)
−0.540205 + 0.841534i \(0.681653\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 20.3794i − 0.828539i
\(606\) 0 0
\(607\) − 12.3882i − 0.502822i −0.967880 0.251411i \(-0.919105\pi\)
0.967880 0.251411i \(-0.0808945\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.4446 −0.867557
\(612\) 0 0
\(613\) 28.6781 1.15830 0.579149 0.815222i \(-0.303385\pi\)
0.579149 + 0.815222i \(0.303385\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.1371i 0.931466i 0.884925 + 0.465733i \(0.154209\pi\)
−0.884925 + 0.465733i \(0.845791\pi\)
\(618\) 0 0
\(619\) 33.5827i 1.34980i 0.737907 + 0.674902i \(0.235814\pi\)
−0.737907 + 0.674902i \(0.764186\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.20109 0.328570
\(624\) 0 0
\(625\) −23.7567 −0.950268
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.35211i 0.173530i
\(630\) 0 0
\(631\) − 21.3319i − 0.849208i −0.905379 0.424604i \(-0.860413\pi\)
0.905379 0.424604i \(-0.139587\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.3809 0.689740
\(636\) 0 0
\(637\) −18.4741 −0.731970
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.2087i 0.561209i 0.959824 + 0.280604i \(0.0905349\pi\)
−0.959824 + 0.280604i \(0.909465\pi\)
\(642\) 0 0
\(643\) − 2.97282i − 0.117236i −0.998280 0.0586182i \(-0.981331\pi\)
0.998280 0.0586182i \(-0.0186695\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 43.5445 1.71191 0.855956 0.517049i \(-0.172969\pi\)
0.855956 + 0.517049i \(0.172969\pi\)
\(648\) 0 0
\(649\) −21.3271 −0.837162
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.0959i 0.395085i 0.980294 + 0.197543i \(0.0632960\pi\)
−0.980294 + 0.197543i \(0.936704\pi\)
\(654\) 0 0
\(655\) 20.7486i 0.810714i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.32666 0.129588 0.0647942 0.997899i \(-0.479361\pi\)
0.0647942 + 0.997899i \(0.479361\pi\)
\(660\) 0 0
\(661\) −27.5317 −1.07086 −0.535430 0.844579i \(-0.679851\pi\)
−0.535430 + 0.844579i \(0.679851\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.49091i 0.0578150i
\(666\) 0 0
\(667\) 10.9121i 0.422517i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.87075 −0.188033
\(672\) 0 0
\(673\) −16.1999 −0.624462 −0.312231 0.950006i \(-0.601076\pi\)
−0.312231 + 0.950006i \(0.601076\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 23.0184i 0.884670i 0.896850 + 0.442335i \(0.145850\pi\)
−0.896850 + 0.442335i \(0.854150\pi\)
\(678\) 0 0
\(679\) − 8.36347i − 0.320960i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.5353 0.824026 0.412013 0.911178i \(-0.364826\pi\)
0.412013 + 0.911178i \(0.364826\pi\)
\(684\) 0 0
\(685\) 24.5793 0.939128
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.73632i 0.180439i
\(690\) 0 0
\(691\) − 37.5267i − 1.42758i −0.700359 0.713791i \(-0.746977\pi\)
0.700359 0.713791i \(-0.253023\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.33206 0.126392
\(696\) 0 0
\(697\) 6.49900 0.246167
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 5.50003i − 0.207733i −0.994591 0.103867i \(-0.966878\pi\)
0.994591 0.103867i \(-0.0331215\pi\)
\(702\) 0 0
\(703\) − 0.552888i − 0.0208526i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.28719 0.161236
\(708\) 0 0
\(709\) 33.3651 1.25305 0.626526 0.779401i \(-0.284476\pi\)
0.626526 + 0.779401i \(0.284476\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.36545i 0.200938i
\(714\) 0 0
\(715\) 33.2202i 1.24236i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.96155 0.296916 0.148458 0.988919i \(-0.452569\pi\)
0.148458 + 0.988919i \(0.452569\pi\)
\(720\) 0 0
\(721\) −4.75200 −0.176974
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 2.18634i − 0.0811985i
\(726\) 0 0
\(727\) 38.3533i 1.42244i 0.702968 + 0.711222i \(0.251858\pi\)
−0.702968 + 0.711222i \(0.748142\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18.3120 −0.677294
\(732\) 0 0
\(733\) 40.6875 1.50283 0.751413 0.659833i \(-0.229373\pi\)
0.751413 + 0.659833i \(0.229373\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 61.9776i − 2.28297i
\(738\) 0 0
\(739\) 23.1444i 0.851380i 0.904869 + 0.425690i \(0.139969\pi\)
−0.904869 + 0.425690i \(0.860031\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.60498 −0.168940 −0.0844701 0.996426i \(-0.526920\pi\)
−0.0844701 + 0.996426i \(0.526920\pi\)
\(744\) 0 0
\(745\) −4.20257 −0.153970
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 22.5735i 0.824816i
\(750\) 0 0
\(751\) − 40.1504i − 1.46511i −0.680708 0.732555i \(-0.738328\pi\)
0.680708 0.732555i \(-0.261672\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −14.2922 −0.520147
\(756\) 0 0
\(757\) −43.3039 −1.57391 −0.786954 0.617011i \(-0.788343\pi\)
−0.786954 + 0.617011i \(0.788343\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 50.6204i 1.83499i 0.397751 + 0.917493i \(0.369791\pi\)
−0.397751 + 0.917493i \(0.630209\pi\)
\(762\) 0 0
\(763\) − 14.2537i − 0.516017i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.9623 0.576366
\(768\) 0 0
\(769\) −45.3086 −1.63387 −0.816935 0.576729i \(-0.804329\pi\)
−0.816935 + 0.576729i \(0.804329\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 41.7432i − 1.50140i −0.660644 0.750699i \(-0.729717\pi\)
0.660644 0.750699i \(-0.270283\pi\)
\(774\) 0 0
\(775\) − 1.07502i − 0.0386158i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.825627 −0.0295812
\(780\) 0 0
\(781\) −40.4304 −1.44671
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.94779i 0.0695195i
\(786\) 0 0
\(787\) − 8.00343i − 0.285291i −0.989774 0.142646i \(-0.954439\pi\)
0.989774 0.142646i \(-0.0455610\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.1040 −0.465924
\(792\) 0 0
\(793\) 3.64553 0.129457
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 19.8459i − 0.702977i −0.936192 0.351488i \(-0.885676\pi\)
0.936192 0.351488i \(-0.114324\pi\)
\(798\) 0 0
\(799\) 27.6501i 0.978189i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 44.3155 1.56386
\(804\) 0 0
\(805\) 3.19494 0.112607
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 16.3325i − 0.574220i −0.957898 0.287110i \(-0.907305\pi\)
0.957898 0.287110i \(-0.0926945\pi\)
\(810\) 0 0
\(811\) − 1.53456i − 0.0538858i −0.999637 0.0269429i \(-0.991423\pi\)
0.999637 0.0269429i \(-0.00857723\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.98199 0.244568
\(816\) 0 0
\(817\) 2.32634 0.0813883
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 8.40723i − 0.293414i −0.989180 0.146707i \(-0.953132\pi\)
0.989180 0.146707i \(-0.0468675\pi\)
\(822\) 0 0
\(823\) − 28.4061i − 0.990173i −0.868844 0.495087i \(-0.835136\pi\)
0.868844 0.495087i \(-0.164864\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.4070 −1.05736 −0.528678 0.848822i \(-0.677312\pi\)
−0.528678 + 0.848822i \(0.677312\pi\)
\(828\) 0 0
\(829\) 41.3887 1.43749 0.718745 0.695274i \(-0.244717\pi\)
0.718745 + 0.695274i \(0.244717\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 23.8199i 0.825312i
\(834\) 0 0
\(835\) 34.3022i 1.18708i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30.6553 1.05834 0.529170 0.848516i \(-0.322503\pi\)
0.529170 + 0.848516i \(0.322503\pi\)
\(840\) 0 0
\(841\) −55.8236 −1.92495
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.50668i 0.120633i
\(846\) 0 0
\(847\) − 11.5388i − 0.396477i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.18481 −0.0406148
\(852\) 0 0
\(853\) 6.78842 0.232431 0.116215 0.993224i \(-0.462924\pi\)
0.116215 + 0.993224i \(0.462924\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 39.6455i 1.35427i 0.735861 + 0.677133i \(0.236778\pi\)
−0.735861 + 0.677133i \(0.763222\pi\)
\(858\) 0 0
\(859\) 44.1955i 1.50793i 0.656915 + 0.753965i \(0.271861\pi\)
−0.656915 + 0.753965i \(0.728139\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.6561 0.566980 0.283490 0.958975i \(-0.408508\pi\)
0.283490 + 0.958975i \(0.408508\pi\)
\(864\) 0 0
\(865\) −52.5741 −1.78757
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 54.4211i − 1.84611i
\(870\) 0 0
\(871\) 46.3873i 1.57177i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −14.1231 −0.477447
\(876\) 0 0
\(877\) 39.2125 1.32411 0.662056 0.749454i \(-0.269684\pi\)
0.662056 + 0.749454i \(0.269684\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 31.4981i − 1.06120i −0.847623 0.530600i \(-0.821967\pi\)
0.847623 0.530600i \(-0.178033\pi\)
\(882\) 0 0
\(883\) − 15.6180i − 0.525588i −0.964852 0.262794i \(-0.915356\pi\)
0.964852 0.262794i \(-0.0846439\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −23.9018 −0.802544 −0.401272 0.915959i \(-0.631432\pi\)
−0.401272 + 0.915959i \(0.631432\pi\)
\(888\) 0 0
\(889\) 9.84105 0.330058
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 3.51264i − 0.117546i
\(894\) 0 0
\(895\) 10.0693i 0.336578i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −41.7076 −1.39103
\(900\) 0 0
\(901\) 6.10686 0.203449
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 46.5171i 1.54628i
\(906\) 0 0
\(907\) 17.6400i 0.585727i 0.956154 + 0.292863i \(0.0946081\pi\)
−0.956154 + 0.292863i \(0.905392\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −14.0211 −0.464540 −0.232270 0.972651i \(-0.574615\pi\)
−0.232270 + 0.972651i \(0.574615\pi\)
\(912\) 0 0
\(913\) 0.296547 0.00981426
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11.7478i 0.387947i
\(918\) 0 0
\(919\) − 10.5677i − 0.348598i −0.984693 0.174299i \(-0.944234\pi\)
0.984693 0.174299i \(-0.0557659\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 30.2603 0.996029
\(924\) 0 0
\(925\) 0.237388 0.00780527
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.9352i 0.424389i 0.977227 + 0.212195i \(0.0680611\pi\)
−0.977227 + 0.212195i \(0.931939\pi\)
\(930\) 0 0
\(931\) − 3.02606i − 0.0991752i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 42.8331 1.40079
\(936\) 0 0
\(937\) −33.3145 −1.08834 −0.544168 0.838976i \(-0.683155\pi\)
−0.544168 + 0.838976i \(0.683155\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.67059i 0.315252i 0.987499 + 0.157626i \(0.0503841\pi\)
−0.987499 + 0.157626i \(0.949616\pi\)
\(942\) 0 0
\(943\) 1.76928i 0.0576156i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.38345 −0.0774516 −0.0387258 0.999250i \(-0.512330\pi\)
−0.0387258 + 0.999250i \(0.512330\pi\)
\(948\) 0 0
\(949\) −33.1681 −1.07668
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 7.99617i − 0.259021i −0.991578 0.129511i \(-0.958659\pi\)
0.991578 0.129511i \(-0.0413407\pi\)
\(954\) 0 0
\(955\) 19.6242i 0.635023i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 13.9168 0.449397
\(960\) 0 0
\(961\) 10.4924 0.338465
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 32.6107i 1.04977i
\(966\) 0 0
\(967\) 13.8330i 0.444839i 0.974951 + 0.222420i \(0.0713955\pi\)
−0.974951 + 0.222420i \(0.928604\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 37.2497 1.19540 0.597700 0.801720i \(-0.296081\pi\)
0.597700 + 0.801720i \(0.296081\pi\)
\(972\) 0 0
\(973\) 1.88661 0.0604819
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.34921i 0.0431651i 0.999767 + 0.0215826i \(0.00687047\pi\)
−0.999767 + 0.0215826i \(0.993130\pi\)
\(978\) 0 0
\(979\) 29.9321i 0.956634i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 45.2031 1.44175 0.720877 0.693063i \(-0.243739\pi\)
0.720877 + 0.693063i \(0.243739\pi\)
\(984\) 0 0
\(985\) 24.5504 0.782241
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 4.98523i − 0.158521i
\(990\) 0 0
\(991\) − 13.0405i − 0.414245i −0.978315 0.207123i \(-0.933590\pi\)
0.978315 0.207123i \(-0.0664099\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −27.1381 −0.860336
\(996\) 0 0
\(997\) 14.7383 0.466766 0.233383 0.972385i \(-0.425020\pi\)
0.233383 + 0.972385i \(0.425020\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5328.2.e.g.2591.5 24
3.2 odd 2 inner 5328.2.e.g.2591.19 yes 24
4.3 odd 2 inner 5328.2.e.g.2591.6 yes 24
12.11 even 2 inner 5328.2.e.g.2591.20 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5328.2.e.g.2591.5 24 1.1 even 1 trivial
5328.2.e.g.2591.6 yes 24 4.3 odd 2 inner
5328.2.e.g.2591.19 yes 24 3.2 odd 2 inner
5328.2.e.g.2591.20 yes 24 12.11 even 2 inner