Properties

Label 5328.2.e.g.2591.18
Level $5328$
Weight $2$
Character 5328.2591
Analytic conductor $42.544$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2591,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.18
Character \(\chi\) \(=\) 5328.2591
Dual form 5328.2.e.g.2591.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.16614i q^{5} +4.00867i q^{7} +1.34249 q^{11} +2.84621 q^{13} -4.41620i q^{17} -7.02429i q^{19} +4.58186 q^{23} +3.64012 q^{25} -2.59711i q^{29} +5.66144i q^{31} -4.67467 q^{35} +1.00000 q^{37} -9.38782i q^{41} -9.95268i q^{43} +12.2309 q^{47} -9.06942 q^{49} -9.53352i q^{53} +1.56553i q^{55} -12.3636 q^{59} +10.1703 q^{61} +3.31908i q^{65} +1.48229i q^{67} -0.505614 q^{71} +1.93868 q^{73} +5.38160i q^{77} -4.99743i q^{79} +2.33694 q^{83} +5.14991 q^{85} -3.64412i q^{89} +11.4095i q^{91} +8.19131 q^{95} -2.74531 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 16 q^{13} + 24 q^{37} - 16 q^{49} + 48 q^{61} + 48 q^{73} + 56 q^{85} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5328\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.16614i 0.521514i 0.965405 + 0.260757i \(0.0839721\pi\)
−0.965405 + 0.260757i \(0.916028\pi\)
\(6\) 0 0
\(7\) 4.00867i 1.51513i 0.652757 + 0.757567i \(0.273612\pi\)
−0.652757 + 0.757567i \(0.726388\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.34249 0.404776 0.202388 0.979305i \(-0.435130\pi\)
0.202388 + 0.979305i \(0.435130\pi\)
\(12\) 0 0
\(13\) 2.84621 0.789396 0.394698 0.918811i \(-0.370849\pi\)
0.394698 + 0.918811i \(0.370849\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 4.41620i − 1.07109i −0.844508 0.535543i \(-0.820107\pi\)
0.844508 0.535543i \(-0.179893\pi\)
\(18\) 0 0
\(19\) − 7.02429i − 1.61148i −0.592267 0.805742i \(-0.701767\pi\)
0.592267 0.805742i \(-0.298233\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.58186 0.955383 0.477692 0.878528i \(-0.341474\pi\)
0.477692 + 0.878528i \(0.341474\pi\)
\(24\) 0 0
\(25\) 3.64012 0.728023
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 2.59711i − 0.482272i −0.970491 0.241136i \(-0.922480\pi\)
0.970491 0.241136i \(-0.0775199\pi\)
\(30\) 0 0
\(31\) 5.66144i 1.01682i 0.861114 + 0.508412i \(0.169767\pi\)
−0.861114 + 0.508412i \(0.830233\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.67467 −0.790163
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 9.38782i − 1.46613i −0.680158 0.733066i \(-0.738089\pi\)
0.680158 0.733066i \(-0.261911\pi\)
\(42\) 0 0
\(43\) − 9.95268i − 1.51777i −0.651225 0.758885i \(-0.725745\pi\)
0.651225 0.758885i \(-0.274255\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.2309 1.78407 0.892033 0.451971i \(-0.149279\pi\)
0.892033 + 0.451971i \(0.149279\pi\)
\(48\) 0 0
\(49\) −9.06942 −1.29563
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 9.53352i − 1.30953i −0.755832 0.654765i \(-0.772768\pi\)
0.755832 0.654765i \(-0.227232\pi\)
\(54\) 0 0
\(55\) 1.56553i 0.211096i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.3636 −1.60960 −0.804802 0.593544i \(-0.797728\pi\)
−0.804802 + 0.593544i \(0.797728\pi\)
\(60\) 0 0
\(61\) 10.1703 1.30218 0.651088 0.759002i \(-0.274313\pi\)
0.651088 + 0.759002i \(0.274313\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.31908i 0.411681i
\(66\) 0 0
\(67\) 1.48229i 0.181091i 0.995892 + 0.0905454i \(0.0288610\pi\)
−0.995892 + 0.0905454i \(0.971139\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.505614 −0.0600054 −0.0300027 0.999550i \(-0.509552\pi\)
−0.0300027 + 0.999550i \(0.509552\pi\)
\(72\) 0 0
\(73\) 1.93868 0.226906 0.113453 0.993543i \(-0.463809\pi\)
0.113453 + 0.993543i \(0.463809\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.38160i 0.613290i
\(78\) 0 0
\(79\) − 4.99743i − 0.562255i −0.959670 0.281128i \(-0.909292\pi\)
0.959670 0.281128i \(-0.0907084\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.33694 0.256512 0.128256 0.991741i \(-0.459062\pi\)
0.128256 + 0.991741i \(0.459062\pi\)
\(84\) 0 0
\(85\) 5.14991 0.558586
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 3.64412i − 0.386276i −0.981172 0.193138i \(-0.938133\pi\)
0.981172 0.193138i \(-0.0618666\pi\)
\(90\) 0 0
\(91\) 11.4095i 1.19604i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.19131 0.840411
\(96\) 0 0
\(97\) −2.74531 −0.278744 −0.139372 0.990240i \(-0.544508\pi\)
−0.139372 + 0.990240i \(0.544508\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 15.6445i − 1.55669i −0.627840 0.778343i \(-0.716061\pi\)
0.627840 0.778343i \(-0.283939\pi\)
\(102\) 0 0
\(103\) − 5.37152i − 0.529272i −0.964348 0.264636i \(-0.914748\pi\)
0.964348 0.264636i \(-0.0852517\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.3000 1.38243 0.691215 0.722650i \(-0.257076\pi\)
0.691215 + 0.722650i \(0.257076\pi\)
\(108\) 0 0
\(109\) −17.1868 −1.64620 −0.823101 0.567896i \(-0.807758\pi\)
−0.823101 + 0.567896i \(0.807758\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 14.6579i − 1.37890i −0.724335 0.689448i \(-0.757853\pi\)
0.724335 0.689448i \(-0.242147\pi\)
\(114\) 0 0
\(115\) 5.34309i 0.498246i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 17.7031 1.62284
\(120\) 0 0
\(121\) −9.19772 −0.836156
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.0756i 0.901188i
\(126\) 0 0
\(127\) 11.8301i 1.04975i 0.851180 + 0.524874i \(0.175888\pi\)
−0.851180 + 0.524874i \(0.824112\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.67144 0.408145 0.204073 0.978956i \(-0.434582\pi\)
0.204073 + 0.978956i \(0.434582\pi\)
\(132\) 0 0
\(133\) 28.1581 2.44161
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.2826i 1.90374i 0.306509 + 0.951868i \(0.400839\pi\)
−0.306509 + 0.951868i \(0.599161\pi\)
\(138\) 0 0
\(139\) 17.3731i 1.47357i 0.676129 + 0.736783i \(0.263656\pi\)
−0.676129 + 0.736783i \(0.736344\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.82101 0.319529
\(144\) 0 0
\(145\) 3.02860 0.251511
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.5738i 1.35778i 0.734240 + 0.678890i \(0.237539\pi\)
−0.734240 + 0.678890i \(0.762461\pi\)
\(150\) 0 0
\(151\) − 0.0872396i − 0.00709945i −0.999994 0.00354973i \(-0.998870\pi\)
0.999994 0.00354973i \(-0.00112992\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.60203 −0.530288
\(156\) 0 0
\(157\) −14.6005 −1.16524 −0.582622 0.812743i \(-0.697973\pi\)
−0.582622 + 0.812743i \(0.697973\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 18.3671i 1.44753i
\(162\) 0 0
\(163\) 16.9118i 1.32463i 0.749225 + 0.662316i \(0.230426\pi\)
−0.749225 + 0.662316i \(0.769574\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.72806 −0.211104 −0.105552 0.994414i \(-0.533661\pi\)
−0.105552 + 0.994414i \(0.533661\pi\)
\(168\) 0 0
\(169\) −4.89910 −0.376854
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.86031i 0.217465i 0.994071 + 0.108733i \(0.0346792\pi\)
−0.994071 + 0.108733i \(0.965321\pi\)
\(174\) 0 0
\(175\) 14.5920i 1.10305i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.2570 1.36459 0.682297 0.731075i \(-0.260981\pi\)
0.682297 + 0.731075i \(0.260981\pi\)
\(180\) 0 0
\(181\) −7.54572 −0.560869 −0.280434 0.959873i \(-0.590479\pi\)
−0.280434 + 0.959873i \(0.590479\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.16614i 0.0857363i
\(186\) 0 0
\(187\) − 5.92871i − 0.433550i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.5884 1.56208 0.781041 0.624480i \(-0.214689\pi\)
0.781041 + 0.624480i \(0.214689\pi\)
\(192\) 0 0
\(193\) 26.3816 1.89899 0.949494 0.313785i \(-0.101597\pi\)
0.949494 + 0.313785i \(0.101597\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.208985i 0.0148896i 0.999972 + 0.00744479i \(0.00236977\pi\)
−0.999972 + 0.00744479i \(0.997630\pi\)
\(198\) 0 0
\(199\) 22.3636i 1.58531i 0.609670 + 0.792655i \(0.291302\pi\)
−0.609670 + 0.792655i \(0.708698\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.4110 0.730706
\(204\) 0 0
\(205\) 10.9475 0.764608
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 9.43005i − 0.652290i
\(210\) 0 0
\(211\) − 6.94402i − 0.478046i −0.971014 0.239023i \(-0.923173\pi\)
0.971014 0.239023i \(-0.0768271\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.6062 0.791537
\(216\) 0 0
\(217\) −22.6948 −1.54063
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 12.5694i − 0.845510i
\(222\) 0 0
\(223\) 15.8908i 1.06413i 0.846705 + 0.532063i \(0.178583\pi\)
−0.846705 + 0.532063i \(0.821417\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.82468 −0.253853 −0.126926 0.991912i \(-0.540511\pi\)
−0.126926 + 0.991912i \(0.540511\pi\)
\(228\) 0 0
\(229\) −6.94895 −0.459199 −0.229600 0.973285i \(-0.573742\pi\)
−0.229600 + 0.973285i \(0.573742\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 16.4831i − 1.07984i −0.841715 0.539922i \(-0.818454\pi\)
0.841715 0.539922i \(-0.181546\pi\)
\(234\) 0 0
\(235\) 14.2630i 0.930415i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.1783 −1.30523 −0.652614 0.757691i \(-0.726328\pi\)
−0.652614 + 0.757691i \(0.726328\pi\)
\(240\) 0 0
\(241\) 10.1370 0.652982 0.326491 0.945200i \(-0.394134\pi\)
0.326491 + 0.945200i \(0.394134\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 10.5762i − 0.675690i
\(246\) 0 0
\(247\) − 19.9926i − 1.27210i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.05238 0.255784 0.127892 0.991788i \(-0.459179\pi\)
0.127892 + 0.991788i \(0.459179\pi\)
\(252\) 0 0
\(253\) 6.15110 0.386717
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 5.49371i − 0.342688i −0.985211 0.171344i \(-0.945189\pi\)
0.985211 0.171344i \(-0.0548110\pi\)
\(258\) 0 0
\(259\) 4.00867i 0.249087i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.6937 −0.782725 −0.391363 0.920237i \(-0.627996\pi\)
−0.391363 + 0.920237i \(0.627996\pi\)
\(264\) 0 0
\(265\) 11.1174 0.682938
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 28.4339i − 1.73364i −0.498618 0.866822i \(-0.666159\pi\)
0.498618 0.866822i \(-0.333841\pi\)
\(270\) 0 0
\(271\) 27.8687i 1.69290i 0.532464 + 0.846452i \(0.321266\pi\)
−0.532464 + 0.846452i \(0.678734\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.88682 0.294687
\(276\) 0 0
\(277\) 15.6408 0.939762 0.469881 0.882730i \(-0.344297\pi\)
0.469881 + 0.882730i \(0.344297\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 32.3514i − 1.92992i −0.262388 0.964962i \(-0.584510\pi\)
0.262388 0.964962i \(-0.415490\pi\)
\(282\) 0 0
\(283\) − 11.5218i − 0.684899i −0.939536 0.342450i \(-0.888743\pi\)
0.939536 0.342450i \(-0.111257\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 37.6327 2.22139
\(288\) 0 0
\(289\) −2.50280 −0.147224
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 15.3695i − 0.897896i −0.893558 0.448948i \(-0.851799\pi\)
0.893558 0.448948i \(-0.148201\pi\)
\(294\) 0 0
\(295\) − 14.4177i − 0.839430i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.0409 0.754176
\(300\) 0 0
\(301\) 39.8970 2.29962
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11.8600i 0.679103i
\(306\) 0 0
\(307\) 2.25797i 0.128869i 0.997922 + 0.0644346i \(0.0205244\pi\)
−0.997922 + 0.0644346i \(0.979476\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.726693 0.0412070 0.0206035 0.999788i \(-0.493441\pi\)
0.0206035 + 0.999788i \(0.493441\pi\)
\(312\) 0 0
\(313\) −12.9640 −0.732768 −0.366384 0.930464i \(-0.619404\pi\)
−0.366384 + 0.930464i \(0.619404\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 17.6775i − 0.992870i −0.868074 0.496435i \(-0.834642\pi\)
0.868074 0.496435i \(-0.165358\pi\)
\(318\) 0 0
\(319\) − 3.48660i − 0.195212i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −31.0207 −1.72604
\(324\) 0 0
\(325\) 10.3605 0.574699
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 49.0298i 2.70310i
\(330\) 0 0
\(331\) − 31.2247i − 1.71626i −0.513429 0.858132i \(-0.671625\pi\)
0.513429 0.858132i \(-0.328375\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.72856 −0.0944414
\(336\) 0 0
\(337\) 23.0252 1.25426 0.627132 0.778913i \(-0.284229\pi\)
0.627132 + 0.778913i \(0.284229\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.60043i 0.411587i
\(342\) 0 0
\(343\) − 8.29563i − 0.447922i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.97408 0.320705 0.160353 0.987060i \(-0.448737\pi\)
0.160353 + 0.987060i \(0.448737\pi\)
\(348\) 0 0
\(349\) 8.84191 0.473297 0.236648 0.971595i \(-0.423951\pi\)
0.236648 + 0.971595i \(0.423951\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.1213i 1.17740i 0.808352 + 0.588700i \(0.200360\pi\)
−0.808352 + 0.588700i \(0.799640\pi\)
\(354\) 0 0
\(355\) − 0.589617i − 0.0312936i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.60658 −0.190348 −0.0951740 0.995461i \(-0.530341\pi\)
−0.0951740 + 0.995461i \(0.530341\pi\)
\(360\) 0 0
\(361\) −30.3407 −1.59688
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.26078i 0.118334i
\(366\) 0 0
\(367\) 10.2407i 0.534558i 0.963619 + 0.267279i \(0.0861246\pi\)
−0.963619 + 0.267279i \(0.913875\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 38.2167 1.98411
\(372\) 0 0
\(373\) −10.6323 −0.550522 −0.275261 0.961370i \(-0.588764\pi\)
−0.275261 + 0.961370i \(0.588764\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 7.39192i − 0.380703i
\(378\) 0 0
\(379\) 26.0491i 1.33805i 0.743238 + 0.669027i \(0.233289\pi\)
−0.743238 + 0.669027i \(0.766711\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.53555 −0.385049 −0.192524 0.981292i \(-0.561667\pi\)
−0.192524 + 0.981292i \(0.561667\pi\)
\(384\) 0 0
\(385\) −6.27570 −0.319839
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 5.11609i − 0.259396i −0.991554 0.129698i \(-0.958599\pi\)
0.991554 0.129698i \(-0.0414008\pi\)
\(390\) 0 0
\(391\) − 20.2344i − 1.02330i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.82771 0.293224
\(396\) 0 0
\(397\) 33.8129 1.69702 0.848509 0.529180i \(-0.177501\pi\)
0.848509 + 0.529180i \(0.177501\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 29.1090i 1.45364i 0.686830 + 0.726818i \(0.259002\pi\)
−0.686830 + 0.726818i \(0.740998\pi\)
\(402\) 0 0
\(403\) 16.1136i 0.802677i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.34249 0.0665448
\(408\) 0 0
\(409\) −1.66162 −0.0821616 −0.0410808 0.999156i \(-0.513080\pi\)
−0.0410808 + 0.999156i \(0.513080\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 49.5616i − 2.43876i
\(414\) 0 0
\(415\) 2.72519i 0.133775i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.0140 0.489215 0.244608 0.969622i \(-0.421341\pi\)
0.244608 + 0.969622i \(0.421341\pi\)
\(420\) 0 0
\(421\) −23.2129 −1.13133 −0.565664 0.824636i \(-0.691380\pi\)
−0.565664 + 0.824636i \(0.691380\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 16.0755i − 0.779775i
\(426\) 0 0
\(427\) 40.7694i 1.97297i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.34780 −0.257594 −0.128797 0.991671i \(-0.541112\pi\)
−0.128797 + 0.991671i \(0.541112\pi\)
\(432\) 0 0
\(433\) −6.99342 −0.336082 −0.168041 0.985780i \(-0.553744\pi\)
−0.168041 + 0.985780i \(0.553744\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 32.1843i − 1.53958i
\(438\) 0 0
\(439\) − 19.9139i − 0.950440i −0.879867 0.475220i \(-0.842369\pi\)
0.879867 0.475220i \(-0.157631\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −30.8096 −1.46381 −0.731905 0.681407i \(-0.761368\pi\)
−0.731905 + 0.681407i \(0.761368\pi\)
\(444\) 0 0
\(445\) 4.24956 0.201448
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 18.4992i − 0.873033i −0.899696 0.436516i \(-0.856212\pi\)
0.899696 0.436516i \(-0.143788\pi\)
\(450\) 0 0
\(451\) − 12.6031i − 0.593455i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −13.3051 −0.623752
\(456\) 0 0
\(457\) −22.9827 −1.07508 −0.537542 0.843237i \(-0.680647\pi\)
−0.537542 + 0.843237i \(0.680647\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.74394i 0.174373i 0.996192 + 0.0871863i \(0.0277875\pi\)
−0.996192 + 0.0871863i \(0.972212\pi\)
\(462\) 0 0
\(463\) 40.1040i 1.86379i 0.362729 + 0.931895i \(0.381845\pi\)
−0.362729 + 0.931895i \(0.618155\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.62171 −0.306416 −0.153208 0.988194i \(-0.548961\pi\)
−0.153208 + 0.988194i \(0.548961\pi\)
\(468\) 0 0
\(469\) −5.94202 −0.274377
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 13.3614i − 0.614357i
\(474\) 0 0
\(475\) − 25.5692i − 1.17320i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.71121 −0.215261 −0.107630 0.994191i \(-0.534326\pi\)
−0.107630 + 0.994191i \(0.534326\pi\)
\(480\) 0 0
\(481\) 2.84621 0.129776
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 3.20142i − 0.145369i
\(486\) 0 0
\(487\) − 3.40262i − 0.154188i −0.997024 0.0770938i \(-0.975436\pi\)
0.997024 0.0770938i \(-0.0245641\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.9099 0.718005 0.359002 0.933337i \(-0.383117\pi\)
0.359002 + 0.933337i \(0.383117\pi\)
\(492\) 0 0
\(493\) −11.4694 −0.516554
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 2.02684i − 0.0909162i
\(498\) 0 0
\(499\) 3.69949i 0.165612i 0.996566 + 0.0828060i \(0.0263882\pi\)
−0.996566 + 0.0828060i \(0.973612\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −42.4218 −1.89150 −0.945748 0.324902i \(-0.894669\pi\)
−0.945748 + 0.324902i \(0.894669\pi\)
\(504\) 0 0
\(505\) 18.2437 0.811833
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 24.8398i 1.10101i 0.834833 + 0.550503i \(0.185564\pi\)
−0.834833 + 0.550503i \(0.814436\pi\)
\(510\) 0 0
\(511\) 7.77154i 0.343793i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.26395 0.276022
\(516\) 0 0
\(517\) 16.4199 0.722147
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 35.3606i 1.54918i 0.632466 + 0.774588i \(0.282043\pi\)
−0.632466 + 0.774588i \(0.717957\pi\)
\(522\) 0 0
\(523\) − 33.0019i − 1.44307i −0.692377 0.721536i \(-0.743436\pi\)
0.692377 0.721536i \(-0.256564\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.0020 1.08911
\(528\) 0 0
\(529\) −2.00658 −0.0872425
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 26.7197i − 1.15736i
\(534\) 0 0
\(535\) 16.6758i 0.720956i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.1756 −0.524441
\(540\) 0 0
\(541\) −17.8016 −0.765352 −0.382676 0.923883i \(-0.624997\pi\)
−0.382676 + 0.923883i \(0.624997\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 20.0423i − 0.858516i
\(546\) 0 0
\(547\) − 17.5620i − 0.750898i −0.926843 0.375449i \(-0.877489\pi\)
0.926843 0.375449i \(-0.122511\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −18.2429 −0.777173
\(552\) 0 0
\(553\) 20.0331 0.851892
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 16.4699i − 0.697853i −0.937150 0.348927i \(-0.886546\pi\)
0.937150 0.348927i \(-0.113454\pi\)
\(558\) 0 0
\(559\) − 28.3274i − 1.19812i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.346649 −0.0146095 −0.00730477 0.999973i \(-0.502325\pi\)
−0.00730477 + 0.999973i \(0.502325\pi\)
\(564\) 0 0
\(565\) 17.0931 0.719113
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 43.6278i 1.82897i 0.404617 + 0.914486i \(0.367405\pi\)
−0.404617 + 0.914486i \(0.632595\pi\)
\(570\) 0 0
\(571\) 1.00467i 0.0420443i 0.999779 + 0.0210222i \(0.00669206\pi\)
−0.999779 + 0.0210222i \(0.993308\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.6785 0.695542
\(576\) 0 0
\(577\) −9.13403 −0.380254 −0.190127 0.981759i \(-0.560890\pi\)
−0.190127 + 0.981759i \(0.560890\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.36800i 0.388650i
\(582\) 0 0
\(583\) − 12.7987i − 0.530067i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.6672 0.729202 0.364601 0.931164i \(-0.381205\pi\)
0.364601 + 0.931164i \(0.381205\pi\)
\(588\) 0 0
\(589\) 39.7676 1.63860
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 21.2677i − 0.873360i −0.899617 0.436680i \(-0.856154\pi\)
0.899617 0.436680i \(-0.143846\pi\)
\(594\) 0 0
\(595\) 20.6443i 0.846332i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 37.7241 1.54136 0.770682 0.637220i \(-0.219916\pi\)
0.770682 + 0.637220i \(0.219916\pi\)
\(600\) 0 0
\(601\) −35.9456 −1.46625 −0.733127 0.680092i \(-0.761940\pi\)
−0.733127 + 0.680092i \(0.761940\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 10.7258i − 0.436067i
\(606\) 0 0
\(607\) − 9.28867i − 0.377015i −0.982072 0.188508i \(-0.939635\pi\)
0.982072 0.188508i \(-0.0603651\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 34.8118 1.40833
\(612\) 0 0
\(613\) 6.56733 0.265252 0.132626 0.991166i \(-0.457659\pi\)
0.132626 + 0.991166i \(0.457659\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.8117i 0.837849i 0.908021 + 0.418924i \(0.137593\pi\)
−0.908021 + 0.418924i \(0.862407\pi\)
\(618\) 0 0
\(619\) − 7.65243i − 0.307577i −0.988104 0.153788i \(-0.950853\pi\)
0.988104 0.153788i \(-0.0491474\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 14.6081 0.585260
\(624\) 0 0
\(625\) 6.45104 0.258042
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 4.41620i − 0.176085i
\(630\) 0 0
\(631\) 7.62949i 0.303725i 0.988402 + 0.151863i \(0.0485271\pi\)
−0.988402 + 0.151863i \(0.951473\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −13.7955 −0.547458
\(636\) 0 0
\(637\) −25.8135 −1.02277
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.7916i 0.465740i 0.972508 + 0.232870i \(0.0748117\pi\)
−0.972508 + 0.232870i \(0.925188\pi\)
\(642\) 0 0
\(643\) 20.6975i 0.816228i 0.912931 + 0.408114i \(0.133813\pi\)
−0.912931 + 0.408114i \(0.866187\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −46.3745 −1.82317 −0.911585 0.411111i \(-0.865141\pi\)
−0.911585 + 0.411111i \(0.865141\pi\)
\(648\) 0 0
\(649\) −16.5980 −0.651529
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 19.3115i − 0.755717i −0.925863 0.377859i \(-0.876661\pi\)
0.925863 0.377859i \(-0.123339\pi\)
\(654\) 0 0
\(655\) 5.44755i 0.212853i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15.0856 0.587650 0.293825 0.955859i \(-0.405072\pi\)
0.293825 + 0.955859i \(0.405072\pi\)
\(660\) 0 0
\(661\) 13.5682 0.527743 0.263871 0.964558i \(-0.415001\pi\)
0.263871 + 0.964558i \(0.415001\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 32.8362i 1.27333i
\(666\) 0 0
\(667\) − 11.8996i − 0.460754i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 13.6536 0.527090
\(672\) 0 0
\(673\) 16.2478 0.626308 0.313154 0.949702i \(-0.398614\pi\)
0.313154 + 0.949702i \(0.398614\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 41.6863i 1.60213i 0.598575 + 0.801067i \(0.295734\pi\)
−0.598575 + 0.801067i \(0.704266\pi\)
\(678\) 0 0
\(679\) − 11.0050i − 0.422335i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 32.5001 1.24358 0.621791 0.783184i \(-0.286406\pi\)
0.621791 + 0.783184i \(0.286406\pi\)
\(684\) 0 0
\(685\) −25.9847 −0.992824
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 27.1344i − 1.03374i
\(690\) 0 0
\(691\) 25.0047i 0.951223i 0.879656 + 0.475611i \(0.157773\pi\)
−0.879656 + 0.475611i \(0.842227\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.2595 −0.768485
\(696\) 0 0
\(697\) −41.4585 −1.57035
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 16.0129i − 0.604797i −0.953182 0.302399i \(-0.902213\pi\)
0.953182 0.302399i \(-0.0977873\pi\)
\(702\) 0 0
\(703\) − 7.02429i − 0.264926i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 62.7136 2.35859
\(708\) 0 0
\(709\) −28.5162 −1.07095 −0.535474 0.844551i \(-0.679867\pi\)
−0.535474 + 0.844551i \(0.679867\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 25.9399i 0.971458i
\(714\) 0 0
\(715\) 4.45583i 0.166639i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 40.3190 1.50365 0.751823 0.659365i \(-0.229175\pi\)
0.751823 + 0.659365i \(0.229175\pi\)
\(720\) 0 0
\(721\) 21.5326 0.801918
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 9.45379i − 0.351105i
\(726\) 0 0
\(727\) 16.6756i 0.618465i 0.950987 + 0.309232i \(0.100072\pi\)
−0.950987 + 0.309232i \(0.899928\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −43.9530 −1.62566
\(732\) 0 0
\(733\) −25.2222 −0.931602 −0.465801 0.884890i \(-0.654234\pi\)
−0.465801 + 0.884890i \(0.654234\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.98996i 0.0733013i
\(738\) 0 0
\(739\) 25.5135i 0.938531i 0.883057 + 0.469265i \(0.155481\pi\)
−0.883057 + 0.469265i \(0.844519\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −48.8281 −1.79133 −0.895665 0.444729i \(-0.853300\pi\)
−0.895665 + 0.444729i \(0.853300\pi\)
\(744\) 0 0
\(745\) −19.3274 −0.708101
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 57.3238i 2.09457i
\(750\) 0 0
\(751\) − 39.4690i − 1.44024i −0.693847 0.720122i \(-0.744086\pi\)
0.693847 0.720122i \(-0.255914\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.101734 0.00370246
\(756\) 0 0
\(757\) 45.9630 1.67055 0.835277 0.549830i \(-0.185308\pi\)
0.835277 + 0.549830i \(0.185308\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 27.9458i − 1.01304i −0.862229 0.506518i \(-0.830932\pi\)
0.862229 0.506518i \(-0.169068\pi\)
\(762\) 0 0
\(763\) − 68.8964i − 2.49422i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −35.1894 −1.27061
\(768\) 0 0
\(769\) −38.1841 −1.37696 −0.688478 0.725258i \(-0.741721\pi\)
−0.688478 + 0.725258i \(0.741721\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 33.6749i 1.21120i 0.795768 + 0.605602i \(0.207068\pi\)
−0.795768 + 0.605602i \(0.792932\pi\)
\(774\) 0 0
\(775\) 20.6083i 0.740272i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −65.9428 −2.36265
\(780\) 0 0
\(781\) −0.678782 −0.0242887
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 17.0262i − 0.607690i
\(786\) 0 0
\(787\) − 19.3409i − 0.689430i −0.938707 0.344715i \(-0.887976\pi\)
0.938707 0.344715i \(-0.112024\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 58.7585 2.08921
\(792\) 0 0
\(793\) 28.9468 1.02793
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 42.1355i 1.49251i 0.665658 + 0.746257i \(0.268151\pi\)
−0.665658 + 0.746257i \(0.731849\pi\)
\(798\) 0 0
\(799\) − 54.0142i − 1.91089i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.60267 0.0918461
\(804\) 0 0
\(805\) −21.4187 −0.754909
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40.6822i 1.43031i 0.698966 + 0.715155i \(0.253644\pi\)
−0.698966 + 0.715155i \(0.746356\pi\)
\(810\) 0 0
\(811\) 8.76803i 0.307887i 0.988080 + 0.153944i \(0.0491974\pi\)
−0.988080 + 0.153944i \(0.950803\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −19.7215 −0.690814
\(816\) 0 0
\(817\) −69.9105 −2.44586
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.0419i 1.15317i 0.817037 + 0.576586i \(0.195615\pi\)
−0.817037 + 0.576586i \(0.804385\pi\)
\(822\) 0 0
\(823\) 1.43182i 0.0499103i 0.999689 + 0.0249551i \(0.00794429\pi\)
−0.999689 + 0.0249551i \(0.992056\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −29.7337 −1.03394 −0.516972 0.856003i \(-0.672941\pi\)
−0.516972 + 0.856003i \(0.672941\pi\)
\(828\) 0 0
\(829\) 37.9062 1.31654 0.658268 0.752784i \(-0.271289\pi\)
0.658268 + 0.752784i \(0.271289\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 40.0524i 1.38773i
\(834\) 0 0
\(835\) − 3.18130i − 0.110094i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.4510 −0.498903 −0.249452 0.968387i \(-0.580250\pi\)
−0.249452 + 0.968387i \(0.580250\pi\)
\(840\) 0 0
\(841\) 22.2550 0.767414
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 5.71304i − 0.196535i
\(846\) 0 0
\(847\) − 36.8706i − 1.26689i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.58186 0.157064
\(852\) 0 0
\(853\) 19.8979 0.681290 0.340645 0.940192i \(-0.389355\pi\)
0.340645 + 0.940192i \(0.389355\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 13.9876i − 0.477808i −0.971043 0.238904i \(-0.923212\pi\)
0.971043 0.238904i \(-0.0767882\pi\)
\(858\) 0 0
\(859\) 35.8221i 1.22224i 0.791540 + 0.611118i \(0.209280\pi\)
−0.791540 + 0.611118i \(0.790720\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.7357 −0.399489 −0.199744 0.979848i \(-0.564011\pi\)
−0.199744 + 0.979848i \(0.564011\pi\)
\(864\) 0 0
\(865\) −3.33552 −0.113411
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 6.70901i − 0.227588i
\(870\) 0 0
\(871\) 4.21891i 0.142952i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −40.3897 −1.36542
\(876\) 0 0
\(877\) 15.0689 0.508840 0.254420 0.967094i \(-0.418115\pi\)
0.254420 + 0.967094i \(0.418115\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 52.9000i 1.78225i 0.453762 + 0.891123i \(0.350082\pi\)
−0.453762 + 0.891123i \(0.649918\pi\)
\(882\) 0 0
\(883\) − 9.07882i − 0.305527i −0.988263 0.152763i \(-0.951183\pi\)
0.988263 0.152763i \(-0.0488172\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.7694 −0.865251 −0.432625 0.901574i \(-0.642413\pi\)
−0.432625 + 0.901574i \(0.642413\pi\)
\(888\) 0 0
\(889\) −47.4228 −1.59051
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 85.9137i − 2.87499i
\(894\) 0 0
\(895\) 21.2902i 0.711654i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 14.7034 0.490386
\(900\) 0 0
\(901\) −42.1019 −1.40262
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 8.79937i − 0.292501i
\(906\) 0 0
\(907\) 3.97021i 0.131829i 0.997825 + 0.0659144i \(0.0209964\pi\)
−0.997825 + 0.0659144i \(0.979004\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29.5236 0.978159 0.489080 0.872239i \(-0.337333\pi\)
0.489080 + 0.872239i \(0.337333\pi\)
\(912\) 0 0
\(913\) 3.13731 0.103830
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.7262i 0.618395i
\(918\) 0 0
\(919\) 25.1329i 0.829058i 0.910036 + 0.414529i \(0.136054\pi\)
−0.910036 + 0.414529i \(0.863946\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.43908 −0.0473680
\(924\) 0 0
\(925\) 3.64012 0.119686
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 33.8785i 1.11152i 0.831343 + 0.555760i \(0.187572\pi\)
−0.831343 + 0.555760i \(0.812428\pi\)
\(930\) 0 0
\(931\) 63.7063i 2.08789i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.91370 0.226102
\(936\) 0 0
\(937\) 6.54124 0.213693 0.106846 0.994276i \(-0.465925\pi\)
0.106846 + 0.994276i \(0.465925\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13.8114i 0.450239i 0.974331 + 0.225119i \(0.0722772\pi\)
−0.974331 + 0.225119i \(0.927723\pi\)
\(942\) 0 0
\(943\) − 43.0137i − 1.40072i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.9294 −0.940081 −0.470040 0.882645i \(-0.655761\pi\)
−0.470040 + 0.882645i \(0.655761\pi\)
\(948\) 0 0
\(949\) 5.51790 0.179118
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 59.5067i 1.92761i 0.266607 + 0.963805i \(0.414097\pi\)
−0.266607 + 0.963805i \(0.585903\pi\)
\(954\) 0 0
\(955\) 25.1751i 0.814647i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −89.3238 −2.88441
\(960\) 0 0
\(961\) −1.05191 −0.0339325
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30.7646i 0.990348i
\(966\) 0 0
\(967\) − 5.90752i − 0.189973i −0.995479 0.0949865i \(-0.969719\pi\)
0.995479 0.0949865i \(-0.0302808\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.0521 0.707684 0.353842 0.935305i \(-0.384875\pi\)
0.353842 + 0.935305i \(0.384875\pi\)
\(972\) 0 0
\(973\) −69.6430 −2.23265
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 18.1374i − 0.580266i −0.956986 0.290133i \(-0.906300\pi\)
0.956986 0.290133i \(-0.0936996\pi\)
\(978\) 0 0
\(979\) − 4.89220i − 0.156355i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.87097 −0.123465 −0.0617323 0.998093i \(-0.519663\pi\)
−0.0617323 + 0.998093i \(0.519663\pi\)
\(984\) 0 0
\(985\) −0.243706 −0.00776512
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 45.6018i − 1.45005i
\(990\) 0 0
\(991\) − 34.3205i − 1.09023i −0.838362 0.545114i \(-0.816486\pi\)
0.838362 0.545114i \(-0.183514\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −26.0790 −0.826761
\(996\) 0 0
\(997\) 50.1024 1.58676 0.793380 0.608726i \(-0.208319\pi\)
0.793380 + 0.608726i \(0.208319\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5328.2.e.g.2591.18 yes 24
3.2 odd 2 inner 5328.2.e.g.2591.8 yes 24
4.3 odd 2 inner 5328.2.e.g.2591.17 yes 24
12.11 even 2 inner 5328.2.e.g.2591.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5328.2.e.g.2591.7 24 12.11 even 2 inner
5328.2.e.g.2591.8 yes 24 3.2 odd 2 inner
5328.2.e.g.2591.17 yes 24 4.3 odd 2 inner
5328.2.e.g.2591.18 yes 24 1.1 even 1 trivial