Properties

Label 5328.2.e.f.2591.13
Level $5328$
Weight $2$
Character 5328.2591
Analytic conductor $42.544$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5328,2,Mod(2591,5328)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5328.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5328.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.5442941969\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.13
Character \(\chi\) \(=\) 5328.2591
Dual form 5328.2.e.f.2591.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.617709i q^{5} -2.19022i q^{7} -0.928117 q^{11} -0.951287 q^{13} +0.493268i q^{17} +2.39074i q^{19} -5.17950 q^{23} +4.61844 q^{25} +4.22724i q^{29} +2.47929i q^{31} +1.35292 q^{35} -1.00000 q^{37} -7.06368i q^{41} -9.01128i q^{43} +0.0135125 q^{47} +2.20293 q^{49} -7.85933i q^{53} -0.573306i q^{55} -10.4192 q^{59} -5.10465 q^{61} -0.587619i q^{65} -11.1628i q^{67} +0.138737 q^{71} -6.72224 q^{73} +2.03278i q^{77} +10.7014i q^{79} -14.6492 q^{83} -0.304696 q^{85} +13.8407i q^{89} +2.08353i q^{91} -1.47678 q^{95} +9.48506 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 32 q^{25} - 24 q^{37} - 80 q^{49} - 48 q^{61} - 48 q^{73} - 40 q^{85} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5328\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.617709i 0.276248i 0.990415 + 0.138124i \(0.0441072\pi\)
−0.990415 + 0.138124i \(0.955893\pi\)
\(6\) 0 0
\(7\) − 2.19022i − 0.827826i −0.910316 0.413913i \(-0.864162\pi\)
0.910316 0.413913i \(-0.135838\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.928117 −0.279838 −0.139919 0.990163i \(-0.544684\pi\)
−0.139919 + 0.990163i \(0.544684\pi\)
\(12\) 0 0
\(13\) −0.951287 −0.263840 −0.131920 0.991260i \(-0.542114\pi\)
−0.131920 + 0.991260i \(0.542114\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.493268i 0.119635i 0.998209 + 0.0598175i \(0.0190519\pi\)
−0.998209 + 0.0598175i \(0.980948\pi\)
\(18\) 0 0
\(19\) 2.39074i 0.548473i 0.961662 + 0.274237i \(0.0884251\pi\)
−0.961662 + 0.274237i \(0.911575\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.17950 −1.08000 −0.540000 0.841665i \(-0.681576\pi\)
−0.540000 + 0.841665i \(0.681576\pi\)
\(24\) 0 0
\(25\) 4.61844 0.923687
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.22724i 0.784980i 0.919756 + 0.392490i \(0.128386\pi\)
−0.919756 + 0.392490i \(0.871614\pi\)
\(30\) 0 0
\(31\) 2.47929i 0.445293i 0.974899 + 0.222646i \(0.0714695\pi\)
−0.974899 + 0.222646i \(0.928530\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.35292 0.228685
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 7.06368i − 1.10316i −0.834121 0.551581i \(-0.814025\pi\)
0.834121 0.551581i \(-0.185975\pi\)
\(42\) 0 0
\(43\) − 9.01128i − 1.37421i −0.726560 0.687103i \(-0.758882\pi\)
0.726560 0.687103i \(-0.241118\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.0135125 0.00197099 0.000985497 1.00000i \(-0.499686\pi\)
0.000985497 1.00000i \(0.499686\pi\)
\(48\) 0 0
\(49\) 2.20293 0.314704
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 7.85933i − 1.07956i −0.841806 0.539781i \(-0.818507\pi\)
0.841806 0.539781i \(-0.181493\pi\)
\(54\) 0 0
\(55\) − 0.573306i − 0.0773046i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.4192 −1.35647 −0.678235 0.734845i \(-0.737255\pi\)
−0.678235 + 0.734845i \(0.737255\pi\)
\(60\) 0 0
\(61\) −5.10465 −0.653584 −0.326792 0.945096i \(-0.605968\pi\)
−0.326792 + 0.945096i \(0.605968\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 0.587619i − 0.0728851i
\(66\) 0 0
\(67\) − 11.1628i − 1.36376i −0.731466 0.681878i \(-0.761164\pi\)
0.731466 0.681878i \(-0.238836\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.138737 0.0164650 0.00823250 0.999966i \(-0.497379\pi\)
0.00823250 + 0.999966i \(0.497379\pi\)
\(72\) 0 0
\(73\) −6.72224 −0.786779 −0.393390 0.919372i \(-0.628698\pi\)
−0.393390 + 0.919372i \(0.628698\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.03278i 0.231657i
\(78\) 0 0
\(79\) 10.7014i 1.20401i 0.798494 + 0.602003i \(0.205631\pi\)
−0.798494 + 0.602003i \(0.794369\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −14.6492 −1.60796 −0.803981 0.594655i \(-0.797289\pi\)
−0.803981 + 0.594655i \(0.797289\pi\)
\(84\) 0 0
\(85\) −0.304696 −0.0330489
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.8407i 1.46711i 0.679628 + 0.733556i \(0.262141\pi\)
−0.679628 + 0.733556i \(0.737859\pi\)
\(90\) 0 0
\(91\) 2.08353i 0.218413i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.47678 −0.151515
\(96\) 0 0
\(97\) 9.48506 0.963062 0.481531 0.876429i \(-0.340081\pi\)
0.481531 + 0.876429i \(0.340081\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 17.8378i 1.77492i 0.460880 + 0.887462i \(0.347534\pi\)
−0.460880 + 0.887462i \(0.652466\pi\)
\(102\) 0 0
\(103\) − 7.30200i − 0.719488i −0.933051 0.359744i \(-0.882864\pi\)
0.933051 0.359744i \(-0.117136\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.09598 −0.685994 −0.342997 0.939337i \(-0.611442\pi\)
−0.342997 + 0.939337i \(0.611442\pi\)
\(108\) 0 0
\(109\) −12.2856 −1.17675 −0.588373 0.808590i \(-0.700231\pi\)
−0.588373 + 0.808590i \(0.700231\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.865395i 0.0814095i 0.999171 + 0.0407048i \(0.0129603\pi\)
−0.999171 + 0.0407048i \(0.987040\pi\)
\(114\) 0 0
\(115\) − 3.19943i − 0.298348i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.08037 0.0990370
\(120\) 0 0
\(121\) −10.1386 −0.921691
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.94139i 0.531414i
\(126\) 0 0
\(127\) − 0.685276i − 0.0608084i −0.999538 0.0304042i \(-0.990321\pi\)
0.999538 0.0304042i \(-0.00967945\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.496062 0.0433411 0.0216706 0.999765i \(-0.493102\pi\)
0.0216706 + 0.999765i \(0.493102\pi\)
\(132\) 0 0
\(133\) 5.23625 0.454040
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 5.97949i − 0.510863i −0.966827 0.255431i \(-0.917783\pi\)
0.966827 0.255431i \(-0.0822175\pi\)
\(138\) 0 0
\(139\) − 3.61827i − 0.306898i −0.988157 0.153449i \(-0.950962\pi\)
0.988157 0.153449i \(-0.0490381\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.882905 0.0738323
\(144\) 0 0
\(145\) −2.61121 −0.216849
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.9982i 1.14678i 0.819283 + 0.573389i \(0.194372\pi\)
−0.819283 + 0.573389i \(0.805628\pi\)
\(150\) 0 0
\(151\) − 20.6128i − 1.67745i −0.544558 0.838723i \(-0.683303\pi\)
0.544558 0.838723i \(-0.316697\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.53148 −0.123011
\(156\) 0 0
\(157\) 7.43200 0.593138 0.296569 0.955011i \(-0.404157\pi\)
0.296569 + 0.955011i \(0.404157\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11.3443i 0.894053i
\(162\) 0 0
\(163\) 9.31945i 0.729956i 0.931016 + 0.364978i \(0.118923\pi\)
−0.931016 + 0.364978i \(0.881077\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.06779 −0.392157 −0.196079 0.980588i \(-0.562821\pi\)
−0.196079 + 0.980588i \(0.562821\pi\)
\(168\) 0 0
\(169\) −12.0951 −0.930389
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1.53127i − 0.116420i −0.998304 0.0582101i \(-0.981461\pi\)
0.998304 0.0582101i \(-0.0185393\pi\)
\(174\) 0 0
\(175\) − 10.1154i − 0.764652i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.8900 −1.56139 −0.780695 0.624913i \(-0.785134\pi\)
−0.780695 + 0.624913i \(0.785134\pi\)
\(180\) 0 0
\(181\) −20.3812 −1.51492 −0.757462 0.652879i \(-0.773561\pi\)
−0.757462 + 0.652879i \(0.773561\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 0.617709i − 0.0454149i
\(186\) 0 0
\(187\) − 0.457810i − 0.0334784i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.41530 0.319480 0.159740 0.987159i \(-0.448934\pi\)
0.159740 + 0.987159i \(0.448934\pi\)
\(192\) 0 0
\(193\) −9.58738 −0.690114 −0.345057 0.938582i \(-0.612140\pi\)
−0.345057 + 0.938582i \(0.612140\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2.05322i − 0.146286i −0.997321 0.0731430i \(-0.976697\pi\)
0.997321 0.0731430i \(-0.0233030\pi\)
\(198\) 0 0
\(199\) − 2.71751i − 0.192639i −0.995350 0.0963197i \(-0.969293\pi\)
0.995350 0.0963197i \(-0.0307071\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.25861 0.649827
\(204\) 0 0
\(205\) 4.36330 0.304746
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 2.21888i − 0.153483i
\(210\) 0 0
\(211\) − 10.6745i − 0.734862i −0.930051 0.367431i \(-0.880237\pi\)
0.930051 0.367431i \(-0.119763\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.56635 0.379622
\(216\) 0 0
\(217\) 5.43019 0.368625
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 0.469239i − 0.0315644i
\(222\) 0 0
\(223\) 14.8269i 0.992885i 0.868070 + 0.496443i \(0.165361\pi\)
−0.868070 + 0.496443i \(0.834639\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.98340 0.264387 0.132194 0.991224i \(-0.457798\pi\)
0.132194 + 0.991224i \(0.457798\pi\)
\(228\) 0 0
\(229\) −15.0344 −0.993504 −0.496752 0.867893i \(-0.665474\pi\)
−0.496752 + 0.867893i \(0.665474\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 8.64444i − 0.566316i −0.959073 0.283158i \(-0.908618\pi\)
0.959073 0.283158i \(-0.0913821\pi\)
\(234\) 0 0
\(235\) 0.00834676i 0 0.000544483i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.04326 −0.326221 −0.163111 0.986608i \(-0.552153\pi\)
−0.163111 + 0.986608i \(0.552153\pi\)
\(240\) 0 0
\(241\) 6.70104 0.431652 0.215826 0.976432i \(-0.430756\pi\)
0.215826 + 0.976432i \(0.430756\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.36077i 0.0869362i
\(246\) 0 0
\(247\) − 2.27428i − 0.144709i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.0813 −0.951922 −0.475961 0.879466i \(-0.657900\pi\)
−0.475961 + 0.879466i \(0.657900\pi\)
\(252\) 0 0
\(253\) 4.80718 0.302225
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.67923i 0.541396i 0.962664 + 0.270698i \(0.0872544\pi\)
−0.962664 + 0.270698i \(0.912746\pi\)
\(258\) 0 0
\(259\) 2.19022i 0.136094i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −27.8591 −1.71787 −0.858933 0.512089i \(-0.828872\pi\)
−0.858933 + 0.512089i \(0.828872\pi\)
\(264\) 0 0
\(265\) 4.85478 0.298227
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.04120i 0.307367i 0.988120 + 0.153684i \(0.0491137\pi\)
−0.988120 + 0.153684i \(0.950886\pi\)
\(270\) 0 0
\(271\) − 14.8728i − 0.903457i −0.892156 0.451728i \(-0.850808\pi\)
0.892156 0.451728i \(-0.149192\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.28645 −0.258483
\(276\) 0 0
\(277\) −12.6300 −0.758862 −0.379431 0.925220i \(-0.623880\pi\)
−0.379431 + 0.925220i \(0.623880\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.4269i 0.979944i 0.871738 + 0.489972i \(0.162993\pi\)
−0.871738 + 0.489972i \(0.837007\pi\)
\(282\) 0 0
\(283\) − 9.73779i − 0.578852i −0.957200 0.289426i \(-0.906536\pi\)
0.957200 0.289426i \(-0.0934643\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.4710 −0.913226
\(288\) 0 0
\(289\) 16.7567 0.985687
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.1430i 0.709400i 0.934980 + 0.354700i \(0.115417\pi\)
−0.934980 + 0.354700i \(0.884583\pi\)
\(294\) 0 0
\(295\) − 6.43606i − 0.374722i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.92719 0.284947
\(300\) 0 0
\(301\) −19.7367 −1.13760
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 3.15319i − 0.180551i
\(306\) 0 0
\(307\) − 9.31509i − 0.531640i −0.964023 0.265820i \(-0.914357\pi\)
0.964023 0.265820i \(-0.0856427\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.50573 0.0853819 0.0426909 0.999088i \(-0.486407\pi\)
0.0426909 + 0.999088i \(0.486407\pi\)
\(312\) 0 0
\(313\) 12.9055 0.729459 0.364730 0.931113i \(-0.381161\pi\)
0.364730 + 0.931113i \(0.381161\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.4389i 1.37263i 0.727306 + 0.686313i \(0.240772\pi\)
−0.727306 + 0.686313i \(0.759228\pi\)
\(318\) 0 0
\(319\) − 3.92338i − 0.219667i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.17927 −0.0656166
\(324\) 0 0
\(325\) −4.39346 −0.243705
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 0.0295953i − 0.00163164i
\(330\) 0 0
\(331\) − 10.1317i − 0.556887i −0.960453 0.278443i \(-0.910182\pi\)
0.960453 0.278443i \(-0.0898184\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.89538 0.376735
\(336\) 0 0
\(337\) −5.20293 −0.283421 −0.141711 0.989908i \(-0.545260\pi\)
−0.141711 + 0.989908i \(0.545260\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 2.30107i − 0.124610i
\(342\) 0 0
\(343\) − 20.1565i − 1.08835i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.54179 −0.458547 −0.229274 0.973362i \(-0.573635\pi\)
−0.229274 + 0.973362i \(0.573635\pi\)
\(348\) 0 0
\(349\) −1.67931 −0.0898914 −0.0449457 0.998989i \(-0.514311\pi\)
−0.0449457 + 0.998989i \(0.514311\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 26.1781i − 1.39332i −0.717401 0.696660i \(-0.754669\pi\)
0.717401 0.696660i \(-0.245331\pi\)
\(354\) 0 0
\(355\) 0.0856988i 0.00454842i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.8712 −1.47099 −0.735494 0.677531i \(-0.763050\pi\)
−0.735494 + 0.677531i \(0.763050\pi\)
\(360\) 0 0
\(361\) 13.2844 0.699177
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 4.15239i − 0.217346i
\(366\) 0 0
\(367\) 15.2478i 0.795928i 0.917401 + 0.397964i \(0.130283\pi\)
−0.917401 + 0.397964i \(0.869717\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −17.2137 −0.893689
\(372\) 0 0
\(373\) 8.34334 0.432002 0.216001 0.976393i \(-0.430699\pi\)
0.216001 + 0.976393i \(0.430699\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 4.02132i − 0.207109i
\(378\) 0 0
\(379\) − 31.0493i − 1.59490i −0.603387 0.797448i \(-0.706183\pi\)
0.603387 0.797448i \(-0.293817\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.864805 0.0441895 0.0220947 0.999756i \(-0.492966\pi\)
0.0220947 + 0.999756i \(0.492966\pi\)
\(384\) 0 0
\(385\) −1.25567 −0.0639948
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 24.0697i − 1.22038i −0.792254 0.610192i \(-0.791092\pi\)
0.792254 0.610192i \(-0.208908\pi\)
\(390\) 0 0
\(391\) − 2.55488i − 0.129206i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.61038 −0.332604
\(396\) 0 0
\(397\) −16.4323 −0.824716 −0.412358 0.911022i \(-0.635295\pi\)
−0.412358 + 0.911022i \(0.635295\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 12.6766i − 0.633041i −0.948586 0.316520i \(-0.897485\pi\)
0.948586 0.316520i \(-0.102515\pi\)
\(402\) 0 0
\(403\) − 2.35851i − 0.117486i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.928117 0.0460050
\(408\) 0 0
\(409\) 16.7657 0.829010 0.414505 0.910047i \(-0.363955\pi\)
0.414505 + 0.910047i \(0.363955\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 22.8205i 1.12292i
\(414\) 0 0
\(415\) − 9.04896i − 0.444196i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.5357 1.19865 0.599323 0.800507i \(-0.295437\pi\)
0.599323 + 0.800507i \(0.295437\pi\)
\(420\) 0 0
\(421\) 23.6837 1.15427 0.577136 0.816648i \(-0.304170\pi\)
0.577136 + 0.816648i \(0.304170\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.27812i 0.110505i
\(426\) 0 0
\(427\) 11.1803i 0.541054i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.6189 −0.848671 −0.424336 0.905505i \(-0.639492\pi\)
−0.424336 + 0.905505i \(0.639492\pi\)
\(432\) 0 0
\(433\) −37.3003 −1.79254 −0.896269 0.443511i \(-0.853733\pi\)
−0.896269 + 0.443511i \(0.853733\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 12.3828i − 0.592351i
\(438\) 0 0
\(439\) 18.5277i 0.884277i 0.896947 + 0.442139i \(0.145780\pi\)
−0.896947 + 0.442139i \(0.854220\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.8332 −0.657237 −0.328618 0.944463i \(-0.606583\pi\)
−0.328618 + 0.944463i \(0.606583\pi\)
\(444\) 0 0
\(445\) −8.54953 −0.405287
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.96758i 0.0928559i 0.998922 + 0.0464279i \(0.0147838\pi\)
−0.998922 + 0.0464279i \(0.985216\pi\)
\(450\) 0 0
\(451\) 6.55592i 0.308706i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.28702 −0.0603362
\(456\) 0 0
\(457\) 27.4413 1.28365 0.641825 0.766851i \(-0.278178\pi\)
0.641825 + 0.766851i \(0.278178\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 27.6821i 1.28928i 0.764485 + 0.644641i \(0.222993\pi\)
−0.764485 + 0.644641i \(0.777007\pi\)
\(462\) 0 0
\(463\) − 15.0508i − 0.699472i −0.936848 0.349736i \(-0.886271\pi\)
0.936848 0.349736i \(-0.113729\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.3869 1.40614 0.703068 0.711122i \(-0.251813\pi\)
0.703068 + 0.711122i \(0.251813\pi\)
\(468\) 0 0
\(469\) −24.4491 −1.12895
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.36352i 0.384555i
\(474\) 0 0
\(475\) 11.0415i 0.506618i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.664004 −0.0303391 −0.0151695 0.999885i \(-0.504829\pi\)
−0.0151695 + 0.999885i \(0.504829\pi\)
\(480\) 0 0
\(481\) 0.951287 0.0433750
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.85901i 0.266044i
\(486\) 0 0
\(487\) 20.8164i 0.943280i 0.881791 + 0.471640i \(0.156338\pi\)
−0.881791 + 0.471640i \(0.843662\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.31850 −0.104633 −0.0523163 0.998631i \(-0.516660\pi\)
−0.0523163 + 0.998631i \(0.516660\pi\)
\(492\) 0 0
\(493\) −2.08516 −0.0939110
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 0.303864i − 0.0136302i
\(498\) 0 0
\(499\) 10.6938i 0.478719i 0.970931 + 0.239360i \(0.0769375\pi\)
−0.970931 + 0.239360i \(0.923063\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.33386 0.0594741 0.0297370 0.999558i \(-0.490533\pi\)
0.0297370 + 0.999558i \(0.490533\pi\)
\(504\) 0 0
\(505\) −11.0186 −0.490319
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 8.59739i − 0.381073i −0.981680 0.190536i \(-0.938977\pi\)
0.981680 0.190536i \(-0.0610227\pi\)
\(510\) 0 0
\(511\) 14.7232i 0.651316i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.51051 0.198757
\(516\) 0 0
\(517\) −0.0125411 −0.000551558 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 23.9002i − 1.04709i −0.851999 0.523544i \(-0.824610\pi\)
0.851999 0.523544i \(-0.175390\pi\)
\(522\) 0 0
\(523\) − 3.55714i − 0.155543i −0.996971 0.0777714i \(-0.975220\pi\)
0.996971 0.0777714i \(-0.0247804\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.22295 −0.0532726
\(528\) 0 0
\(529\) 3.82725 0.166402
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.71959i 0.291058i
\(534\) 0 0
\(535\) − 4.38325i − 0.189504i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.04457 −0.0880660
\(540\) 0 0
\(541\) −12.0717 −0.519003 −0.259502 0.965743i \(-0.583558\pi\)
−0.259502 + 0.965743i \(0.583558\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 7.58892i − 0.325073i
\(546\) 0 0
\(547\) 11.4387i 0.489084i 0.969639 + 0.244542i \(0.0786377\pi\)
−0.969639 + 0.244542i \(0.921362\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10.1062 −0.430540
\(552\) 0 0
\(553\) 23.4385 0.996708
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.7645i 1.13405i 0.823702 + 0.567023i \(0.191905\pi\)
−0.823702 + 0.567023i \(0.808095\pi\)
\(558\) 0 0
\(559\) 8.57231i 0.362570i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.90246 −0.333049 −0.166525 0.986037i \(-0.553254\pi\)
−0.166525 + 0.986037i \(0.553254\pi\)
\(564\) 0 0
\(565\) −0.534562 −0.0224892
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 26.4231i − 1.10772i −0.832611 0.553858i \(-0.813155\pi\)
0.832611 0.553858i \(-0.186845\pi\)
\(570\) 0 0
\(571\) − 7.60950i − 0.318447i −0.987243 0.159224i \(-0.949101\pi\)
0.987243 0.159224i \(-0.0508991\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −23.9212 −0.997583
\(576\) 0 0
\(577\) −28.6004 −1.19065 −0.595324 0.803485i \(-0.702976\pi\)
−0.595324 + 0.803485i \(0.702976\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 32.0851i 1.33111i
\(582\) 0 0
\(583\) 7.29437i 0.302102i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −37.9300 −1.56554 −0.782770 0.622311i \(-0.786194\pi\)
−0.782770 + 0.622311i \(0.786194\pi\)
\(588\) 0 0
\(589\) −5.92732 −0.244231
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 32.9885i − 1.35468i −0.735672 0.677338i \(-0.763133\pi\)
0.735672 0.677338i \(-0.236867\pi\)
\(594\) 0 0
\(595\) 0.667352i 0.0273588i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.333772 0.0136375 0.00681877 0.999977i \(-0.497830\pi\)
0.00681877 + 0.999977i \(0.497830\pi\)
\(600\) 0 0
\(601\) 10.8840 0.443968 0.221984 0.975050i \(-0.428747\pi\)
0.221984 + 0.975050i \(0.428747\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 6.26270i − 0.254615i
\(606\) 0 0
\(607\) − 23.5072i − 0.954127i −0.878869 0.477063i \(-0.841701\pi\)
0.878869 0.477063i \(-0.158299\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.0128542 −0.000520026 0
\(612\) 0 0
\(613\) 36.3165 1.46681 0.733405 0.679792i \(-0.237930\pi\)
0.733405 + 0.679792i \(0.237930\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 20.8556i − 0.839615i −0.907613 0.419808i \(-0.862098\pi\)
0.907613 0.419808i \(-0.137902\pi\)
\(618\) 0 0
\(619\) 8.68092i 0.348916i 0.984665 + 0.174458i \(0.0558173\pi\)
−0.984665 + 0.174458i \(0.944183\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 30.3142 1.21451
\(624\) 0 0
\(625\) 19.4221 0.776885
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 0.493268i − 0.0196679i
\(630\) 0 0
\(631\) 24.2557i 0.965603i 0.875730 + 0.482802i \(0.160381\pi\)
−0.875730 + 0.482802i \(0.839619\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.423301 0.0167982
\(636\) 0 0
\(637\) −2.09562 −0.0830313
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.4106i 0.490190i 0.969499 + 0.245095i \(0.0788191\pi\)
−0.969499 + 0.245095i \(0.921181\pi\)
\(642\) 0 0
\(643\) − 18.5803i − 0.732736i −0.930470 0.366368i \(-0.880601\pi\)
0.930470 0.366368i \(-0.119399\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 42.8420 1.68429 0.842146 0.539249i \(-0.181292\pi\)
0.842146 + 0.539249i \(0.181292\pi\)
\(648\) 0 0
\(649\) 9.67028 0.379592
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.4053i 0.876789i 0.898783 + 0.438395i \(0.144453\pi\)
−0.898783 + 0.438395i \(0.855547\pi\)
\(654\) 0 0
\(655\) 0.306422i 0.0119729i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.2469 0.554980 0.277490 0.960728i \(-0.410497\pi\)
0.277490 + 0.960728i \(0.410497\pi\)
\(660\) 0 0
\(661\) 3.69032 0.143537 0.0717684 0.997421i \(-0.477136\pi\)
0.0717684 + 0.997421i \(0.477136\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.23448i 0.125428i
\(666\) 0 0
\(667\) − 21.8950i − 0.847779i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.73772 0.182897
\(672\) 0 0
\(673\) 23.1734 0.893269 0.446635 0.894716i \(-0.352622\pi\)
0.446635 + 0.894716i \(0.352622\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.72382i 0.181551i 0.995871 + 0.0907755i \(0.0289346\pi\)
−0.995871 + 0.0907755i \(0.971065\pi\)
\(678\) 0 0
\(679\) − 20.7744i − 0.797248i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.2237 0.926894 0.463447 0.886125i \(-0.346612\pi\)
0.463447 + 0.886125i \(0.346612\pi\)
\(684\) 0 0
\(685\) 3.69359 0.141125
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.47647i 0.284831i
\(690\) 0 0
\(691\) 7.00816i 0.266603i 0.991076 + 0.133302i \(0.0425579\pi\)
−0.991076 + 0.133302i \(0.957442\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.23504 0.0847799
\(696\) 0 0
\(697\) 3.48428 0.131977
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 16.6100i 0.627350i 0.949530 + 0.313675i \(0.101560\pi\)
−0.949530 + 0.313675i \(0.898440\pi\)
\(702\) 0 0
\(703\) − 2.39074i − 0.0901684i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 39.0687 1.46933
\(708\) 0 0
\(709\) −28.9216 −1.08617 −0.543087 0.839676i \(-0.682745\pi\)
−0.543087 + 0.839676i \(0.682745\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 12.8415i − 0.480917i
\(714\) 0 0
\(715\) 0.545379i 0.0203960i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 34.5397 1.28811 0.644056 0.764978i \(-0.277250\pi\)
0.644056 + 0.764978i \(0.277250\pi\)
\(720\) 0 0
\(721\) −15.9930 −0.595611
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 19.5233i 0.725076i
\(726\) 0 0
\(727\) 0.281173i 0.0104281i 0.999986 + 0.00521407i \(0.00165970\pi\)
−0.999986 + 0.00521407i \(0.998340\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.44497 0.164403
\(732\) 0 0
\(733\) −11.5874 −0.427990 −0.213995 0.976835i \(-0.568648\pi\)
−0.213995 + 0.976835i \(0.568648\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.3604i 0.381630i
\(738\) 0 0
\(739\) 31.2107i 1.14811i 0.818818 + 0.574053i \(0.194630\pi\)
−0.818818 + 0.574053i \(0.805370\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −49.6171 −1.82027 −0.910137 0.414306i \(-0.864024\pi\)
−0.910137 + 0.414306i \(0.864024\pi\)
\(744\) 0 0
\(745\) −8.64682 −0.316795
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15.5418i 0.567884i
\(750\) 0 0
\(751\) − 2.40788i − 0.0878646i −0.999035 0.0439323i \(-0.986011\pi\)
0.999035 0.0439323i \(-0.0139886\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.7327 0.463391
\(756\) 0 0
\(757\) 10.0559 0.365489 0.182745 0.983160i \(-0.441502\pi\)
0.182745 + 0.983160i \(0.441502\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.69736i 0.170279i 0.996369 + 0.0851396i \(0.0271336\pi\)
−0.996369 + 0.0851396i \(0.972866\pi\)
\(762\) 0 0
\(763\) 26.9082i 0.974141i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.91169 0.357890
\(768\) 0 0
\(769\) −29.5175 −1.06443 −0.532215 0.846610i \(-0.678640\pi\)
−0.532215 + 0.846610i \(0.678640\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 35.0139i − 1.25936i −0.776853 0.629682i \(-0.783185\pi\)
0.776853 0.629682i \(-0.216815\pi\)
\(774\) 0 0
\(775\) 11.4504i 0.411311i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.8874 0.605054
\(780\) 0 0
\(781\) −0.128764 −0.00460753
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.59081i 0.163853i
\(786\) 0 0
\(787\) 30.2196i 1.07721i 0.842558 + 0.538605i \(0.181049\pi\)
−0.842558 + 0.538605i \(0.818951\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.89541 0.0673929
\(792\) 0 0
\(793\) 4.85599 0.172441
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.37048i 0.261076i 0.991443 + 0.130538i \(0.0416704\pi\)
−0.991443 + 0.130538i \(0.958330\pi\)
\(798\) 0 0
\(799\) 0.00666526i 0 0.000235800i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.23903 0.220171
\(804\) 0 0
\(805\) −7.00745 −0.246980
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 31.6065i − 1.11122i −0.831442 0.555612i \(-0.812484\pi\)
0.831442 0.555612i \(-0.187516\pi\)
\(810\) 0 0
\(811\) 6.97244i 0.244836i 0.992479 + 0.122418i \(0.0390648\pi\)
−0.992479 + 0.122418i \(0.960935\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.75671 −0.201649
\(816\) 0 0
\(817\) 21.5436 0.753715
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 11.3856i − 0.397360i −0.980064 0.198680i \(-0.936335\pi\)
0.980064 0.198680i \(-0.0636654\pi\)
\(822\) 0 0
\(823\) − 13.5638i − 0.472805i −0.971655 0.236402i \(-0.924032\pi\)
0.971655 0.236402i \(-0.0759684\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.2898 0.914187 0.457093 0.889419i \(-0.348890\pi\)
0.457093 + 0.889419i \(0.348890\pi\)
\(828\) 0 0
\(829\) 2.83065 0.0983125 0.0491562 0.998791i \(-0.484347\pi\)
0.0491562 + 0.998791i \(0.484347\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.08663i 0.0376496i
\(834\) 0 0
\(835\) − 3.13042i − 0.108333i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.47816 0.292699 0.146349 0.989233i \(-0.453248\pi\)
0.146349 + 0.989233i \(0.453248\pi\)
\(840\) 0 0
\(841\) 11.1304 0.383807
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 7.47122i − 0.257018i
\(846\) 0 0
\(847\) 22.2058i 0.763000i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.17950 0.177551
\(852\) 0 0
\(853\) −0.941831 −0.0322477 −0.0161238 0.999870i \(-0.505133\pi\)
−0.0161238 + 0.999870i \(0.505133\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 22.7274i − 0.776354i −0.921585 0.388177i \(-0.873105\pi\)
0.921585 0.388177i \(-0.126895\pi\)
\(858\) 0 0
\(859\) 44.8717i 1.53100i 0.643435 + 0.765501i \(0.277509\pi\)
−0.643435 + 0.765501i \(0.722491\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.4814 −1.07164 −0.535819 0.844333i \(-0.679997\pi\)
−0.535819 + 0.844333i \(0.679997\pi\)
\(864\) 0 0
\(865\) 0.945878 0.0321608
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 9.93219i − 0.336926i
\(870\) 0 0
\(871\) 10.6190i 0.359813i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 13.0130 0.439919
\(876\) 0 0
\(877\) 0.516099 0.0174274 0.00871370 0.999962i \(-0.497226\pi\)
0.00871370 + 0.999962i \(0.497226\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.8512i 1.30893i 0.756092 + 0.654465i \(0.227106\pi\)
−0.756092 + 0.654465i \(0.772894\pi\)
\(882\) 0 0
\(883\) − 27.0921i − 0.911722i −0.890051 0.455861i \(-0.849331\pi\)
0.890051 0.455861i \(-0.150669\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.0649 1.41240 0.706200 0.708012i \(-0.250408\pi\)
0.706200 + 0.708012i \(0.250408\pi\)
\(888\) 0 0
\(889\) −1.50091 −0.0503388
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.0323047i 0.00108104i
\(894\) 0 0
\(895\) − 12.9039i − 0.431330i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10.4805 −0.349546
\(900\) 0 0
\(901\) 3.87675 0.129153
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 12.5897i − 0.418495i
\(906\) 0 0
\(907\) 55.9874i 1.85903i 0.368783 + 0.929516i \(0.379775\pi\)
−0.368783 + 0.929516i \(0.620225\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 32.1509 1.06521 0.532604 0.846364i \(-0.321213\pi\)
0.532604 + 0.846364i \(0.321213\pi\)
\(912\) 0 0
\(913\) 13.5962 0.449969
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1.08649i − 0.0358789i
\(918\) 0 0
\(919\) − 42.9429i − 1.41656i −0.705933 0.708278i \(-0.749472\pi\)
0.705933 0.708278i \(-0.250528\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.131978 −0.00434412
\(924\) 0 0
\(925\) −4.61844 −0.151853
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.40658i 0.144575i 0.997384 + 0.0722876i \(0.0230299\pi\)
−0.997384 + 0.0722876i \(0.976970\pi\)
\(930\) 0 0
\(931\) 5.26662i 0.172607i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.282793 0.00924833
\(936\) 0 0
\(937\) 12.2331 0.399638 0.199819 0.979833i \(-0.435965\pi\)
0.199819 + 0.979833i \(0.435965\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.57422i 0.246913i 0.992350 + 0.123456i \(0.0393979\pi\)
−0.992350 + 0.123456i \(0.960602\pi\)
\(942\) 0 0
\(943\) 36.5863i 1.19142i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 37.4734 1.21772 0.608860 0.793278i \(-0.291627\pi\)
0.608860 + 0.793278i \(0.291627\pi\)
\(948\) 0 0
\(949\) 6.39478 0.207583
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 39.0563i − 1.26516i −0.774496 0.632579i \(-0.781996\pi\)
0.774496 0.632579i \(-0.218004\pi\)
\(954\) 0 0
\(955\) 2.72737i 0.0882556i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13.0964 −0.422905
\(960\) 0 0
\(961\) 24.8531 0.801714
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 5.92221i − 0.190643i
\(966\) 0 0
\(967\) 4.01357i 0.129068i 0.997916 + 0.0645339i \(0.0205561\pi\)
−0.997916 + 0.0645339i \(0.979444\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −42.9072 −1.37696 −0.688478 0.725257i \(-0.741721\pi\)
−0.688478 + 0.725257i \(0.741721\pi\)
\(972\) 0 0
\(973\) −7.92482 −0.254058
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 44.6971i − 1.42999i −0.699131 0.714994i \(-0.746430\pi\)
0.699131 0.714994i \(-0.253570\pi\)
\(978\) 0 0
\(979\) − 12.8458i − 0.410554i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.5277 −0.718521 −0.359261 0.933237i \(-0.616971\pi\)
−0.359261 + 0.933237i \(0.616971\pi\)
\(984\) 0 0
\(985\) 1.26829 0.0404112
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 46.6739i 1.48414i
\(990\) 0 0
\(991\) − 14.8043i − 0.470274i −0.971962 0.235137i \(-0.924446\pi\)
0.971962 0.235137i \(-0.0755539\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.67863 0.0532162
\(996\) 0 0
\(997\) −30.6958 −0.972145 −0.486072 0.873919i \(-0.661571\pi\)
−0.486072 + 0.873919i \(0.661571\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5328.2.e.f.2591.13 yes 24
3.2 odd 2 inner 5328.2.e.f.2591.11 24
4.3 odd 2 inner 5328.2.e.f.2591.14 yes 24
12.11 even 2 inner 5328.2.e.f.2591.12 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5328.2.e.f.2591.11 24 3.2 odd 2 inner
5328.2.e.f.2591.12 yes 24 12.11 even 2 inner
5328.2.e.f.2591.13 yes 24 1.1 even 1 trivial
5328.2.e.f.2591.14 yes 24 4.3 odd 2 inner