Properties

Label 5328.2.e.f.2591.17
Level $5328$
Weight $2$
Character 5328.2591
Analytic conductor $42.544$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2591,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.17
Character \(\chi\) \(=\) 5328.2591
Dual form 5328.2.e.f.2591.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30074i q^{5} -4.07997i q^{7} -2.75773 q^{11} -4.51956 q^{13} +3.51408i q^{17} -5.45570i q^{19} +0.877830 q^{23} -0.293412 q^{25} -0.290393i q^{29} +1.57873i q^{31} +9.38696 q^{35} -1.00000 q^{37} +3.40784i q^{41} -2.37454i q^{43} +0.815705 q^{47} -9.64615 q^{49} +11.8309i q^{53} -6.34483i q^{55} -6.27292 q^{59} +3.66442 q^{61} -10.3983i q^{65} +4.98958i q^{67} +10.7639 q^{71} +11.0152 q^{73} +11.2515i q^{77} +10.8077i q^{79} +14.3417 q^{83} -8.08498 q^{85} +7.85597i q^{89} +18.4397i q^{91} +12.5521 q^{95} +14.8538 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 32 q^{25} - 24 q^{37} - 80 q^{49} - 48 q^{61} - 48 q^{73} - 40 q^{85} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5328\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.30074i 1.02892i 0.857513 + 0.514461i \(0.172008\pi\)
−0.857513 + 0.514461i \(0.827992\pi\)
\(6\) 0 0
\(7\) − 4.07997i − 1.54208i −0.636785 0.771042i \(-0.719736\pi\)
0.636785 0.771042i \(-0.280264\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.75773 −0.831488 −0.415744 0.909482i \(-0.636479\pi\)
−0.415744 + 0.909482i \(0.636479\pi\)
\(12\) 0 0
\(13\) −4.51956 −1.25350 −0.626751 0.779220i \(-0.715615\pi\)
−0.626751 + 0.779220i \(0.715615\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.51408i 0.852288i 0.904655 + 0.426144i \(0.140128\pi\)
−0.904655 + 0.426144i \(0.859872\pi\)
\(18\) 0 0
\(19\) − 5.45570i − 1.25162i −0.779975 0.625811i \(-0.784768\pi\)
0.779975 0.625811i \(-0.215232\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.877830 0.183040 0.0915201 0.995803i \(-0.470827\pi\)
0.0915201 + 0.995803i \(0.470827\pi\)
\(24\) 0 0
\(25\) −0.293412 −0.0586825
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 0.290393i − 0.0539246i −0.999636 0.0269623i \(-0.991417\pi\)
0.999636 0.0269623i \(-0.00858341\pi\)
\(30\) 0 0
\(31\) 1.57873i 0.283548i 0.989899 + 0.141774i \(0.0452806\pi\)
−0.989899 + 0.141774i \(0.954719\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.38696 1.58669
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.40784i 0.532216i 0.963943 + 0.266108i \(0.0857377\pi\)
−0.963943 + 0.266108i \(0.914262\pi\)
\(42\) 0 0
\(43\) − 2.37454i − 0.362114i −0.983473 0.181057i \(-0.942048\pi\)
0.983473 0.181057i \(-0.0579519\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.815705 0.118983 0.0594914 0.998229i \(-0.481052\pi\)
0.0594914 + 0.998229i \(0.481052\pi\)
\(48\) 0 0
\(49\) −9.64615 −1.37802
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.8309i 1.62510i 0.582894 + 0.812548i \(0.301920\pi\)
−0.582894 + 0.812548i \(0.698080\pi\)
\(54\) 0 0
\(55\) − 6.34483i − 0.855537i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.27292 −0.816665 −0.408333 0.912833i \(-0.633890\pi\)
−0.408333 + 0.912833i \(0.633890\pi\)
\(60\) 0 0
\(61\) 3.66442 0.469181 0.234590 0.972094i \(-0.424625\pi\)
0.234590 + 0.972094i \(0.424625\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 10.3983i − 1.28976i
\(66\) 0 0
\(67\) 4.98958i 0.609574i 0.952420 + 0.304787i \(0.0985853\pi\)
−0.952420 + 0.304787i \(0.901415\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.7639 1.27744 0.638719 0.769440i \(-0.279465\pi\)
0.638719 + 0.769440i \(0.279465\pi\)
\(72\) 0 0
\(73\) 11.0152 1.28923 0.644617 0.764506i \(-0.277017\pi\)
0.644617 + 0.764506i \(0.277017\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.2515i 1.28222i
\(78\) 0 0
\(79\) 10.8077i 1.21597i 0.793950 + 0.607983i \(0.208021\pi\)
−0.793950 + 0.607983i \(0.791979\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.3417 1.57421 0.787105 0.616819i \(-0.211579\pi\)
0.787105 + 0.616819i \(0.211579\pi\)
\(84\) 0 0
\(85\) −8.08498 −0.876939
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.85597i 0.832731i 0.909197 + 0.416365i \(0.136696\pi\)
−0.909197 + 0.416365i \(0.863304\pi\)
\(90\) 0 0
\(91\) 18.4397i 1.93300i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.5521 1.28782
\(96\) 0 0
\(97\) 14.8538 1.50817 0.754086 0.656775i \(-0.228080\pi\)
0.754086 + 0.656775i \(0.228080\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.419851i 0.0417767i 0.999782 + 0.0208884i \(0.00664945\pi\)
−0.999782 + 0.0208884i \(0.993351\pi\)
\(102\) 0 0
\(103\) 7.21224i 0.710643i 0.934744 + 0.355322i \(0.115629\pi\)
−0.934744 + 0.355322i \(0.884371\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.6662 −1.22449 −0.612245 0.790668i \(-0.709733\pi\)
−0.612245 + 0.790668i \(0.709733\pi\)
\(108\) 0 0
\(109\) 1.10639 0.105973 0.0529863 0.998595i \(-0.483126\pi\)
0.0529863 + 0.998595i \(0.483126\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 5.86394i − 0.551633i −0.961210 0.275817i \(-0.911052\pi\)
0.961210 0.275817i \(-0.0889482\pi\)
\(114\) 0 0
\(115\) 2.01966i 0.188334i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14.3373 1.31430
\(120\) 0 0
\(121\) −3.39491 −0.308628
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.8286i 0.968543i
\(126\) 0 0
\(127\) 10.2253i 0.907345i 0.891168 + 0.453673i \(0.149886\pi\)
−0.891168 + 0.453673i \(0.850114\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.12270 0.534943 0.267472 0.963566i \(-0.413812\pi\)
0.267472 + 0.963566i \(0.413812\pi\)
\(132\) 0 0
\(133\) −22.2591 −1.93011
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.21484i 0.274662i 0.990525 + 0.137331i \(0.0438524\pi\)
−0.990525 + 0.137331i \(0.956148\pi\)
\(138\) 0 0
\(139\) − 4.63394i − 0.393046i −0.980499 0.196523i \(-0.937035\pi\)
0.980499 0.196523i \(-0.0629650\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.4637 1.04227
\(144\) 0 0
\(145\) 0.668119 0.0554843
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 13.7619i − 1.12742i −0.825973 0.563709i \(-0.809374\pi\)
0.825973 0.563709i \(-0.190626\pi\)
\(150\) 0 0
\(151\) − 5.92226i − 0.481947i −0.970532 0.240973i \(-0.922533\pi\)
0.970532 0.240973i \(-0.0774666\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.63225 −0.291749
\(156\) 0 0
\(157\) −10.3969 −0.829764 −0.414882 0.909875i \(-0.636177\pi\)
−0.414882 + 0.909875i \(0.636177\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 3.58152i − 0.282263i
\(162\) 0 0
\(163\) 1.02688i 0.0804316i 0.999191 + 0.0402158i \(0.0128045\pi\)
−0.999191 + 0.0402158i \(0.987195\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.0103 0.774621 0.387310 0.921949i \(-0.373404\pi\)
0.387310 + 0.921949i \(0.373404\pi\)
\(168\) 0 0
\(169\) 7.42644 0.571265
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.2780i 0.781424i 0.920513 + 0.390712i \(0.127771\pi\)
−0.920513 + 0.390712i \(0.872229\pi\)
\(174\) 0 0
\(175\) 1.19711i 0.0904933i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.6497 −1.02023 −0.510115 0.860106i \(-0.670397\pi\)
−0.510115 + 0.860106i \(0.670397\pi\)
\(180\) 0 0
\(181\) 8.59298 0.638711 0.319356 0.947635i \(-0.396534\pi\)
0.319356 + 0.947635i \(0.396534\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 2.30074i − 0.169154i
\(186\) 0 0
\(187\) − 9.69088i − 0.708667i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.3305 0.892203 0.446102 0.894982i \(-0.352812\pi\)
0.446102 + 0.894982i \(0.352812\pi\)
\(192\) 0 0
\(193\) 25.7483 1.85340 0.926701 0.375799i \(-0.122632\pi\)
0.926701 + 0.375799i \(0.122632\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 22.1456i − 1.57781i −0.614518 0.788903i \(-0.710650\pi\)
0.614518 0.788903i \(-0.289350\pi\)
\(198\) 0 0
\(199\) 19.0606i 1.35117i 0.737283 + 0.675584i \(0.236108\pi\)
−0.737283 + 0.675584i \(0.763892\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.18479 −0.0831563
\(204\) 0 0
\(205\) −7.84056 −0.547609
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15.0454i 1.04071i
\(210\) 0 0
\(211\) 21.7979i 1.50063i 0.661082 + 0.750314i \(0.270098\pi\)
−0.661082 + 0.750314i \(0.729902\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.46321 0.372588
\(216\) 0 0
\(217\) 6.44116 0.437255
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 15.8821i − 1.06834i
\(222\) 0 0
\(223\) 11.5860i 0.775854i 0.921690 + 0.387927i \(0.126809\pi\)
−0.921690 + 0.387927i \(0.873191\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.727076 0.0482577 0.0241289 0.999709i \(-0.492319\pi\)
0.0241289 + 0.999709i \(0.492319\pi\)
\(228\) 0 0
\(229\) −20.6665 −1.36568 −0.682840 0.730568i \(-0.739255\pi\)
−0.682840 + 0.730568i \(0.739255\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.1922i 0.929762i 0.885373 + 0.464881i \(0.153903\pi\)
−0.885373 + 0.464881i \(0.846097\pi\)
\(234\) 0 0
\(235\) 1.87673i 0.122424i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.29090 0.148186 0.0740932 0.997251i \(-0.476394\pi\)
0.0740932 + 0.997251i \(0.476394\pi\)
\(240\) 0 0
\(241\) −19.6367 −1.26491 −0.632454 0.774598i \(-0.717952\pi\)
−0.632454 + 0.774598i \(0.717952\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 22.1933i − 1.41788i
\(246\) 0 0
\(247\) 24.6574i 1.56891i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.7067 1.11764 0.558819 0.829290i \(-0.311255\pi\)
0.558819 + 0.829290i \(0.311255\pi\)
\(252\) 0 0
\(253\) −2.42082 −0.152196
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 14.1303i − 0.881421i −0.897649 0.440710i \(-0.854727\pi\)
0.897649 0.440710i \(-0.145273\pi\)
\(258\) 0 0
\(259\) 4.07997i 0.253517i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.0143 −0.679170 −0.339585 0.940575i \(-0.610287\pi\)
−0.339585 + 0.940575i \(0.610287\pi\)
\(264\) 0 0
\(265\) −27.2198 −1.67210
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 16.6306i 1.01399i 0.861950 + 0.506994i \(0.169243\pi\)
−0.861950 + 0.506994i \(0.830757\pi\)
\(270\) 0 0
\(271\) 19.4585i 1.18202i 0.806664 + 0.591011i \(0.201271\pi\)
−0.806664 + 0.591011i \(0.798729\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.809153 0.0487937
\(276\) 0 0
\(277\) 3.36314 0.202072 0.101036 0.994883i \(-0.467784\pi\)
0.101036 + 0.994883i \(0.467784\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 15.0998i − 0.900778i −0.892832 0.450389i \(-0.851285\pi\)
0.892832 0.450389i \(-0.148715\pi\)
\(282\) 0 0
\(283\) 5.73030i 0.340631i 0.985390 + 0.170315i \(0.0544786\pi\)
−0.985390 + 0.170315i \(0.945521\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.9039 0.820721
\(288\) 0 0
\(289\) 4.65127 0.273604
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 0.820684i − 0.0479449i −0.999713 0.0239724i \(-0.992369\pi\)
0.999713 0.0239724i \(-0.00763140\pi\)
\(294\) 0 0
\(295\) − 14.4324i − 0.840286i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.96741 −0.229441
\(300\) 0 0
\(301\) −9.68806 −0.558411
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.43088i 0.482751i
\(306\) 0 0
\(307\) − 21.5111i − 1.22770i −0.789421 0.613852i \(-0.789619\pi\)
0.789421 0.613852i \(-0.210381\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.89088 −0.334041 −0.167021 0.985953i \(-0.553415\pi\)
−0.167021 + 0.985953i \(0.553415\pi\)
\(312\) 0 0
\(313\) 2.59744 0.146816 0.0734081 0.997302i \(-0.476612\pi\)
0.0734081 + 0.997302i \(0.476612\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 33.7173i 1.89375i 0.321603 + 0.946875i \(0.395778\pi\)
−0.321603 + 0.946875i \(0.604222\pi\)
\(318\) 0 0
\(319\) 0.800826i 0.0448377i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.1717 1.06674
\(324\) 0 0
\(325\) 1.32610 0.0735585
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 3.32805i − 0.183481i
\(330\) 0 0
\(331\) − 17.6870i − 0.972163i −0.873913 0.486082i \(-0.838426\pi\)
0.873913 0.486082i \(-0.161574\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.4797 −0.627205
\(336\) 0 0
\(337\) 6.64615 0.362039 0.181020 0.983480i \(-0.442060\pi\)
0.181020 + 0.983480i \(0.442060\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 4.35371i − 0.235767i
\(342\) 0 0
\(343\) 10.7962i 0.582941i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.3655 −0.878545 −0.439273 0.898354i \(-0.644764\pi\)
−0.439273 + 0.898354i \(0.644764\pi\)
\(348\) 0 0
\(349\) −22.2718 −1.19218 −0.596092 0.802916i \(-0.703281\pi\)
−0.596092 + 0.802916i \(0.703281\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.9083i 0.899936i 0.893045 + 0.449968i \(0.148565\pi\)
−0.893045 + 0.449968i \(0.851435\pi\)
\(354\) 0 0
\(355\) 24.7649i 1.31439i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0573 1.05858 0.529292 0.848440i \(-0.322458\pi\)
0.529292 + 0.848440i \(0.322458\pi\)
\(360\) 0 0
\(361\) −10.7646 −0.566559
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 25.3432i 1.32652i
\(366\) 0 0
\(367\) 5.90420i 0.308197i 0.988056 + 0.154098i \(0.0492473\pi\)
−0.988056 + 0.154098i \(0.950753\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 48.2696 2.50603
\(372\) 0 0
\(373\) −29.0893 −1.50619 −0.753094 0.657913i \(-0.771439\pi\)
−0.753094 + 0.657913i \(0.771439\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.31245i 0.0675946i
\(378\) 0 0
\(379\) 12.1310i 0.623127i 0.950225 + 0.311563i \(0.100853\pi\)
−0.950225 + 0.311563i \(0.899147\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −35.3197 −1.80475 −0.902377 0.430947i \(-0.858180\pi\)
−0.902377 + 0.430947i \(0.858180\pi\)
\(384\) 0 0
\(385\) −25.8867 −1.31931
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 33.9534i 1.72150i 0.509024 + 0.860752i \(0.330006\pi\)
−0.509024 + 0.860752i \(0.669994\pi\)
\(390\) 0 0
\(391\) 3.08476i 0.156003i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −24.8658 −1.25114
\(396\) 0 0
\(397\) 0.946692 0.0475131 0.0237566 0.999718i \(-0.492437\pi\)
0.0237566 + 0.999718i \(0.492437\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.3649i 1.16679i 0.812190 + 0.583393i \(0.198275\pi\)
−0.812190 + 0.583393i \(0.801725\pi\)
\(402\) 0 0
\(403\) − 7.13516i − 0.355428i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.75773 0.136696
\(408\) 0 0
\(409\) 11.4734 0.567326 0.283663 0.958924i \(-0.408450\pi\)
0.283663 + 0.958924i \(0.408450\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 25.5933i 1.25937i
\(414\) 0 0
\(415\) 32.9966i 1.61974i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.3760 1.58167 0.790835 0.612030i \(-0.209647\pi\)
0.790835 + 0.612030i \(0.209647\pi\)
\(420\) 0 0
\(421\) 10.3204 0.502985 0.251492 0.967859i \(-0.419079\pi\)
0.251492 + 0.967859i \(0.419079\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 1.03107i − 0.0500144i
\(426\) 0 0
\(427\) − 14.9507i − 0.723516i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.6789 0.996067 0.498034 0.867158i \(-0.334056\pi\)
0.498034 + 0.867158i \(0.334056\pi\)
\(432\) 0 0
\(433\) 9.30351 0.447098 0.223549 0.974693i \(-0.428236\pi\)
0.223549 + 0.974693i \(0.428236\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 4.78918i − 0.229097i
\(438\) 0 0
\(439\) − 23.6321i − 1.12790i −0.825809 0.563950i \(-0.809281\pi\)
0.825809 0.563950i \(-0.190719\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.8560 0.943388 0.471694 0.881762i \(-0.343643\pi\)
0.471694 + 0.881762i \(0.343643\pi\)
\(444\) 0 0
\(445\) −18.0746 −0.856816
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.4791i 1.24962i 0.780775 + 0.624812i \(0.214825\pi\)
−0.780775 + 0.624812i \(0.785175\pi\)
\(450\) 0 0
\(451\) − 9.39792i − 0.442531i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −42.4249 −1.98891
\(456\) 0 0
\(457\) 33.6473 1.57395 0.786977 0.616983i \(-0.211645\pi\)
0.786977 + 0.616983i \(0.211645\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.75677i 0.221545i 0.993846 + 0.110772i \(0.0353325\pi\)
−0.993846 + 0.110772i \(0.964668\pi\)
\(462\) 0 0
\(463\) − 32.9378i − 1.53075i −0.643586 0.765374i \(-0.722554\pi\)
0.643586 0.765374i \(-0.277446\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.1511 −0.608563 −0.304281 0.952582i \(-0.598416\pi\)
−0.304281 + 0.952582i \(0.598416\pi\)
\(468\) 0 0
\(469\) 20.3573 0.940015
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.54835i 0.301094i
\(474\) 0 0
\(475\) 1.60077i 0.0734483i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.98594 0.136431 0.0682155 0.997671i \(-0.478269\pi\)
0.0682155 + 0.997671i \(0.478269\pi\)
\(480\) 0 0
\(481\) 4.51956 0.206074
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 34.1747i 1.55179i
\(486\) 0 0
\(487\) 0.473703i 0.0214655i 0.999942 + 0.0107328i \(0.00341641\pi\)
−0.999942 + 0.0107328i \(0.996584\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.4571 0.697569 0.348784 0.937203i \(-0.386595\pi\)
0.348784 + 0.937203i \(0.386595\pi\)
\(492\) 0 0
\(493\) 1.02046 0.0459593
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 43.9163i − 1.96992i
\(498\) 0 0
\(499\) 39.8856i 1.78552i 0.450530 + 0.892761i \(0.351235\pi\)
−0.450530 + 0.892761i \(0.648765\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.7271 0.745823 0.372911 0.927867i \(-0.378360\pi\)
0.372911 + 0.927867i \(0.378360\pi\)
\(504\) 0 0
\(505\) −0.965968 −0.0429850
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 35.3278i 1.56588i 0.622099 + 0.782939i \(0.286280\pi\)
−0.622099 + 0.782939i \(0.713720\pi\)
\(510\) 0 0
\(511\) − 44.9418i − 1.98811i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.5935 −0.731197
\(516\) 0 0
\(517\) −2.24950 −0.0989327
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 2.61450i − 0.114543i −0.998359 0.0572716i \(-0.981760\pi\)
0.998359 0.0572716i \(-0.0182401\pi\)
\(522\) 0 0
\(523\) − 39.3421i − 1.72031i −0.510034 0.860154i \(-0.670367\pi\)
0.510034 0.860154i \(-0.329633\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.54777 −0.241665
\(528\) 0 0
\(529\) −22.2294 −0.966496
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 15.4020i − 0.667133i
\(534\) 0 0
\(535\) − 29.1417i − 1.25991i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 26.6015 1.14581
\(540\) 0 0
\(541\) 7.88682 0.339081 0.169540 0.985523i \(-0.445772\pi\)
0.169540 + 0.985523i \(0.445772\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.54551i 0.109038i
\(546\) 0 0
\(547\) 1.97976i 0.0846486i 0.999104 + 0.0423243i \(0.0134763\pi\)
−0.999104 + 0.0423243i \(0.986524\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.58430 −0.0674933
\(552\) 0 0
\(553\) 44.0953 1.87512
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 40.3668i − 1.71039i −0.518303 0.855197i \(-0.673436\pi\)
0.518303 0.855197i \(-0.326564\pi\)
\(558\) 0 0
\(559\) 10.7319i 0.453911i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.6523 1.08111 0.540557 0.841307i \(-0.318214\pi\)
0.540557 + 0.841307i \(0.318214\pi\)
\(564\) 0 0
\(565\) 13.4914 0.567588
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.9227i 0.919046i 0.888166 + 0.459523i \(0.151980\pi\)
−0.888166 + 0.459523i \(0.848020\pi\)
\(570\) 0 0
\(571\) 39.5144i 1.65363i 0.562476 + 0.826814i \(0.309849\pi\)
−0.562476 + 0.826814i \(0.690151\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.257566 −0.0107413
\(576\) 0 0
\(577\) 43.2569 1.80081 0.900405 0.435052i \(-0.143270\pi\)
0.900405 + 0.435052i \(0.143270\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 58.5138i − 2.42756i
\(582\) 0 0
\(583\) − 32.6264i − 1.35125i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −31.9324 −1.31799 −0.658996 0.752146i \(-0.729019\pi\)
−0.658996 + 0.752146i \(0.729019\pi\)
\(588\) 0 0
\(589\) 8.61306 0.354895
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 13.9688i − 0.573629i −0.957986 0.286815i \(-0.907404\pi\)
0.957986 0.286815i \(-0.0925964\pi\)
\(594\) 0 0
\(595\) 32.9865i 1.35231i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.48986 −0.183451 −0.0917254 0.995784i \(-0.529238\pi\)
−0.0917254 + 0.995784i \(0.529238\pi\)
\(600\) 0 0
\(601\) −19.0954 −0.778918 −0.389459 0.921044i \(-0.627338\pi\)
−0.389459 + 0.921044i \(0.627338\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 7.81081i − 0.317555i
\(606\) 0 0
\(607\) − 13.6112i − 0.552462i −0.961091 0.276231i \(-0.910914\pi\)
0.961091 0.276231i \(-0.0890855\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.68663 −0.149145
\(612\) 0 0
\(613\) −41.3213 −1.66895 −0.834476 0.551044i \(-0.814230\pi\)
−0.834476 + 0.551044i \(0.814230\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 27.5877i − 1.11064i −0.831637 0.555320i \(-0.812596\pi\)
0.831637 0.555320i \(-0.187404\pi\)
\(618\) 0 0
\(619\) − 1.51849i − 0.0610331i −0.999534 0.0305166i \(-0.990285\pi\)
0.999534 0.0305166i \(-0.00971523\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 32.0521 1.28414
\(624\) 0 0
\(625\) −26.3810 −1.05524
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 3.51408i − 0.140115i
\(630\) 0 0
\(631\) 31.3170i 1.24671i 0.781939 + 0.623355i \(0.214231\pi\)
−0.781939 + 0.623355i \(0.785769\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −23.5257 −0.933588
\(636\) 0 0
\(637\) 43.5964 1.72735
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 45.9377i − 1.81443i −0.420667 0.907215i \(-0.638204\pi\)
0.420667 0.907215i \(-0.361796\pi\)
\(642\) 0 0
\(643\) − 27.4382i − 1.08206i −0.841004 0.541029i \(-0.818035\pi\)
0.841004 0.541029i \(-0.181965\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −47.5963 −1.87120 −0.935602 0.353057i \(-0.885142\pi\)
−0.935602 + 0.353057i \(0.885142\pi\)
\(648\) 0 0
\(649\) 17.2990 0.679047
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 33.0266i 1.29243i 0.763155 + 0.646216i \(0.223649\pi\)
−0.763155 + 0.646216i \(0.776351\pi\)
\(654\) 0 0
\(655\) 14.0868i 0.550415i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.2191 1.09926 0.549629 0.835409i \(-0.314769\pi\)
0.549629 + 0.835409i \(0.314769\pi\)
\(660\) 0 0
\(661\) 29.1453 1.13362 0.566810 0.823849i \(-0.308177\pi\)
0.566810 + 0.823849i \(0.308177\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 51.2124i − 1.98593i
\(666\) 0 0
\(667\) − 0.254916i − 0.00987038i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.1055 −0.390118
\(672\) 0 0
\(673\) −44.2073 −1.70407 −0.852033 0.523489i \(-0.824630\pi\)
−0.852033 + 0.523489i \(0.824630\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 48.3903i 1.85979i 0.367823 + 0.929896i \(0.380103\pi\)
−0.367823 + 0.929896i \(0.619897\pi\)
\(678\) 0 0
\(679\) − 60.6030i − 2.32573i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25.5788 0.978744 0.489372 0.872075i \(-0.337226\pi\)
0.489372 + 0.872075i \(0.337226\pi\)
\(684\) 0 0
\(685\) −7.39651 −0.282606
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 53.4704i − 2.03706i
\(690\) 0 0
\(691\) − 32.0759i − 1.22023i −0.792314 0.610113i \(-0.791124\pi\)
0.792314 0.610113i \(-0.208876\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.6615 0.404414
\(696\) 0 0
\(697\) −11.9754 −0.453601
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 18.9920i − 0.717319i −0.933468 0.358659i \(-0.883234\pi\)
0.933468 0.358659i \(-0.116766\pi\)
\(702\) 0 0
\(703\) 5.45570i 0.205765i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.71298 0.0644232
\(708\) 0 0
\(709\) 3.82391 0.143610 0.0718049 0.997419i \(-0.477124\pi\)
0.0718049 + 0.997419i \(0.477124\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.38586i 0.0519007i
\(714\) 0 0
\(715\) 28.6759i 1.07242i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.21083 −0.0451565 −0.0225783 0.999745i \(-0.507187\pi\)
−0.0225783 + 0.999745i \(0.507187\pi\)
\(720\) 0 0
\(721\) 29.4257 1.09587
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.0852049i 0.00316443i
\(726\) 0 0
\(727\) 4.75896i 0.176500i 0.996098 + 0.0882501i \(0.0281275\pi\)
−0.996098 + 0.0882501i \(0.971873\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.34432 0.308626
\(732\) 0 0
\(733\) 23.7483 0.877163 0.438582 0.898691i \(-0.355481\pi\)
0.438582 + 0.898691i \(0.355481\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 13.7599i − 0.506854i
\(738\) 0 0
\(739\) − 17.9801i − 0.661410i −0.943734 0.330705i \(-0.892714\pi\)
0.943734 0.330705i \(-0.107286\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −51.9803 −1.90697 −0.953486 0.301437i \(-0.902534\pi\)
−0.953486 + 0.301437i \(0.902534\pi\)
\(744\) 0 0
\(745\) 31.6626 1.16003
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 51.6778i 1.88827i
\(750\) 0 0
\(751\) 10.6853i 0.389912i 0.980812 + 0.194956i \(0.0624564\pi\)
−0.980812 + 0.194956i \(0.937544\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.6256 0.495886
\(756\) 0 0
\(757\) 4.85514 0.176463 0.0882316 0.996100i \(-0.471878\pi\)
0.0882316 + 0.996100i \(0.471878\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 18.6881i − 0.677442i −0.940887 0.338721i \(-0.890006\pi\)
0.940887 0.338721i \(-0.109994\pi\)
\(762\) 0 0
\(763\) − 4.51403i − 0.163419i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28.3509 1.02369
\(768\) 0 0
\(769\) 24.4033 0.880006 0.440003 0.897996i \(-0.354977\pi\)
0.440003 + 0.897996i \(0.354977\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27.0749i 0.973817i 0.873453 + 0.486909i \(0.161875\pi\)
−0.873453 + 0.486909i \(0.838125\pi\)
\(774\) 0 0
\(775\) − 0.463218i − 0.0166393i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.5922 0.666133
\(780\) 0 0
\(781\) −29.6839 −1.06217
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 23.9206i − 0.853763i
\(786\) 0 0
\(787\) 19.8823i 0.708728i 0.935108 + 0.354364i \(0.115303\pi\)
−0.935108 + 0.354364i \(0.884697\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −23.9247 −0.850664
\(792\) 0 0
\(793\) −16.5616 −0.588118
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.44088i 0.263570i 0.991278 + 0.131785i \(0.0420708\pi\)
−0.991278 + 0.131785i \(0.957929\pi\)
\(798\) 0 0
\(799\) 2.86645i 0.101408i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.3770 −1.07198
\(804\) 0 0
\(805\) 8.24015 0.290427
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 29.7939i − 1.04750i −0.851873 0.523748i \(-0.824533\pi\)
0.851873 0.523748i \(-0.175467\pi\)
\(810\) 0 0
\(811\) − 6.10131i − 0.214246i −0.994246 0.107123i \(-0.965836\pi\)
0.994246 0.107123i \(-0.0341639\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.36259 −0.0827580
\(816\) 0 0
\(817\) −12.9548 −0.453231
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.0683i 0.560787i 0.959885 + 0.280394i \(0.0904650\pi\)
−0.959885 + 0.280394i \(0.909535\pi\)
\(822\) 0 0
\(823\) 24.5792i 0.856777i 0.903595 + 0.428389i \(0.140919\pi\)
−0.903595 + 0.428389i \(0.859081\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.2481 −0.425907 −0.212953 0.977062i \(-0.568308\pi\)
−0.212953 + 0.977062i \(0.568308\pi\)
\(828\) 0 0
\(829\) 10.1046 0.350949 0.175474 0.984484i \(-0.443854\pi\)
0.175474 + 0.984484i \(0.443854\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 33.8973i − 1.17447i
\(834\) 0 0
\(835\) 23.0311i 0.797025i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −52.5667 −1.81481 −0.907403 0.420262i \(-0.861938\pi\)
−0.907403 + 0.420262i \(0.861938\pi\)
\(840\) 0 0
\(841\) 28.9157 0.997092
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.0863i 0.587788i
\(846\) 0 0
\(847\) 13.8511i 0.475931i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.877830 −0.0300916
\(852\) 0 0
\(853\) −13.9732 −0.478435 −0.239217 0.970966i \(-0.576891\pi\)
−0.239217 + 0.970966i \(0.576891\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 24.9176i − 0.851168i −0.904919 0.425584i \(-0.860069\pi\)
0.904919 0.425584i \(-0.139931\pi\)
\(858\) 0 0
\(859\) − 3.34275i − 0.114053i −0.998373 0.0570265i \(-0.981838\pi\)
0.998373 0.0570265i \(-0.0181620\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −28.1595 −0.958559 −0.479280 0.877662i \(-0.659102\pi\)
−0.479280 + 0.877662i \(0.659102\pi\)
\(864\) 0 0
\(865\) −23.6471 −0.804025
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 29.8049i − 1.01106i
\(870\) 0 0
\(871\) − 22.5507i − 0.764102i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 44.1805 1.49357
\(876\) 0 0
\(877\) −21.8138 −0.736599 −0.368299 0.929707i \(-0.620060\pi\)
−0.368299 + 0.929707i \(0.620060\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 0.878391i − 0.0295937i −0.999891 0.0147969i \(-0.995290\pi\)
0.999891 0.0147969i \(-0.00471016\pi\)
\(882\) 0 0
\(883\) 9.85401i 0.331614i 0.986158 + 0.165807i \(0.0530229\pi\)
−0.986158 + 0.165807i \(0.946977\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30.8827 −1.03694 −0.518470 0.855096i \(-0.673498\pi\)
−0.518470 + 0.855096i \(0.673498\pi\)
\(888\) 0 0
\(889\) 41.7188 1.39920
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 4.45024i − 0.148922i
\(894\) 0 0
\(895\) − 31.4045i − 1.04974i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.458452 0.0152902
\(900\) 0 0
\(901\) −41.5746 −1.38505
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19.7702i 0.657185i
\(906\) 0 0
\(907\) − 50.1945i − 1.66668i −0.552759 0.833341i \(-0.686425\pi\)
0.552759 0.833341i \(-0.313575\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.78170 0.125293 0.0626467 0.998036i \(-0.480046\pi\)
0.0626467 + 0.998036i \(0.480046\pi\)
\(912\) 0 0
\(913\) −39.5507 −1.30894
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 24.9805i − 0.824927i
\(918\) 0 0
\(919\) − 31.7149i − 1.04618i −0.852279 0.523088i \(-0.824780\pi\)
0.852279 0.523088i \(-0.175220\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −48.6480 −1.60127
\(924\) 0 0
\(925\) 0.293412 0.00964734
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 53.4909i − 1.75498i −0.479595 0.877490i \(-0.659216\pi\)
0.479595 0.877490i \(-0.340784\pi\)
\(930\) 0 0
\(931\) 52.6265i 1.72476i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 22.2962 0.729164
\(936\) 0 0
\(937\) −26.5679 −0.867934 −0.433967 0.900929i \(-0.642887\pi\)
−0.433967 + 0.900929i \(0.642887\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.0851i 0.328766i 0.986397 + 0.164383i \(0.0525633\pi\)
−0.986397 + 0.164383i \(0.947437\pi\)
\(942\) 0 0
\(943\) 2.99151i 0.0974169i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.23781 0.105215 0.0526074 0.998615i \(-0.483247\pi\)
0.0526074 + 0.998615i \(0.483247\pi\)
\(948\) 0 0
\(949\) −49.7840 −1.61606
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 45.9043i 1.48699i 0.668744 + 0.743493i \(0.266832\pi\)
−0.668744 + 0.743493i \(0.733168\pi\)
\(954\) 0 0
\(955\) 28.3693i 0.918008i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 13.1164 0.423552
\(960\) 0 0
\(961\) 28.5076 0.919601
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 59.2402i 1.90701i
\(966\) 0 0
\(967\) − 21.3639i − 0.687018i −0.939149 0.343509i \(-0.888384\pi\)
0.939149 0.343509i \(-0.111616\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13.0896 0.420065 0.210033 0.977694i \(-0.432643\pi\)
0.210033 + 0.977694i \(0.432643\pi\)
\(972\) 0 0
\(973\) −18.9063 −0.606110
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 35.7900i 1.14502i 0.819896 + 0.572512i \(0.194031\pi\)
−0.819896 + 0.572512i \(0.805969\pi\)
\(978\) 0 0
\(979\) − 21.6647i − 0.692406i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.1771 0.643550 0.321775 0.946816i \(-0.395720\pi\)
0.321775 + 0.946816i \(0.395720\pi\)
\(984\) 0 0
\(985\) 50.9512 1.62344
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 2.08445i − 0.0662815i
\(990\) 0 0
\(991\) 45.7778i 1.45418i 0.686543 + 0.727089i \(0.259127\pi\)
−0.686543 + 0.727089i \(0.740873\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −43.8534 −1.39025
\(996\) 0 0
\(997\) 60.2332 1.90760 0.953802 0.300437i \(-0.0971324\pi\)
0.953802 + 0.300437i \(0.0971324\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5328.2.e.f.2591.17 yes 24
3.2 odd 2 inner 5328.2.e.f.2591.7 24
4.3 odd 2 inner 5328.2.e.f.2591.18 yes 24
12.11 even 2 inner 5328.2.e.f.2591.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5328.2.e.f.2591.7 24 3.2 odd 2 inner
5328.2.e.f.2591.8 yes 24 12.11 even 2 inner
5328.2.e.f.2591.17 yes 24 1.1 even 1 trivial
5328.2.e.f.2591.18 yes 24 4.3 odd 2 inner