Properties

Label 531.2.i.b.64.5
Level $531$
Weight $2$
Character 531.64
Analytic conductor $4.240$
Analytic rank $0$
Dimension $140$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [531,2,Mod(19,531)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("531.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(531, base_ring=CyclotomicField(58)) chi = DirichletCharacter(H, H._module([0, 38])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 531 = 3^{2} \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 531.i (of order \(29\), degree \(28\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [140,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24005634733\)
Analytic rank: \(0\)
Dimension: \(140\)
Relative dimension: \(5\) over \(\Q(\zeta_{29})\)
Twist minimal: no (minimal twist has level 177)
Sato-Tate group: $\mathrm{SU}(2)[C_{29}]$

Embedding invariants

Embedding label 64.5
Character \(\chi\) \(=\) 531.64
Dual form 531.2.i.b.307.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.89244 + 0.637637i) q^{2} +(1.58256 + 1.20303i) q^{4} +(-1.39663 + 3.50528i) q^{5} +(-2.04500 + 0.946119i) q^{7} +(-0.0135559 - 0.0199934i) q^{8} +(-4.87813 + 5.74298i) q^{10} +(-1.04248 + 3.75469i) q^{11} +(0.590330 - 1.11348i) q^{13} +(-4.47332 + 0.486503i) q^{14} +(-1.07655 - 3.87737i) q^{16} +(2.37714 + 1.09978i) q^{17} +(3.41192 - 0.751019i) q^{19} +(-6.42719 + 3.86711i) q^{20} +(-4.36697 + 6.44080i) q^{22} +(-0.813834 + 4.96417i) q^{23} +(-6.70642 - 6.35266i) q^{25} +(1.82716 - 1.73078i) q^{26} +(-4.37454 - 0.962909i) q^{28} +(5.12456 - 1.72667i) q^{29} +(9.66316 + 2.12702i) q^{31} +(0.432440 - 7.97589i) q^{32} +(3.79734 + 3.59703i) q^{34} +(-0.460297 - 8.48968i) q^{35} +(-0.253768 + 0.374280i) q^{37} +(6.93572 + 0.754305i) q^{38} +(0.0890149 - 0.0195937i) q^{40} +(0.226879 + 1.38390i) q^{41} +(2.43261 + 8.76146i) q^{43} +(-6.16679 + 4.68787i) q^{44} +(-4.70547 + 8.87545i) q^{46} +(-4.79757 - 12.0410i) q^{47} +(-1.24481 + 1.46550i) q^{49} +(-8.64080 - 16.2983i) q^{50} +(2.27378 - 1.05196i) q^{52} +(-1.37012 - 1.61303i) q^{53} +(-11.7053 - 8.89812i) q^{55} +(0.0466379 + 0.0280611i) q^{56} +10.7989 q^{58} +(7.45440 + 1.85253i) q^{59} +(1.71930 + 0.579299i) q^{61} +(16.9307 + 10.1868i) q^{62} +(2.92518 - 7.34165i) q^{64} +(3.07859 + 3.62439i) q^{65} +(3.88818 + 5.73464i) q^{67} +(2.43889 + 4.60024i) q^{68} +(4.54225 - 16.3597i) q^{70} +(0.829739 + 2.08249i) q^{71} +(-14.2116 + 1.54561i) q^{73} +(-0.718896 + 0.546491i) q^{74} +(6.30305 + 2.91610i) q^{76} +(-1.42050 - 8.66467i) q^{77} +(11.3641 - 6.83755i) q^{79} +(15.0948 + 1.64166i) q^{80} +(-0.453072 + 2.76362i) q^{82} +(-0.668692 - 12.3333i) q^{83} +(-7.17504 + 6.79656i) q^{85} +(-0.983070 + 18.1317i) q^{86} +(0.0892008 - 0.0300553i) q^{88} +(-10.4224 + 3.51170i) q^{89} +(-0.153741 + 2.83559i) q^{91} +(-7.25997 + 6.87701i) q^{92} +(-1.40133 - 25.8459i) q^{94} +(-2.13265 + 13.0086i) q^{95} +(-4.46533 - 0.485634i) q^{97} +(-3.29018 + 1.97963i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 140 q - q^{2} - q^{4} - 2 q^{5} - 2 q^{7} + 3 q^{8} - 116 q^{10} - 2 q^{11} + 4 q^{13} + 43 q^{14} + 7 q^{16} - 2 q^{19} - 4 q^{20} + 6 q^{22} - 6 q^{23} - 57 q^{25} - 12 q^{26} - 10 q^{28} + 4 q^{29}+ \cdots + 143 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/531\mathbb{Z}\right)^\times\).

\(n\) \(119\) \(415\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{29}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89244 + 0.637637i 1.33816 + 0.450877i 0.895199 0.445666i \(-0.147033\pi\)
0.442957 + 0.896543i \(0.353930\pi\)
\(3\) 0 0
\(4\) 1.58256 + 1.20303i 0.791278 + 0.601514i
\(5\) −1.39663 + 3.50528i −0.624592 + 1.56761i 0.186351 + 0.982483i \(0.440334\pi\)
−0.810943 + 0.585125i \(0.801046\pi\)
\(6\) 0 0
\(7\) −2.04500 + 0.946119i −0.772939 + 0.357599i −0.766387 0.642379i \(-0.777948\pi\)
−0.00655155 + 0.999979i \(0.502085\pi\)
\(8\) −0.0135559 0.0199934i −0.00479272 0.00706873i
\(9\) 0 0
\(10\) −4.87813 + 5.74298i −1.54260 + 1.81609i
\(11\) −1.04248 + 3.75469i −0.314321 + 1.13208i 0.622600 + 0.782540i \(0.286076\pi\)
−0.936921 + 0.349542i \(0.886337\pi\)
\(12\) 0 0
\(13\) 0.590330 1.11348i 0.163728 0.308824i −0.788050 0.615611i \(-0.788909\pi\)
0.951778 + 0.306787i \(0.0992540\pi\)
\(14\) −4.47332 + 0.486503i −1.19555 + 0.130023i
\(15\) 0 0
\(16\) −1.07655 3.87737i −0.269137 0.969342i
\(17\) 2.37714 + 1.09978i 0.576542 + 0.266737i 0.686416 0.727209i \(-0.259183\pi\)
−0.109874 + 0.993946i \(0.535045\pi\)
\(18\) 0 0
\(19\) 3.41192 0.751019i 0.782747 0.172296i 0.194420 0.980918i \(-0.437718\pi\)
0.588328 + 0.808623i \(0.299787\pi\)
\(20\) −6.42719 + 3.86711i −1.43716 + 0.864713i
\(21\) 0 0
\(22\) −4.36697 + 6.44080i −0.931041 + 1.37318i
\(23\) −0.813834 + 4.96417i −0.169696 + 1.03510i 0.755371 + 0.655297i \(0.227457\pi\)
−0.925067 + 0.379803i \(0.875992\pi\)
\(24\) 0 0
\(25\) −6.70642 6.35266i −1.34128 1.27053i
\(26\) 1.82716 1.73078i 0.358335 0.339433i
\(27\) 0 0
\(28\) −4.37454 0.962909i −0.826711 0.181973i
\(29\) 5.12456 1.72667i 0.951607 0.320634i 0.199666 0.979864i \(-0.436014\pi\)
0.751941 + 0.659230i \(0.229118\pi\)
\(30\) 0 0
\(31\) 9.66316 + 2.12702i 1.73556 + 0.382025i 0.966401 0.257038i \(-0.0827467\pi\)
0.769154 + 0.639063i \(0.220678\pi\)
\(32\) 0.432440 7.97589i 0.0764453 1.40995i
\(33\) 0 0
\(34\) 3.79734 + 3.59703i 0.651238 + 0.616885i
\(35\) −0.460297 8.48968i −0.0778044 1.43502i
\(36\) 0 0
\(37\) −0.253768 + 0.374280i −0.0417193 + 0.0615313i −0.847977 0.530034i \(-0.822179\pi\)
0.806257 + 0.591565i \(0.201490\pi\)
\(38\) 6.93572 + 0.754305i 1.12512 + 0.122364i
\(39\) 0 0
\(40\) 0.0890149 0.0195937i 0.0140745 0.00309803i
\(41\) 0.226879 + 1.38390i 0.0354326 + 0.216129i 0.998608 0.0527443i \(-0.0167968\pi\)
−0.963175 + 0.268874i \(0.913349\pi\)
\(42\) 0 0
\(43\) 2.43261 + 8.76146i 0.370969 + 1.33611i 0.879841 + 0.475268i \(0.157649\pi\)
−0.508872 + 0.860842i \(0.669937\pi\)
\(44\) −6.16679 + 4.68787i −0.929679 + 0.706723i
\(45\) 0 0
\(46\) −4.70547 + 8.87545i −0.693783 + 1.30861i
\(47\) −4.79757 12.0410i −0.699797 1.75636i −0.652881 0.757460i \(-0.726440\pi\)
−0.0469161 0.998899i \(-0.514939\pi\)
\(48\) 0 0
\(49\) −1.24481 + 1.46550i −0.177830 + 0.209357i
\(50\) −8.64080 16.2983i −1.22199 2.30492i
\(51\) 0 0
\(52\) 2.27378 1.05196i 0.315316 0.145881i
\(53\) −1.37012 1.61303i −0.188201 0.221567i 0.659967 0.751294i \(-0.270570\pi\)
−0.848168 + 0.529727i \(0.822294\pi\)
\(54\) 0 0
\(55\) −11.7053 8.89812i −1.57834 1.19982i
\(56\) 0.0466379 + 0.0280611i 0.00623225 + 0.00374982i
\(57\) 0 0
\(58\) 10.7989 1.41797
\(59\) 7.45440 + 1.85253i 0.970481 + 0.241179i
\(60\) 0 0
\(61\) 1.71930 + 0.579299i 0.220134 + 0.0741717i 0.427207 0.904154i \(-0.359497\pi\)
−0.207074 + 0.978325i \(0.566394\pi\)
\(62\) 16.9307 + 10.1868i 2.15020 + 1.29373i
\(63\) 0 0
\(64\) 2.92518 7.34165i 0.365647 0.917706i
\(65\) 3.07859 + 3.62439i 0.381852 + 0.449550i
\(66\) 0 0
\(67\) 3.88818 + 5.73464i 0.475017 + 0.700598i 0.987415 0.158150i \(-0.0505530\pi\)
−0.512398 + 0.858748i \(0.671243\pi\)
\(68\) 2.43889 + 4.60024i 0.295759 + 0.557861i
\(69\) 0 0
\(70\) 4.54225 16.3597i 0.542903 1.95536i
\(71\) 0.829739 + 2.08249i 0.0984719 + 0.247146i 0.969957 0.243276i \(-0.0782221\pi\)
−0.871485 + 0.490422i \(0.836843\pi\)
\(72\) 0 0
\(73\) −14.2116 + 1.54561i −1.66334 + 0.180899i −0.890905 0.454190i \(-0.849929\pi\)
−0.772438 + 0.635090i \(0.780963\pi\)
\(74\) −0.718896 + 0.546491i −0.0835700 + 0.0635283i
\(75\) 0 0
\(76\) 6.30305 + 2.91610i 0.723009 + 0.334500i
\(77\) −1.42050 8.66467i −0.161881 0.987431i
\(78\) 0 0
\(79\) 11.3641 6.83755i 1.27856 0.769284i 0.295993 0.955190i \(-0.404350\pi\)
0.982568 + 0.185906i \(0.0595221\pi\)
\(80\) 15.0948 + 1.64166i 1.68765 + 0.183543i
\(81\) 0 0
\(82\) −0.453072 + 2.76362i −0.0500335 + 0.305191i
\(83\) −0.668692 12.3333i −0.0733985 1.35376i −0.770801 0.637076i \(-0.780144\pi\)
0.697402 0.716680i \(-0.254339\pi\)
\(84\) 0 0
\(85\) −7.17504 + 6.79656i −0.778243 + 0.737191i
\(86\) −0.983070 + 18.1317i −0.106007 + 1.95519i
\(87\) 0 0
\(88\) 0.0892008 0.0300553i 0.00950884 0.00320390i
\(89\) −10.4224 + 3.51170i −1.10477 + 0.372240i −0.811831 0.583892i \(-0.801529\pi\)
−0.292937 + 0.956132i \(0.594632\pi\)
\(90\) 0 0
\(91\) −0.153741 + 2.83559i −0.0161165 + 0.297251i
\(92\) −7.25997 + 6.87701i −0.756904 + 0.716978i
\(93\) 0 0
\(94\) −1.40133 25.8459i −0.144536 2.66581i
\(95\) −2.13265 + 13.0086i −0.218806 + 1.33466i
\(96\) 0 0
\(97\) −4.46533 0.485634i −0.453385 0.0493086i −0.121422 0.992601i \(-0.538745\pi\)
−0.331963 + 0.943292i \(0.607711\pi\)
\(98\) −3.29018 + 1.97963i −0.332358 + 0.199973i
\(99\) 0 0
\(100\) −2.97086 18.1215i −0.297086 1.81215i
\(101\) −12.7655 5.90594i −1.27021 0.587663i −0.335157 0.942162i \(-0.608789\pi\)
−0.935056 + 0.354499i \(0.884651\pi\)
\(102\) 0 0
\(103\) 10.6838 8.12161i 1.05271 0.800246i 0.0723292 0.997381i \(-0.476957\pi\)
0.980376 + 0.197135i \(0.0631637\pi\)
\(104\) −0.0302647 + 0.00329148i −0.00296770 + 0.000322756i
\(105\) 0 0
\(106\) −1.56434 3.92621i −0.151943 0.381347i
\(107\) 3.73112 13.4383i 0.360701 1.29913i −0.531333 0.847163i \(-0.678309\pi\)
0.892035 0.451966i \(-0.149277\pi\)
\(108\) 0 0
\(109\) −0.499968 0.943040i −0.0478883 0.0903269i 0.858413 0.512959i \(-0.171451\pi\)
−0.906301 + 0.422633i \(0.861106\pi\)
\(110\) −16.4777 24.3028i −1.57109 2.31719i
\(111\) 0 0
\(112\) 5.87000 + 6.91069i 0.554662 + 0.652999i
\(113\) −7.15200 + 17.9502i −0.672804 + 1.68861i 0.0510850 + 0.998694i \(0.483732\pi\)
−0.723889 + 0.689916i \(0.757647\pi\)
\(114\) 0 0
\(115\) −16.2642 9.78582i −1.51664 0.912533i
\(116\) 10.1871 + 3.43244i 0.945852 + 0.318695i
\(117\) 0 0
\(118\) 12.9258 + 8.25901i 1.18991 + 0.760303i
\(119\) −5.90180 −0.541017
\(120\) 0 0
\(121\) −3.58550 2.15733i −0.325955 0.196121i
\(122\) 2.88429 + 2.19258i 0.261131 + 0.198507i
\(123\) 0 0
\(124\) 12.7336 + 14.9912i 1.14351 + 1.34625i
\(125\) 14.5116 6.71378i 1.29796 0.600499i
\(126\) 0 0
\(127\) −1.29228 2.43750i −0.114671 0.216293i 0.819533 0.573033i \(-0.194233\pi\)
−0.934204 + 0.356740i \(0.883888\pi\)
\(128\) −0.125102 + 0.147282i −0.0110576 + 0.0130180i
\(129\) 0 0
\(130\) 3.51499 + 8.82196i 0.308285 + 0.773737i
\(131\) 3.25437 6.13840i 0.284336 0.536315i −0.699666 0.714470i \(-0.746668\pi\)
0.984002 + 0.178155i \(0.0570129\pi\)
\(132\) 0 0
\(133\) −6.26683 + 4.76392i −0.543403 + 0.413084i
\(134\) 3.70153 + 13.3317i 0.319763 + 1.15168i
\(135\) 0 0
\(136\) −0.0102358 0.0624357i −0.000877714 0.00535382i
\(137\) 21.9646 4.83477i 1.87656 0.413063i 0.878639 0.477486i \(-0.158452\pi\)
0.997923 + 0.0644236i \(0.0205209\pi\)
\(138\) 0 0
\(139\) −9.25621 1.00667i −0.785101 0.0853849i −0.293218 0.956046i \(-0.594726\pi\)
−0.491884 + 0.870661i \(0.663692\pi\)
\(140\) 9.48488 13.9892i 0.801619 1.18230i
\(141\) 0 0
\(142\) 0.242359 + 4.47005i 0.0203383 + 0.375118i
\(143\) 3.56537 + 3.37729i 0.298151 + 0.282423i
\(144\) 0 0
\(145\) −1.10467 + 20.3745i −0.0917382 + 1.69201i
\(146\) −27.8801 6.13688i −2.30738 0.507892i
\(147\) 0 0
\(148\) −0.851873 + 0.287029i −0.0700235 + 0.0235937i
\(149\) 3.05154 + 0.671694i 0.249992 + 0.0550273i 0.338198 0.941075i \(-0.390183\pi\)
−0.0882067 + 0.996102i \(0.528114\pi\)
\(150\) 0 0
\(151\) −0.301845 + 0.285923i −0.0245638 + 0.0232681i −0.699883 0.714258i \(-0.746765\pi\)
0.675319 + 0.737526i \(0.264006\pi\)
\(152\) −0.0612669 0.0580351i −0.00496940 0.00470727i
\(153\) 0 0
\(154\) 2.83670 17.3031i 0.228588 1.39433i
\(155\) −20.9517 + 30.9014i −1.68288 + 2.48206i
\(156\) 0 0
\(157\) 9.26144 5.57243i 0.739144 0.444728i −0.0955626 0.995423i \(-0.530465\pi\)
0.834706 + 0.550695i \(0.185637\pi\)
\(158\) 25.8657 5.69347i 2.05777 0.452948i
\(159\) 0 0
\(160\) 27.3537 + 12.6552i 2.16250 + 1.00048i
\(161\) −3.03240 10.9217i −0.238987 0.860752i
\(162\) 0 0
\(163\) −1.06904 + 0.116266i −0.0837341 + 0.00910663i −0.149890 0.988703i \(-0.547892\pi\)
0.0661561 + 0.997809i \(0.478926\pi\)
\(164\) −1.30583 + 2.46305i −0.101968 + 0.192332i
\(165\) 0 0
\(166\) 6.59871 23.7664i 0.512159 1.84463i
\(167\) 1.80147 2.12086i 0.139402 0.164117i −0.688031 0.725682i \(-0.741525\pi\)
0.827433 + 0.561565i \(0.189800\pi\)
\(168\) 0 0
\(169\) 6.40408 + 9.44532i 0.492622 + 0.726563i
\(170\) −17.9121 + 8.28700i −1.37379 + 0.635584i
\(171\) 0 0
\(172\) −6.69055 + 16.7920i −0.510149 + 1.28038i
\(173\) 5.51537 + 4.19268i 0.419326 + 0.318763i 0.793472 0.608606i \(-0.208271\pi\)
−0.374146 + 0.927370i \(0.622064\pi\)
\(174\) 0 0
\(175\) 19.7250 + 6.64614i 1.49107 + 0.502401i
\(176\) 15.6806 1.18197
\(177\) 0 0
\(178\) −21.9629 −1.64619
\(179\) 12.7811 + 4.30645i 0.955303 + 0.321879i 0.753427 0.657532i \(-0.228400\pi\)
0.201876 + 0.979411i \(0.435296\pi\)
\(180\) 0 0
\(181\) −11.4991 8.74140i −0.854722 0.649743i 0.0832211 0.996531i \(-0.473479\pi\)
−0.937944 + 0.346788i \(0.887272\pi\)
\(182\) −2.09903 + 5.26816i −0.155590 + 0.390502i
\(183\) 0 0
\(184\) 0.110283 0.0510223i 0.00813016 0.00376141i
\(185\) −0.957536 1.41226i −0.0703995 0.103831i
\(186\) 0 0
\(187\) −6.60749 + 7.77894i −0.483187 + 0.568852i
\(188\) 6.89323 24.8272i 0.502740 1.81071i
\(189\) 0 0
\(190\) −12.3307 + 23.2581i −0.894562 + 1.68732i
\(191\) 2.26749 0.246605i 0.164070 0.0178437i −0.0257152 0.999669i \(-0.508186\pi\)
0.189785 + 0.981826i \(0.439221\pi\)
\(192\) 0 0
\(193\) 1.40196 + 5.04942i 0.100916 + 0.363465i 0.996715 0.0809943i \(-0.0258096\pi\)
−0.895799 + 0.444460i \(0.853396\pi\)
\(194\) −8.14070 3.76629i −0.584468 0.270404i
\(195\) 0 0
\(196\) −3.73301 + 0.821699i −0.266644 + 0.0586928i
\(197\) −16.8541 + 10.1408i −1.20081 + 0.722502i −0.968226 0.250075i \(-0.919545\pi\)
−0.232581 + 0.972577i \(0.574717\pi\)
\(198\) 0 0
\(199\) 8.30546 12.2496i 0.588758 0.868353i −0.410291 0.911955i \(-0.634573\pi\)
0.999049 + 0.0436015i \(0.0138832\pi\)
\(200\) −0.0360999 + 0.220200i −0.00255265 + 0.0155705i
\(201\) 0 0
\(202\) −20.3921 19.3164i −1.43478 1.35910i
\(203\) −8.84611 + 8.37948i −0.620875 + 0.588124i
\(204\) 0 0
\(205\) −5.16783 1.13753i −0.360937 0.0794483i
\(206\) 25.3971 8.55727i 1.76950 0.596213i
\(207\) 0 0
\(208\) −4.95289 1.09021i −0.343421 0.0755928i
\(209\) −0.737025 + 13.5936i −0.0509811 + 0.940290i
\(210\) 0 0
\(211\) 8.58272 + 8.12998i 0.590859 + 0.559691i 0.923615 0.383322i \(-0.125220\pi\)
−0.332756 + 0.943013i \(0.607979\pi\)
\(212\) −0.227772 4.20101i −0.0156435 0.288527i
\(213\) 0 0
\(214\) 15.6297 23.0520i 1.06842 1.57581i
\(215\) −34.1088 3.70956i −2.32620 0.252990i
\(216\) 0 0
\(217\) −21.7736 + 4.79274i −1.47809 + 0.325352i
\(218\) −0.344842 2.10344i −0.0233557 0.142463i
\(219\) 0 0
\(220\) −7.81957 28.1635i −0.527195 1.89879i
\(221\) 2.62789 1.99767i 0.176771 0.134378i
\(222\) 0 0
\(223\) −12.5687 + 23.7072i −0.841665 + 1.58755i −0.0328691 + 0.999460i \(0.510464\pi\)
−0.808796 + 0.588089i \(0.799880\pi\)
\(224\) 6.66180 + 16.7199i 0.445110 + 1.11714i
\(225\) 0 0
\(226\) −24.9804 + 29.4092i −1.66167 + 1.95627i
\(227\) 4.45936 + 8.41124i 0.295978 + 0.558274i 0.986247 0.165279i \(-0.0528525\pi\)
−0.690269 + 0.723553i \(0.742508\pi\)
\(228\) 0 0
\(229\) 5.20272 2.40704i 0.343806 0.159061i −0.240386 0.970677i \(-0.577274\pi\)
0.584191 + 0.811616i \(0.301412\pi\)
\(230\) −24.5391 28.8897i −1.61806 1.90493i
\(231\) 0 0
\(232\) −0.103990 0.0790509i −0.00682726 0.00518995i
\(233\) 2.49256 + 1.49972i 0.163293 + 0.0982501i 0.594855 0.803833i \(-0.297210\pi\)
−0.431562 + 0.902083i \(0.642037\pi\)
\(234\) 0 0
\(235\) 48.9075 3.19037
\(236\) 9.56836 + 11.8996i 0.622847 + 0.774598i
\(237\) 0 0
\(238\) −11.1688 3.76320i −0.723965 0.243932i
\(239\) −5.93983 3.57388i −0.384216 0.231175i 0.310322 0.950632i \(-0.399563\pi\)
−0.694537 + 0.719457i \(0.744391\pi\)
\(240\) 0 0
\(241\) −2.84994 + 7.15282i −0.183581 + 0.460754i −0.991748 0.128199i \(-0.959080\pi\)
0.808167 + 0.588953i \(0.200460\pi\)
\(242\) −5.40976 6.36886i −0.347752 0.409406i
\(243\) 0 0
\(244\) 2.02397 + 2.98514i 0.129572 + 0.191104i
\(245\) −3.39845 6.41016i −0.217119 0.409530i
\(246\) 0 0
\(247\) 1.17791 4.24245i 0.0749487 0.269941i
\(248\) −0.0884661 0.222033i −0.00561760 0.0140991i
\(249\) 0 0
\(250\) 31.7433 3.45229i 2.00762 0.218342i
\(251\) 5.16866 3.92911i 0.326243 0.248003i −0.429213 0.903204i \(-0.641209\pi\)
0.755455 + 0.655200i \(0.227416\pi\)
\(252\) 0 0
\(253\) −17.7905 8.23077i −1.11848 0.517464i
\(254\) −0.891322 5.43682i −0.0559265 0.341137i
\(255\) 0 0
\(256\) −13.8740 + 8.34773i −0.867128 + 0.521733i
\(257\) 16.4415 + 1.78812i 1.02559 + 0.111540i 0.605422 0.795904i \(-0.293004\pi\)
0.420172 + 0.907444i \(0.361970\pi\)
\(258\) 0 0
\(259\) 0.164843 1.00550i 0.0102429 0.0624787i
\(260\) 0.511791 + 9.43943i 0.0317399 + 0.585409i
\(261\) 0 0
\(262\) 10.0728 9.54144i 0.622298 0.589472i
\(263\) 0.196976 3.63302i 0.0121461 0.224021i −0.986158 0.165808i \(-0.946977\pi\)
0.998304 0.0582135i \(-0.0185404\pi\)
\(264\) 0 0
\(265\) 7.56769 2.54985i 0.464879 0.156636i
\(266\) −14.8972 + 5.01946i −0.913408 + 0.307763i
\(267\) 0 0
\(268\) −0.745665 + 13.7530i −0.0455488 + 0.840097i
\(269\) 22.3727 21.1926i 1.36409 1.29213i 0.446401 0.894833i \(-0.352705\pi\)
0.917688 0.397302i \(-0.130053\pi\)
\(270\) 0 0
\(271\) −0.453772 8.36933i −0.0275647 0.508401i −0.979417 0.201845i \(-0.935306\pi\)
0.951853 0.306556i \(-0.0991765\pi\)
\(272\) 1.70516 10.4010i 0.103391 0.630656i
\(273\) 0 0
\(274\) 44.6495 + 4.85592i 2.69737 + 0.293357i
\(275\) 30.8436 18.5580i 1.85994 1.11909i
\(276\) 0 0
\(277\) −3.13922 19.1484i −0.188617 1.15052i −0.896122 0.443807i \(-0.853627\pi\)
0.707505 0.706709i \(-0.249821\pi\)
\(278\) −16.8749 7.80717i −1.01209 0.468243i
\(279\) 0 0
\(280\) −0.163498 + 0.124288i −0.00977087 + 0.00742762i
\(281\) −26.6284 + 2.89601i −1.58852 + 0.172761i −0.859282 0.511503i \(-0.829089\pi\)
−0.729234 + 0.684264i \(0.760123\pi\)
\(282\) 0 0
\(283\) −3.55017 8.91026i −0.211036 0.529660i 0.784911 0.619609i \(-0.212709\pi\)
−0.995946 + 0.0899493i \(0.971330\pi\)
\(284\) −1.19218 + 4.29385i −0.0707430 + 0.254793i
\(285\) 0 0
\(286\) 4.59375 + 8.66473i 0.271634 + 0.512356i
\(287\) −1.77331 2.61543i −0.104675 0.154384i
\(288\) 0 0
\(289\) −6.56428 7.72806i −0.386134 0.454592i
\(290\) −15.0821 + 37.8532i −0.885650 + 2.22281i
\(291\) 0 0
\(292\) −24.3501 14.6510i −1.42498 0.857382i
\(293\) −15.0095 5.05730i −0.876865 0.295450i −0.155359 0.987858i \(-0.549653\pi\)
−0.721506 + 0.692408i \(0.756550\pi\)
\(294\) 0 0
\(295\) −16.9047 + 23.5424i −0.984229 + 1.37069i
\(296\) 0.0109232 0.000634897
\(297\) 0 0
\(298\) 5.34655 + 3.21691i 0.309717 + 0.186351i
\(299\) 5.04707 + 3.83669i 0.291880 + 0.221881i
\(300\) 0 0
\(301\) −13.2641 15.6157i −0.764529 0.900073i
\(302\) −0.753538 + 0.348624i −0.0433612 + 0.0200610i
\(303\) 0 0
\(304\) −6.58507 12.4208i −0.377679 0.712379i
\(305\) −4.43183 + 5.21756i −0.253766 + 0.298756i
\(306\) 0 0
\(307\) −1.20686 3.02898i −0.0688789 0.172873i 0.890507 0.454969i \(-0.150350\pi\)
−0.959386 + 0.282096i \(0.908970\pi\)
\(308\) 8.17582 15.4212i 0.465861 0.878706i
\(309\) 0 0
\(310\) −59.3536 + 45.1195i −3.37106 + 2.56261i
\(311\) 3.06115 + 11.0253i 0.173582 + 0.625186i 0.998226 + 0.0595342i \(0.0189615\pi\)
−0.824644 + 0.565652i \(0.808625\pi\)
\(312\) 0 0
\(313\) 1.32351 + 8.07303i 0.0748090 + 0.456315i 0.997493 + 0.0707587i \(0.0225420\pi\)
−0.922684 + 0.385556i \(0.874010\pi\)
\(314\) 21.0799 4.64004i 1.18961 0.261852i
\(315\) 0 0
\(316\) 26.2101 + 2.85052i 1.47443 + 0.160354i
\(317\) −3.09509 + 4.56491i −0.173837 + 0.256391i −0.904620 0.426220i \(-0.859845\pi\)
0.730782 + 0.682611i \(0.239155\pi\)
\(318\) 0 0
\(319\) 1.14082 + 21.0412i 0.0638736 + 1.17808i
\(320\) 21.6491 + 20.5071i 1.21022 + 1.14638i
\(321\) 0 0
\(322\) 1.22546 22.6023i 0.0682922 1.25957i
\(323\) 8.93658 + 1.96709i 0.497244 + 0.109452i
\(324\) 0 0
\(325\) −11.0326 + 3.71730i −0.611977 + 0.206199i
\(326\) −2.09724 0.461637i −0.116155 0.0255677i
\(327\) 0 0
\(328\) 0.0245934 0.0232961i 0.00135794 0.00128631i
\(329\) 21.2033 + 20.0848i 1.16897 + 1.10731i
\(330\) 0 0
\(331\) 0.535117 3.26407i 0.0294127 0.179410i −0.968035 0.250817i \(-0.919301\pi\)
0.997447 + 0.0714074i \(0.0227490\pi\)
\(332\) 13.7791 20.3226i 0.756225 1.11535i
\(333\) 0 0
\(334\) 4.76151 2.86491i 0.260538 0.156761i
\(335\) −25.5319 + 5.61999i −1.39495 + 0.307053i
\(336\) 0 0
\(337\) −11.3663 5.25860i −0.619161 0.286454i 0.0851255 0.996370i \(-0.472871\pi\)
−0.704287 + 0.709916i \(0.748733\pi\)
\(338\) 6.09665 + 21.9582i 0.331614 + 1.19437i
\(339\) 0 0
\(340\) −19.5314 + 2.12416i −1.05924 + 0.115199i
\(341\) −18.0600 + 34.0648i −0.978005 + 1.84471i
\(342\) 0 0
\(343\) 5.37877 19.3726i 0.290426 1.04602i
\(344\) 0.142195 0.167405i 0.00766666 0.00902589i
\(345\) 0 0
\(346\) 7.76410 + 11.4512i 0.417400 + 0.615620i
\(347\) 0.765300 0.354065i 0.0410834 0.0190072i −0.399240 0.916847i \(-0.630726\pi\)
0.440323 + 0.897839i \(0.354864\pi\)
\(348\) 0 0
\(349\) 4.35996 10.9427i 0.233383 0.585748i −0.764911 0.644136i \(-0.777217\pi\)
0.998294 + 0.0583884i \(0.0185962\pi\)
\(350\) 33.0906 + 25.1548i 1.76877 + 1.34458i
\(351\) 0 0
\(352\) 29.4962 + 9.93842i 1.57215 + 0.529720i
\(353\) −30.1631 −1.60542 −0.802709 0.596370i \(-0.796609\pi\)
−0.802709 + 0.596370i \(0.796609\pi\)
\(354\) 0 0
\(355\) −8.45854 −0.448933
\(356\) −20.7186 6.98092i −1.09809 0.369988i
\(357\) 0 0
\(358\) 21.4415 + 16.2994i 1.13322 + 0.861449i
\(359\) −2.98682 + 7.49636i −0.157638 + 0.395643i −0.986489 0.163827i \(-0.947616\pi\)
0.828851 + 0.559470i \(0.188995\pi\)
\(360\) 0 0
\(361\) −6.16679 + 2.85306i −0.324568 + 0.150161i
\(362\) −16.1875 23.8748i −0.850798 1.25483i
\(363\) 0 0
\(364\) −3.65460 + 4.30253i −0.191553 + 0.225514i
\(365\) 14.4306 51.9743i 0.755332 2.72046i
\(366\) 0 0
\(367\) 3.18754 6.01235i 0.166388 0.313842i −0.786271 0.617882i \(-0.787991\pi\)
0.952659 + 0.304040i \(0.0983357\pi\)
\(368\) 20.1240 2.18862i 1.04904 0.114090i
\(369\) 0 0
\(370\) −0.911569 3.28318i −0.0473902 0.170684i
\(371\) 4.32803 + 2.00236i 0.224700 + 0.103957i
\(372\) 0 0
\(373\) 14.8644 3.27190i 0.769650 0.169413i 0.187247 0.982313i \(-0.440044\pi\)
0.582403 + 0.812900i \(0.302113\pi\)
\(374\) −17.4644 + 10.5080i −0.903063 + 0.543355i
\(375\) 0 0
\(376\) −0.175705 + 0.259146i −0.00906130 + 0.0133644i
\(377\) 1.10257 6.72540i 0.0567854 0.346376i
\(378\) 0 0
\(379\) 21.5063 + 20.3718i 1.10470 + 1.04643i 0.998643 + 0.0520694i \(0.0165817\pi\)
0.106059 + 0.994360i \(0.466177\pi\)
\(380\) −19.0248 + 18.0212i −0.975950 + 0.924469i
\(381\) 0 0
\(382\) 4.44834 + 0.979153i 0.227597 + 0.0500978i
\(383\) 5.77316 1.94521i 0.294995 0.0993953i −0.167913 0.985802i \(-0.553703\pi\)
0.462908 + 0.886407i \(0.346806\pi\)
\(384\) 0 0
\(385\) 32.3560 + 7.12209i 1.64901 + 0.362976i
\(386\) −0.566564 + 10.4497i −0.0288374 + 0.531874i
\(387\) 0 0
\(388\) −6.48240 6.14046i −0.329094 0.311735i
\(389\) −1.43779 26.5186i −0.0728991 1.34454i −0.774771 0.632242i \(-0.782135\pi\)
0.701872 0.712303i \(-0.252348\pi\)
\(390\) 0 0
\(391\) −7.39411 + 10.9055i −0.373936 + 0.551515i
\(392\) 0.0461748 + 0.00502181i 0.00233218 + 0.000253640i
\(393\) 0 0
\(394\) −38.3615 + 8.44401i −1.93263 + 0.425403i
\(395\) 8.09607 + 49.3838i 0.407357 + 2.48477i
\(396\) 0 0
\(397\) 1.76146 + 6.34420i 0.0884050 + 0.318406i 0.994509 0.104648i \(-0.0333717\pi\)
−0.906104 + 0.423054i \(0.860958\pi\)
\(398\) 23.5284 17.8858i 1.17937 0.896535i
\(399\) 0 0
\(400\) −17.4118 + 32.8422i −0.870592 + 1.64211i
\(401\) −1.93786 4.86365i −0.0967719 0.242879i 0.872619 0.488402i \(-0.162420\pi\)
−0.969391 + 0.245522i \(0.921041\pi\)
\(402\) 0 0
\(403\) 8.07285 9.50410i 0.402138 0.473433i
\(404\) −13.0971 24.7037i −0.651605 1.22906i
\(405\) 0 0
\(406\) −22.0838 + 10.2170i −1.09600 + 0.507064i
\(407\) −1.14076 1.34300i −0.0565453 0.0665702i
\(408\) 0 0
\(409\) 15.3235 + 11.6487i 0.757701 + 0.575989i 0.911105 0.412174i \(-0.135231\pi\)
−0.153404 + 0.988164i \(0.549024\pi\)
\(410\) −9.05448 5.44790i −0.447169 0.269053i
\(411\) 0 0
\(412\) 26.6782 1.31434
\(413\) −16.9970 + 3.26432i −0.836368 + 0.160626i
\(414\) 0 0
\(415\) 44.1656 + 14.8811i 2.16800 + 0.730485i
\(416\) −8.62571 5.18992i −0.422910 0.254457i
\(417\) 0 0
\(418\) −10.0626 + 25.2551i −0.492176 + 1.23527i
\(419\) 6.98672 + 8.22541i 0.341324 + 0.401837i 0.905864 0.423568i \(-0.139223\pi\)
−0.564541 + 0.825405i \(0.690947\pi\)
\(420\) 0 0
\(421\) −3.92220 5.78481i −0.191156 0.281934i 0.720018 0.693955i \(-0.244133\pi\)
−0.911174 + 0.412021i \(0.864823\pi\)
\(422\) 11.0583 + 20.8582i 0.538309 + 1.01536i
\(423\) 0 0
\(424\) −0.0136768 + 0.0492595i −0.000664206 + 0.00239225i
\(425\) −8.95558 22.4768i −0.434409 1.09029i
\(426\) 0 0
\(427\) −4.06406 + 0.441993i −0.196674 + 0.0213895i
\(428\) 22.0714 16.7782i 1.06686 0.811006i
\(429\) 0 0
\(430\) −62.1835 28.7692i −2.99875 1.38737i
\(431\) −2.22019 13.5426i −0.106943 0.652323i −0.984839 0.173472i \(-0.944502\pi\)
0.877896 0.478851i \(-0.158947\pi\)
\(432\) 0 0
\(433\) 27.7657 16.7061i 1.33433 0.802843i 0.343661 0.939094i \(-0.388333\pi\)
0.990674 + 0.136251i \(0.0435054\pi\)
\(434\) −44.2613 4.81370i −2.12461 0.231065i
\(435\) 0 0
\(436\) 0.343276 2.09389i 0.0164399 0.100279i
\(437\) 0.951454 + 17.5485i 0.0455142 + 0.839460i
\(438\) 0 0
\(439\) −7.98199 + 7.56095i −0.380960 + 0.360864i −0.854087 0.520130i \(-0.825884\pi\)
0.473128 + 0.880994i \(0.343125\pi\)
\(440\) −0.0192286 + 0.354650i −0.000916685 + 0.0169073i
\(441\) 0 0
\(442\) 6.24690 2.10483i 0.297135 0.100116i
\(443\) 25.4524 8.57592i 1.20928 0.407454i 0.358777 0.933423i \(-0.383194\pi\)
0.850504 + 0.525969i \(0.176297\pi\)
\(444\) 0 0
\(445\) 2.24669 41.4378i 0.106503 1.96434i
\(446\) −38.9021 + 36.8501i −1.84207 + 1.74490i
\(447\) 0 0
\(448\) 0.964072 + 17.7813i 0.0455481 + 0.840086i
\(449\) 1.12554 6.86546i 0.0531173 0.324001i −0.946880 0.321588i \(-0.895783\pi\)
0.999997 0.00241348i \(-0.000768235\pi\)
\(450\) 0 0
\(451\) −5.43265 0.590836i −0.255813 0.0278214i
\(452\) −32.9130 + 19.8031i −1.54810 + 0.931460i
\(453\) 0 0
\(454\) 3.07574 + 18.7612i 0.144352 + 0.880507i
\(455\) −9.72483 4.49918i −0.455907 0.210925i
\(456\) 0 0
\(457\) −20.0120 + 15.2127i −0.936123 + 0.711622i −0.957586 0.288147i \(-0.906961\pi\)
0.0214630 + 0.999770i \(0.493168\pi\)
\(458\) 11.3806 1.23772i 0.531783 0.0578348i
\(459\) 0 0
\(460\) −13.9663 35.0529i −0.651184 1.63435i
\(461\) 3.31204 11.9289i 0.154257 0.555584i −0.845509 0.533961i \(-0.820703\pi\)
0.999766 0.0216232i \(-0.00688340\pi\)
\(462\) 0 0
\(463\) 4.04503 + 7.62973i 0.187988 + 0.354584i 0.959535 0.281589i \(-0.0908614\pi\)
−0.771547 + 0.636173i \(0.780517\pi\)
\(464\) −12.2117 18.0110i −0.566916 0.836139i
\(465\) 0 0
\(466\) 3.76073 + 4.42748i 0.174213 + 0.205099i
\(467\) −1.06323 + 2.66852i −0.0492006 + 0.123484i −0.951523 0.307578i \(-0.900482\pi\)
0.902322 + 0.431062i \(0.141861\pi\)
\(468\) 0 0
\(469\) −13.3770 8.04867i −0.617693 0.371653i
\(470\) 92.5543 + 31.1852i 4.26921 + 1.43847i
\(471\) 0 0
\(472\) −0.0640124 0.174152i −0.00294641 0.00801597i
\(473\) −35.4326 −1.62919
\(474\) 0 0
\(475\) −27.6527 16.6381i −1.26879 0.763408i
\(476\) −9.33993 7.10003i −0.428095 0.325429i
\(477\) 0 0
\(478\) −8.96193 10.5508i −0.409909 0.482582i
\(479\) 34.9759 16.1816i 1.59809 0.739356i 0.599935 0.800049i \(-0.295193\pi\)
0.998156 + 0.0606930i \(0.0193311\pi\)
\(480\) 0 0
\(481\) 0.266947 + 0.503515i 0.0121717 + 0.0229583i
\(482\) −9.95424 + 11.7190i −0.453403 + 0.533788i
\(483\) 0 0
\(484\) −3.07894 7.72755i −0.139952 0.351252i
\(485\) 7.93870 14.9740i 0.360478 0.679933i
\(486\) 0 0
\(487\) −2.44868 + 1.86144i −0.110960 + 0.0843499i −0.659183 0.751983i \(-0.729098\pi\)
0.548223 + 0.836332i \(0.315305\pi\)
\(488\) −0.0117244 0.0422275i −0.000530739 0.00191155i
\(489\) 0 0
\(490\) −2.34401 14.2978i −0.105891 0.645909i
\(491\) −9.66114 + 2.12658i −0.436001 + 0.0959712i −0.427547 0.903993i \(-0.640622\pi\)
−0.00845432 + 0.999964i \(0.502691\pi\)
\(492\) 0 0
\(493\) 14.0808 + 1.53138i 0.634167 + 0.0689698i
\(494\) 4.93427 7.27750i 0.222003 0.327430i
\(495\) 0 0
\(496\) −2.15559 39.7575i −0.0967888 1.78516i
\(497\) −3.66710 3.47366i −0.164492 0.155815i
\(498\) 0 0
\(499\) −0.0642414 + 1.18486i −0.00287584 + 0.0530417i −0.999619 0.0275989i \(-0.991214\pi\)
0.996743 + 0.0806407i \(0.0256966\pi\)
\(500\) 31.0423 + 6.83293i 1.38825 + 0.305578i
\(501\) 0 0
\(502\) 12.2867 4.13987i 0.548383 0.184772i
\(503\) 15.6525 + 3.44538i 0.697911 + 0.153622i 0.549735 0.835339i \(-0.314729\pi\)
0.148176 + 0.988961i \(0.452660\pi\)
\(504\) 0 0
\(505\) 38.5306 36.4982i 1.71459 1.62415i
\(506\) −28.4192 26.9201i −1.26339 1.19674i
\(507\) 0 0
\(508\) 0.887274 5.41213i 0.0393664 0.240125i
\(509\) 15.1625 22.3631i 0.672067 0.991225i −0.326867 0.945070i \(-0.605993\pi\)
0.998934 0.0461548i \(-0.0146967\pi\)
\(510\) 0 0
\(511\) 27.6005 16.6066i 1.22097 0.734635i
\(512\) −31.2011 + 6.86789i −1.37891 + 0.303521i
\(513\) 0 0
\(514\) 29.9744 + 13.8676i 1.32211 + 0.611675i
\(515\) 13.5472 + 48.7926i 0.596960 + 2.15006i
\(516\) 0 0
\(517\) 50.2116 5.46084i 2.20830 0.240167i
\(518\) 0.953100 1.79774i 0.0418768 0.0789880i
\(519\) 0 0
\(520\) 0.0307310 0.110683i 0.00134764 0.00485378i
\(521\) −7.70492 + 9.07093i −0.337558 + 0.397405i −0.904584 0.426296i \(-0.859818\pi\)
0.567025 + 0.823700i \(0.308094\pi\)
\(522\) 0 0
\(523\) −19.5869 28.8885i −0.856475 1.26321i −0.963164 0.268914i \(-0.913335\pi\)
0.106689 0.994292i \(-0.465975\pi\)
\(524\) 12.5349 5.79926i 0.547590 0.253342i
\(525\) 0 0
\(526\) 2.68931 6.74966i 0.117259 0.294299i
\(527\) 20.6315 + 15.6836i 0.898721 + 0.683190i
\(528\) 0 0
\(529\) −2.18461 0.736082i −0.0949832 0.0320036i
\(530\) 15.9473 0.692705
\(531\) 0 0
\(532\) −15.6487 −0.678459
\(533\) 1.67488 + 0.564334i 0.0725473 + 0.0244440i
\(534\) 0 0
\(535\) 41.8940 + 31.8470i 1.81123 + 1.37686i
\(536\) 0.0619473 0.155476i 0.00267572 0.00671554i
\(537\) 0 0
\(538\) 55.8522 25.8400i 2.40796 1.11404i
\(539\) −4.20481 6.20163i −0.181114 0.267123i
\(540\) 0 0
\(541\) −13.4966 + 15.8894i −0.580265 + 0.683140i −0.971470 0.237163i \(-0.923782\pi\)
0.391205 + 0.920303i \(0.372058\pi\)
\(542\) 4.47786 16.1278i 0.192340 0.692748i
\(543\) 0 0
\(544\) 9.79973 18.4842i 0.420160 0.792506i
\(545\) 4.00389 0.435449i 0.171508 0.0186526i
\(546\) 0 0
\(547\) −6.54945 23.5890i −0.280034 1.00859i −0.961062 0.276334i \(-0.910880\pi\)
0.681027 0.732258i \(-0.261533\pi\)
\(548\) 40.5766 + 18.7727i 1.73335 + 0.801931i
\(549\) 0 0
\(550\) 70.2029 15.4528i 2.99346 0.658911i
\(551\) 16.1878 9.73988i 0.689624 0.414933i
\(552\) 0 0
\(553\) −16.7705 + 24.7346i −0.713153 + 1.05182i
\(554\) 6.26894 38.2388i 0.266342 1.62461i
\(555\) 0 0
\(556\) −13.4374 12.7286i −0.569873 0.539813i
\(557\) 10.0648 9.53389i 0.426459 0.403964i −0.444139 0.895958i \(-0.646490\pi\)
0.870599 + 0.491994i \(0.163732\pi\)
\(558\) 0 0
\(559\) 11.1918 + 2.46349i 0.473361 + 0.104195i
\(560\) −32.4221 + 10.9243i −1.37008 + 0.461635i
\(561\) 0 0
\(562\) −52.2392 11.4987i −2.20358 0.485044i
\(563\) 0.901272 16.6230i 0.0379841 0.700576i −0.916084 0.400986i \(-0.868668\pi\)
0.954068 0.299589i \(-0.0968497\pi\)
\(564\) 0 0
\(565\) −52.9317 50.1395i −2.22685 2.10939i
\(566\) −1.03697 19.1258i −0.0435872 0.803919i
\(567\) 0 0
\(568\) 0.0303882 0.0448192i 0.00127506 0.00188057i
\(569\) 22.2417 + 2.41893i 0.932421 + 0.101407i 0.561704 0.827339i \(-0.310146\pi\)
0.370718 + 0.928746i \(0.379112\pi\)
\(570\) 0 0
\(571\) −33.7250 + 7.42343i −1.41135 + 0.310661i −0.854283 0.519808i \(-0.826003\pi\)
−0.557064 + 0.830469i \(0.688072\pi\)
\(572\) 1.57941 + 9.63399i 0.0660386 + 0.402817i
\(573\) 0 0
\(574\) −1.68818 6.08027i −0.0704632 0.253786i
\(575\) 36.9936 28.1218i 1.54274 1.17276i
\(576\) 0 0
\(577\) 7.36745 13.8965i 0.306711 0.578518i −0.681464 0.731852i \(-0.738656\pi\)
0.988174 + 0.153334i \(0.0490011\pi\)
\(578\) −7.49479 18.8105i −0.311742 0.782414i
\(579\) 0 0
\(580\) −26.2593 + 30.9149i −1.09036 + 1.28367i
\(581\) 13.0363 + 24.5890i 0.540835 + 1.02012i
\(582\) 0 0
\(583\) 7.48478 3.46283i 0.309988 0.143416i
\(584\) 0.223552 + 0.263186i 0.00925067 + 0.0108907i
\(585\) 0 0
\(586\) −25.1799 19.1412i −1.04017 0.790717i
\(587\) 9.69805 + 5.83512i 0.400281 + 0.240841i 0.701434 0.712735i \(-0.252544\pi\)
−0.301152 + 0.953576i \(0.597371\pi\)
\(588\) 0 0
\(589\) 34.5673 1.42432
\(590\) −47.0026 + 33.7736i −1.93507 + 1.39044i
\(591\) 0 0
\(592\) 1.72442 + 0.581024i 0.0708731 + 0.0238799i
\(593\) −12.5877 7.57375i −0.516914 0.311017i 0.233084 0.972456i \(-0.425118\pi\)
−0.749998 + 0.661440i \(0.769946\pi\)
\(594\) 0 0
\(595\) 8.24263 20.6874i 0.337915 0.848102i
\(596\) 4.02116 + 4.73408i 0.164713 + 0.193915i
\(597\) 0 0
\(598\) 7.10486 + 10.4789i 0.290540 + 0.428514i
\(599\) 1.86661 + 3.52080i 0.0762676 + 0.143856i 0.918713 0.394926i \(-0.129230\pi\)
−0.842446 + 0.538782i \(0.818885\pi\)
\(600\) 0 0
\(601\) 6.63515 23.8977i 0.270653 0.974806i −0.695857 0.718180i \(-0.744975\pi\)
0.966511 0.256626i \(-0.0826107\pi\)
\(602\) −15.1443 38.0094i −0.617237 1.54915i
\(603\) 0 0
\(604\) −0.821660 + 0.0893609i −0.0334329 + 0.00363604i
\(605\) 12.5697 9.55520i 0.511029 0.388474i
\(606\) 0 0
\(607\) −4.15918 1.92424i −0.168816 0.0781025i 0.333661 0.942693i \(-0.391716\pi\)
−0.502477 + 0.864591i \(0.667578\pi\)
\(608\) −4.51460 27.5378i −0.183091 1.11681i
\(609\) 0 0
\(610\) −11.7139 + 7.04800i −0.474281 + 0.285365i
\(611\) −16.2396 1.76616i −0.656982 0.0714511i
\(612\) 0 0
\(613\) 2.32105 14.1578i 0.0937462 0.571827i −0.897627 0.440756i \(-0.854710\pi\)
0.991373 0.131070i \(-0.0418414\pi\)
\(614\) −0.352512 6.50170i −0.0142262 0.262387i
\(615\) 0 0
\(616\) −0.153980 + 0.145858i −0.00620404 + 0.00587677i
\(617\) −1.66226 + 30.6586i −0.0669202 + 1.23427i 0.751533 + 0.659696i \(0.229315\pi\)
−0.818453 + 0.574574i \(0.805168\pi\)
\(618\) 0 0
\(619\) −25.6455 + 8.64096i −1.03078 + 0.347310i −0.783340 0.621594i \(-0.786485\pi\)
−0.247438 + 0.968904i \(0.579589\pi\)
\(620\) −70.3325 + 23.6978i −2.82462 + 0.951725i
\(621\) 0 0
\(622\) −1.23708 + 22.8166i −0.0496023 + 0.914861i
\(623\) 17.9913 17.0422i 0.720805 0.682783i
\(624\) 0 0
\(625\) 0.765773 + 14.1239i 0.0306309 + 0.564954i
\(626\) −2.64301 + 16.1216i −0.105636 + 0.644350i
\(627\) 0 0
\(628\) 21.3605 + 2.32310i 0.852378 + 0.0927017i
\(629\) −1.01487 + 0.610628i −0.0404656 + 0.0243473i
\(630\) 0 0
\(631\) 6.60194 + 40.2701i 0.262819 + 1.60313i 0.707016 + 0.707197i \(0.250041\pi\)
−0.444197 + 0.895929i \(0.646511\pi\)
\(632\) −0.290756 0.134518i −0.0115656 0.00535084i
\(633\) 0 0
\(634\) −8.76802 + 6.66527i −0.348222 + 0.264712i
\(635\) 10.3490 1.12552i 0.410686 0.0446648i
\(636\) 0 0
\(637\) 0.896959 + 2.25120i 0.0355388 + 0.0891957i
\(638\) −11.2577 + 40.5465i −0.445696 + 1.60525i
\(639\) 0 0
\(640\) −0.341542 0.644216i −0.0135006 0.0254649i
\(641\) 3.36375 + 4.96116i 0.132860 + 0.195954i 0.888300 0.459264i \(-0.151887\pi\)
−0.755440 + 0.655218i \(0.772577\pi\)
\(642\) 0 0
\(643\) −25.7711 30.3400i −1.01631 1.19649i −0.980375 0.197140i \(-0.936835\pi\)
−0.0359359 0.999354i \(-0.511441\pi\)
\(644\) 8.34019 20.9323i 0.328650 0.824849i
\(645\) 0 0
\(646\) 15.6576 + 9.42089i 0.616041 + 0.370660i
\(647\) −33.4691 11.2770i −1.31580 0.443346i −0.428088 0.903737i \(-0.640813\pi\)
−0.887716 + 0.460391i \(0.847709\pi\)
\(648\) 0 0
\(649\) −14.7268 + 26.0577i −0.578077 + 1.02286i
\(650\) −23.2487 −0.911890
\(651\) 0 0
\(652\) −1.83169 1.10209i −0.0717347 0.0431613i
\(653\) −29.9430 22.7621i −1.17176 0.890749i −0.176151 0.984363i \(-0.556365\pi\)
−0.995609 + 0.0936144i \(0.970158\pi\)
\(654\) 0 0
\(655\) 16.9716 + 19.9806i 0.663137 + 0.780705i
\(656\) 5.12166 2.36953i 0.199967 0.0925147i
\(657\) 0 0
\(658\) 27.3191 + 51.5292i 1.06501 + 2.00882i
\(659\) −0.572052 + 0.673471i −0.0222840 + 0.0262347i −0.773191 0.634173i \(-0.781341\pi\)
0.750907 + 0.660408i \(0.229617\pi\)
\(660\) 0 0
\(661\) 3.25167 + 8.16107i 0.126475 + 0.317429i 0.978556 0.205982i \(-0.0660387\pi\)
−0.852081 + 0.523411i \(0.824659\pi\)
\(662\) 3.09397 5.83584i 0.120251 0.226817i
\(663\) 0 0
\(664\) −0.237520 + 0.180558i −0.00921756 + 0.00700701i
\(665\) −7.94641 28.6204i −0.308149 1.10985i
\(666\) 0 0
\(667\) 4.40092 + 26.8444i 0.170404 + 1.03942i
\(668\) 5.40238 1.18915i 0.209024 0.0460098i
\(669\) 0 0
\(670\) −51.9010 5.64457i −2.00511 0.218069i
\(671\) −3.96743 + 5.85153i −0.153161 + 0.225896i
\(672\) 0 0
\(673\) −1.14547 21.1269i −0.0441544 0.814381i −0.933815 0.357757i \(-0.883541\pi\)
0.889660 0.456623i \(-0.150941\pi\)
\(674\) −18.1569 17.1991i −0.699378 0.662486i
\(675\) 0 0
\(676\) −1.22816 + 22.6520i −0.0472368 + 0.871232i
\(677\) 42.4580 + 9.34571i 1.63179 + 0.359185i 0.934044 0.357157i \(-0.116254\pi\)
0.697749 + 0.716342i \(0.254185\pi\)
\(678\) 0 0
\(679\) 9.59108 3.23161i 0.368072 0.124018i
\(680\) 0.233150 + 0.0513202i 0.00894090 + 0.00196804i
\(681\) 0 0
\(682\) −55.8984 + 52.9498i −2.14046 + 2.02755i
\(683\) −27.2660 25.8277i −1.04330 0.988269i −0.0433615 0.999059i \(-0.513807\pi\)
−0.999942 + 0.0107900i \(0.996565\pi\)
\(684\) 0 0
\(685\) −13.7292 + 83.7444i −0.524566 + 3.19971i
\(686\) 22.5317 33.2317i 0.860263 1.26879i
\(687\) 0 0
\(688\) 31.3526 18.8642i 1.19531 0.719193i
\(689\) −2.60491 + 0.573383i −0.0992391 + 0.0218442i
\(690\) 0 0
\(691\) 12.7926 + 5.91849i 0.486654 + 0.225150i 0.647844 0.761773i \(-0.275671\pi\)
−0.161190 + 0.986923i \(0.551533\pi\)
\(692\) 3.68448 + 13.2703i 0.140063 + 0.504461i
\(693\) 0 0
\(694\) 1.67405 0.182064i 0.0635460 0.00691104i
\(695\) 16.4562 31.0396i 0.624218 1.17740i
\(696\) 0 0
\(697\) −0.982670 + 3.53926i −0.0372213 + 0.134059i
\(698\) 15.2284 17.9283i 0.576404 0.678595i
\(699\) 0 0
\(700\) 23.2205 + 34.2476i 0.877652 + 1.29444i
\(701\) −11.2105 + 5.18652i −0.423414 + 0.195892i −0.620012 0.784592i \(-0.712872\pi\)
0.196599 + 0.980484i \(0.437010\pi\)
\(702\) 0 0
\(703\) −0.584745 + 1.46760i −0.0220541 + 0.0553515i
\(704\) 24.5162 + 18.6367i 0.923988 + 0.702397i
\(705\) 0 0
\(706\) −57.0818 19.2331i −2.14830 0.723847i
\(707\) 31.6932 1.19195
\(708\) 0 0
\(709\) −10.7610 −0.404136 −0.202068 0.979371i \(-0.564766\pi\)
−0.202068 + 0.979371i \(0.564766\pi\)
\(710\) −16.0073 5.39347i −0.600742 0.202413i
\(711\) 0 0
\(712\) 0.211495 + 0.160774i 0.00792610 + 0.00602527i
\(713\) −18.4231 + 46.2385i −0.689951 + 1.73165i
\(714\) 0 0
\(715\) −16.8179 + 7.78077i −0.628952 + 0.290984i
\(716\) 15.0460 + 22.1912i 0.562296 + 0.829324i
\(717\) 0 0
\(718\) −10.4323 + 12.2819i −0.389331 + 0.458356i
\(719\) 10.0593 36.2303i 0.375148 1.35116i −0.499462 0.866336i \(-0.666469\pi\)
0.874611 0.484826i \(-0.161117\pi\)
\(720\) 0 0
\(721\) −14.1644 + 26.7169i −0.527509 + 0.994988i
\(722\) −13.4895 + 1.46707i −0.502027 + 0.0545987i
\(723\) 0 0
\(724\) −7.68185 27.6675i −0.285494 1.02826i
\(725\) −45.3364 20.9748i −1.68375 0.778986i
\(726\) 0 0
\(727\) 11.1478 2.45382i 0.413450 0.0910072i −0.00337439 0.999994i \(-0.501074\pi\)
0.416824 + 0.908987i \(0.363143\pi\)
\(728\) 0.0587773 0.0353651i 0.00217843 0.00131072i
\(729\) 0 0
\(730\) 60.4497 89.1567i 2.23734 3.29984i
\(731\) −3.85306 + 23.5026i −0.142510 + 0.869276i
\(732\) 0 0
\(733\) 3.74693 + 3.54928i 0.138396 + 0.131096i 0.753767 0.657142i \(-0.228235\pi\)
−0.615370 + 0.788238i \(0.710994\pi\)
\(734\) 9.86592 9.34550i 0.364158 0.344949i
\(735\) 0 0
\(736\) 39.2417 + 8.63775i 1.44647 + 0.318392i
\(737\) −25.5852 + 8.62065i −0.942442 + 0.317546i
\(738\) 0 0
\(739\) 43.4204 + 9.55756i 1.59725 + 0.351580i 0.922357 0.386339i \(-0.126260\pi\)
0.674889 + 0.737919i \(0.264192\pi\)
\(740\) 0.183634 3.38693i 0.00675051 0.124506i
\(741\) 0 0
\(742\) 6.91375 + 6.54905i 0.253812 + 0.240423i
\(743\) 1.69336 + 31.2322i 0.0621233 + 1.14580i 0.848898 + 0.528557i \(0.177267\pi\)
−0.786775 + 0.617240i \(0.788251\pi\)
\(744\) 0 0
\(745\) −6.61634 + 9.75837i −0.242404 + 0.357519i
\(746\) 30.2163 + 3.28622i 1.10630 + 0.120317i
\(747\) 0 0
\(748\) −19.8150 + 4.36161i −0.724508 + 0.159476i
\(749\) 5.08407 + 31.0115i 0.185768 + 1.13313i
\(750\) 0 0
\(751\) 6.64513 + 23.9336i 0.242484 + 0.873349i 0.980162 + 0.198197i \(0.0635085\pi\)
−0.737678 + 0.675153i \(0.764078\pi\)
\(752\) −41.5226 + 31.5646i −1.51417 + 1.15104i
\(753\) 0 0
\(754\) 6.37492 12.0244i 0.232161 0.437902i
\(755\) −0.580673 1.45738i −0.0211328 0.0530395i
\(756\) 0 0
\(757\) −18.9780 + 22.3427i −0.689768 + 0.812058i −0.989889 0.141843i \(-0.954697\pi\)
0.300121 + 0.953901i \(0.402973\pi\)
\(758\) 27.7094 + 52.2656i 1.00645 + 1.89837i
\(759\) 0 0
\(760\) 0.288996 0.133704i 0.0104830 0.00484995i
\(761\) 1.56591 + 1.84353i 0.0567642 + 0.0668280i 0.789811 0.613350i \(-0.210178\pi\)
−0.733047 + 0.680178i \(0.761903\pi\)
\(762\) 0 0
\(763\) 1.91467 + 1.45549i 0.0693155 + 0.0526923i
\(764\) 3.88511 + 2.33759i 0.140558 + 0.0845712i
\(765\) 0 0
\(766\) 12.1657 0.439564
\(767\) 6.46332 7.20673i 0.233377 0.260220i
\(768\) 0 0
\(769\) −35.7421 12.0429i −1.28889 0.434279i −0.410345 0.911930i \(-0.634592\pi\)
−0.878550 + 0.477651i \(0.841488\pi\)
\(770\) 56.6904 + 34.1095i 2.04298 + 1.22922i
\(771\) 0 0
\(772\) −3.85591 + 9.67760i −0.138777 + 0.348304i
\(773\) 17.2539 + 20.3129i 0.620580 + 0.730603i 0.979204 0.202879i \(-0.0650298\pi\)
−0.358624 + 0.933482i \(0.616754\pi\)
\(774\) 0 0
\(775\) −51.2930 75.6515i −1.84250 2.71748i
\(776\) 0.0508219 + 0.0958603i 0.00182440 + 0.00344118i
\(777\) 0 0
\(778\) 14.1883 51.1015i 0.508674 1.83208i
\(779\) 1.81343 + 4.55137i 0.0649730 + 0.163070i
\(780\) 0 0
\(781\) −8.68409 + 0.944452i −0.310741 + 0.0337951i
\(782\) −20.9467 + 15.9232i −0.749051 + 0.569414i
\(783\) 0 0
\(784\) 7.02238 + 3.24890i 0.250799 + 0.116032i
\(785\) 6.59809 + 40.2466i 0.235496 + 1.43646i
\(786\) 0 0
\(787\) −45.9865 + 27.6692i −1.63924 + 0.986299i −0.669290 + 0.743001i \(0.733402\pi\)
−0.969952 + 0.243298i \(0.921771\pi\)
\(788\) −38.8723 4.22761i −1.38477 0.150603i
\(789\) 0 0
\(790\) −16.1676 + 98.6182i −0.575219 + 3.50868i
\(791\) −2.35714 43.4748i −0.0838101 1.54579i
\(792\) 0 0
\(793\) 1.65999 1.57243i 0.0589481 0.0558386i
\(794\) −0.711843 + 13.1292i −0.0252624 + 0.465937i
\(795\) 0 0
\(796\) 27.8805 9.39403i 0.988198 0.332963i
\(797\) −29.3586 + 9.89206i −1.03993 + 0.350395i −0.786912 0.617066i \(-0.788321\pi\)
−0.253023 + 0.967460i \(0.581425\pi\)
\(798\) 0 0
\(799\) 1.83798 33.8995i 0.0650229 1.19928i
\(800\) −53.5682 + 50.7425i −1.89392 + 1.79402i
\(801\) 0 0
\(802\) −0.566030 10.4398i −0.0199872 0.368643i
\(803\) 9.01212 54.9715i 0.318031 1.93990i
\(804\) 0 0
\(805\) 42.5188 + 4.62420i 1.49859 + 0.162982i
\(806\) 21.3375 12.8384i 0.751583 0.452212i
\(807\) 0 0
\(808\) 0.0549673 + 0.335286i 0.00193374 + 0.0117953i
\(809\) 42.7209 + 19.7648i 1.50199 + 0.694893i 0.986764 0.162162i \(-0.0518468\pi\)
0.515224 + 0.857056i \(0.327709\pi\)
\(810\) 0 0
\(811\) 37.5884 28.5740i 1.31991 1.00337i 0.321503 0.946908i \(-0.395812\pi\)
0.998405 0.0564598i \(-0.0179813\pi\)
\(812\) −24.0802 + 2.61888i −0.845050 + 0.0919048i
\(813\) 0 0
\(814\) −1.30247 3.26894i −0.0456514 0.114576i
\(815\) 1.08552 3.90968i 0.0380240 0.136950i
\(816\) 0 0
\(817\) 14.8799 + 28.0664i 0.520581 + 0.981921i
\(818\) 21.5713 + 31.8152i 0.754221 + 1.11239i
\(819\) 0 0
\(820\) −6.80991 8.01725i −0.237812 0.279975i
\(821\) 4.07154 10.2188i 0.142098 0.356638i −0.840653 0.541574i \(-0.817828\pi\)
0.982751 + 0.184936i \(0.0592078\pi\)
\(822\) 0 0
\(823\) −16.1982 9.74612i −0.564633 0.339728i 0.204450 0.978877i \(-0.434459\pi\)
−0.769083 + 0.639149i \(0.779287\pi\)
\(824\) −0.307207 0.103510i −0.0107020 0.00360594i
\(825\) 0 0
\(826\) −34.2472 4.66039i −1.19161 0.162156i
\(827\) −14.1624 −0.492475 −0.246238 0.969209i \(-0.579194\pi\)
−0.246238 + 0.969209i \(0.579194\pi\)
\(828\) 0 0
\(829\) −23.6175 14.2102i −0.820270 0.493540i 0.0425245 0.999095i \(-0.486460\pi\)
−0.862794 + 0.505556i \(0.831288\pi\)
\(830\) 74.0919 + 56.3232i 2.57177 + 1.95501i
\(831\) 0 0
\(832\) −6.44796 7.59113i −0.223543 0.263175i
\(833\) −4.57082 + 2.11469i −0.158370 + 0.0732695i
\(834\) 0 0
\(835\) 4.91820 + 9.27671i 0.170201 + 0.321034i
\(836\) −17.5199 + 20.6260i −0.605938 + 0.713365i
\(837\) 0 0
\(838\) 7.97712 + 20.0211i 0.275565 + 0.691616i
\(839\) 5.98157 11.2824i 0.206507 0.389513i −0.758526 0.651643i \(-0.774080\pi\)
0.965033 + 0.262130i \(0.0844248\pi\)
\(840\) 0 0
\(841\) 0.193049 0.146752i 0.00665685 0.00506040i
\(842\) −3.73391 13.4483i −0.128679 0.463460i
\(843\) 0 0
\(844\) 3.80204 + 23.1914i 0.130872 + 0.798281i
\(845\) −42.0526 + 9.25648i −1.44665 + 0.318432i
\(846\) 0 0
\(847\) 9.37346 + 1.01942i 0.322076 + 0.0350278i
\(848\) −4.77933 + 7.04898i −0.164123 + 0.242063i
\(849\) 0 0
\(850\) −2.61584 48.2464i −0.0897227 1.65484i
\(851\) −1.65147 1.56435i −0.0566115 0.0536253i
\(852\) 0 0
\(853\) 2.56575 47.3225i 0.0878496 1.62029i −0.539799 0.841794i \(-0.681500\pi\)
0.627648 0.778497i \(-0.284018\pi\)
\(854\) −7.97281 1.75495i −0.272824 0.0600531i
\(855\) 0 0
\(856\) −0.319256 + 0.107570i −0.0109119 + 0.00367666i
\(857\) 37.0782 + 8.16152i 1.26657 + 0.278792i 0.796932 0.604069i \(-0.206455\pi\)
0.469634 + 0.882861i \(0.344386\pi\)
\(858\) 0 0
\(859\) −19.3486 + 18.3279i −0.660164 + 0.625341i −0.942592 0.333948i \(-0.891619\pi\)
0.282427 + 0.959289i \(0.408860\pi\)
\(860\) −49.5164 46.9045i −1.68850 1.59943i
\(861\) 0 0
\(862\) 4.43367 27.0442i 0.151011 0.921128i
\(863\) −17.1221 + 25.2532i −0.582843 + 0.859629i −0.998761 0.0497735i \(-0.984150\pi\)
0.415918 + 0.909402i \(0.363460\pi\)
\(864\) 0 0
\(865\) −22.3994 + 13.4773i −0.761604 + 0.458242i
\(866\) 63.1973 13.9108i 2.14753 0.472708i
\(867\) 0 0
\(868\) −40.2238 18.6095i −1.36528 0.631648i
\(869\) 13.8260 + 49.7967i 0.469014 + 1.68924i
\(870\) 0 0
\(871\) 8.68072 0.944085i 0.294135 0.0319891i
\(872\) −0.0120771 + 0.0227798i −0.000408981 + 0.000771421i
\(873\) 0 0
\(874\) −9.38902 + 33.8162i −0.317588 + 1.14385i
\(875\) −23.3242 + 27.4594i −0.788503 + 0.928298i
\(876\) 0 0
\(877\) −2.82642 4.16866i −0.0954414 0.140766i 0.776970 0.629537i \(-0.216755\pi\)
−0.872412 + 0.488772i \(0.837445\pi\)
\(878\) −19.9266 + 9.21901i −0.672489 + 0.311127i
\(879\) 0 0
\(880\) −21.9000 + 54.9649i −0.738249 + 1.85287i
\(881\) −20.1135 15.2899i −0.677642 0.515130i 0.208807 0.977957i \(-0.433042\pi\)
−0.886449 + 0.462827i \(0.846835\pi\)
\(882\) 0 0
\(883\) −1.37681 0.463900i −0.0463333 0.0156115i 0.296039 0.955176i \(-0.404334\pi\)
−0.342373 + 0.939564i \(0.611231\pi\)
\(884\) 6.56203 0.220705
\(885\) 0 0
\(886\) 53.6355 1.80192
\(887\) −9.09037 3.06290i −0.305225 0.102842i 0.162521 0.986705i \(-0.448037\pi\)
−0.467746 + 0.883863i \(0.654934\pi\)
\(888\) 0 0
\(889\) 4.94888 + 3.76204i 0.165980 + 0.126175i
\(890\) 30.6740 76.9859i 1.02819 2.58057i
\(891\) 0 0
\(892\) −48.4111 + 22.3974i −1.62092 + 0.749919i
\(893\) −25.4119 37.4798i −0.850378 1.25421i
\(894\) 0 0
\(895\) −32.9458 + 38.7867i −1.10126 + 1.29650i
\(896\) 0.116488 0.419553i 0.00389160 0.0140163i
\(897\) 0 0
\(898\) 6.50768 12.2748i 0.217164 0.409615i
\(899\) 53.1921 5.78499i 1.77406 0.192940i
\(900\) 0 0
\(901\) −1.48299 5.34126i −0.0494056 0.177943i
\(902\) −9.90422 4.58218i −0.329774 0.152570i
\(903\) 0 0
\(904\) 0.455837 0.100337i 0.0151609 0.00333717i
\(905\) 46.7011 28.0991i 1.55240 0.934045i
\(906\) 0 0
\(907\) −13.8557 + 20.4356i −0.460069 + 0.678552i −0.984992 0.172598i \(-0.944784\pi\)
0.524923 + 0.851150i \(0.324094\pi\)
\(908\) −3.06178 + 18.6760i −0.101609 + 0.619785i
\(909\) 0 0
\(910\) −15.5348 14.7153i −0.514973 0.487809i
\(911\) −25.1422 + 23.8160i −0.832999 + 0.789058i −0.979773 0.200112i \(-0.935870\pi\)
0.146774 + 0.989170i \(0.453111\pi\)
\(912\) 0 0
\(913\) 47.0049 + 10.3466i 1.55563 + 0.342421i
\(914\) −47.5717 + 16.0288i −1.57353 + 0.530185i
\(915\) 0 0
\(916\) 11.1293 + 2.44975i 0.367723 + 0.0809421i
\(917\) −0.847547 + 15.6321i −0.0279885 + 0.516217i
\(918\) 0 0
\(919\) 17.4876 + 16.5651i 0.576863 + 0.546434i 0.919528 0.393024i \(-0.128571\pi\)
−0.342665 + 0.939458i \(0.611330\pi\)
\(920\) 0.0248229 + 0.457831i 0.000818386 + 0.0150942i
\(921\) 0 0
\(922\) 13.8741 20.4628i 0.456921 0.673908i
\(923\) 2.80863 + 0.305457i 0.0924472 + 0.0100542i
\(924\) 0 0
\(925\) 4.07955 0.897978i 0.134135 0.0295253i
\(926\) 2.78997 + 17.0181i 0.0916841 + 0.559248i
\(927\) 0 0
\(928\) −11.5556 41.6196i −0.379332 1.36623i
\(929\) −30.6302 + 23.2844i −1.00494 + 0.763938i −0.971871 0.235515i \(-0.924322\pi\)
−0.0330720 + 0.999453i \(0.510529\pi\)
\(930\) 0 0
\(931\) −3.14656 + 5.93504i −0.103124 + 0.194513i
\(932\) 2.14041 + 5.37201i 0.0701113 + 0.175966i
\(933\) 0 0
\(934\) −3.71365 + 4.37205i −0.121514 + 0.143058i
\(935\) −18.0391 34.0254i −0.589942 1.11275i
\(936\) 0 0
\(937\) −35.8872 + 16.6032i −1.17238 + 0.542402i −0.906749 0.421671i \(-0.861444\pi\)
−0.265635 + 0.964074i \(0.585582\pi\)
\(938\) −20.1830 23.7613i −0.658999 0.775834i
\(939\) 0 0
\(940\) 77.3988 + 58.8370i 2.52447 + 1.91905i
\(941\) 5.05634 + 3.04230i 0.164832 + 0.0991762i 0.595580 0.803296i \(-0.296922\pi\)
−0.430747 + 0.902473i \(0.641750\pi\)
\(942\) 0 0
\(943\) −7.05457 −0.229728
\(944\) −0.842049 30.8978i −0.0274064 1.00564i
\(945\) 0 0
\(946\) −67.0539 22.5931i −2.18011 0.734565i
\(947\) −9.71497 5.84530i −0.315694 0.189947i 0.348883 0.937166i \(-0.386561\pi\)
−0.664578 + 0.747219i \(0.731388\pi\)
\(948\) 0 0
\(949\) −6.66854 + 16.7368i −0.216470 + 0.543298i
\(950\) −41.7220 49.1189i −1.35364 1.59363i
\(951\) 0 0
\(952\) 0.0800039 + 0.117997i 0.00259294 + 0.00382430i
\(953\) −9.57381 18.0581i −0.310126 0.584960i 0.678633 0.734478i \(-0.262573\pi\)
−0.988759 + 0.149518i \(0.952228\pi\)
\(954\) 0 0
\(955\) −2.30243 + 8.29261i −0.0745050 + 0.268343i
\(956\) −5.10064 12.8016i −0.164967 0.414035i
\(957\) 0 0
\(958\) 76.5078 8.32072i 2.47185 0.268830i
\(959\) −40.3434 + 30.6683i −1.30276 + 0.990330i
\(960\) 0 0
\(961\) 60.7177 + 28.0910i 1.95863 + 0.906161i
\(962\) 0.184121 + 1.12309i 0.00593629 + 0.0362098i
\(963\) 0 0
\(964\) −13.1152 + 7.89118i −0.422413 + 0.254158i
\(965\) −19.6576 2.13790i −0.632802 0.0688214i
\(966\) 0 0
\(967\) −1.55902 + 9.50962i −0.0501348 + 0.305809i −0.999976 0.00692379i \(-0.997796\pi\)
0.949841 + 0.312733i \(0.101244\pi\)
\(968\) 0.00547231 + 0.100931i 0.000175887 + 0.00324404i
\(969\) 0 0
\(970\) 24.5714 23.2753i 0.788942 0.747325i
\(971\) −1.52121 + 28.0570i −0.0488178 + 0.900392i 0.866878 + 0.498520i \(0.166123\pi\)
−0.915696 + 0.401872i \(0.868360\pi\)
\(972\) 0 0
\(973\) 19.8814 6.69883i 0.637369 0.214755i
\(974\) −5.82091 + 1.96129i −0.186514 + 0.0628438i
\(975\) 0 0
\(976\) 0.395252 7.29000i 0.0126517 0.233347i
\(977\) 29.8468 28.2724i 0.954883 0.904514i −0.0406262 0.999174i \(-0.512935\pi\)
0.995510 + 0.0946608i \(0.0301767\pi\)
\(978\) 0 0
\(979\) −2.32020 42.7936i −0.0741540 1.36769i
\(980\) 2.33336 14.2329i 0.0745364 0.454652i
\(981\) 0 0
\(982\) −19.6391 2.13588i −0.626709 0.0681587i
\(983\) −48.8363 + 29.3838i −1.55764 + 0.937199i −0.563853 + 0.825875i \(0.690682\pi\)
−0.993784 + 0.111324i \(0.964491\pi\)
\(984\) 0 0
\(985\) −12.0073 73.2414i −0.382585 2.33366i
\(986\) 25.6706 + 11.8765i 0.817517 + 0.378224i
\(987\) 0 0
\(988\) 6.96790 5.29686i 0.221678 0.168516i
\(989\) −45.4731 + 4.94550i −1.44596 + 0.157258i
\(990\) 0 0
\(991\) 10.7756 + 27.0448i 0.342300 + 0.859108i 0.994850 + 0.101362i \(0.0323200\pi\)
−0.652550 + 0.757746i \(0.726301\pi\)
\(992\) 21.1436 76.1525i 0.671311 2.41784i
\(993\) 0 0
\(994\) −4.72483 8.91197i −0.149862 0.282671i
\(995\) 31.3387 + 46.2211i 0.993504 + 1.46531i
\(996\) 0 0
\(997\) −32.2022 37.9114i −1.01985 1.20066i −0.979493 0.201480i \(-0.935425\pi\)
−0.0403610 0.999185i \(-0.512851\pi\)
\(998\) −0.877085 + 2.20132i −0.0277636 + 0.0696815i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 531.2.i.b.64.5 140
3.2 odd 2 177.2.e.b.64.1 140
59.12 even 29 inner 531.2.i.b.307.5 140
177.71 odd 58 177.2.e.b.130.1 yes 140
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
177.2.e.b.64.1 140 3.2 odd 2
177.2.e.b.130.1 yes 140 177.71 odd 58
531.2.i.b.64.5 140 1.1 even 1 trivial
531.2.i.b.307.5 140 59.12 even 29 inner